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Abstract

We propose an approach to activity recognition based on
detecting and analyzing the sequence of objects that are be-
ing manipulated by the user. In domains such as cooking,
where many activities involve similar actions, object-use in-
formation can be a valuable cue. In order for this approach
to scale to many activities and objects, however, it is nec-
essary to minimize the amount of human-labeled data that
is required for modeling. We describe a method for auto-
matically acquiring object models from video without any
explicit human supervision. Our approach leverages sparse
and noisy readings from RFID tagged objects, along with
common-sense knowledge about which objects are likely to
be used during a given activity, to bootstrap the learning
process. We present a dynamic Bayesian network model
which combines RFID and video data to jointly infer the
most likely activity and object labels. We demonstrate that
our approach can achieve activity recognition rates of more
than 80% on a real-world dataset consisting of 16 house-
hold activities involving 33 objects with significant back-
ground clutter. We show that the combination of visual ob-
ject recognition with RFID data is significantly more effec-
tive than the RFID sensor alone. Our work demonstrates
that it is possible to automatically learn object models from
video of household activities and employ these models for
activity recognition, without requiring any explicit human
labeling.

1. Introduction
We address the problem of recognizing human activi-

ties in indoor environments such as the kitchen or office.
This problem has broad applications in computer-assisted
care and workflow optimization, human-centered comput-
ing, and automated surveillance. To a first approximation,
activities can be characterized by a set of “verbs”, the ac-
tions performed by a human actor, and a set of “nouns”, the
objects or places which are the target of the action. While
much work in activity recognition has focused on recogniz-
ing the verbs, our goal is to characterize activities by sens-

ing the nouns. In other words, we recognize activities by
identifying the objects which are being used in the scene.

An activity recognition approach based on object use can
be particularly useful in domains such as cooking, which in-
volve a relatively small number of repeated actions such as
chopping, pouring, spreading, etc. Object use information
can help discriminate between activities such as making
toast and making a sandwich, which may be similar from
the standpoint of the actions alone. Such distinctions can
be important for application domains such as health mon-
itoring or memory aids. A significant issue in the devel-
opment of an object-based approach is its scalability, given
the potentially large number of objects that must be discrim-
inated, and the difficulty of obtaining labeled training data
for each object under realistic conditions. Potential users
are unlikely to be willing to spend a significant amount
of time training a recognition system by presenting it with
individually-labeled object instances. However, given video
of everyday household activities, it is possible that object
models could be extracted automatically if a sufficiently in-
formative training signal was available.

We describe a method for activity recognition based
upon automatically-acquired models of activities and the
objects that they involve. Our learning approach is based
upon two primary sources of information. The first is an
RFID-based sensor which generates sparse and noisy ob-
ject use events when a tagged object is manipulated during
an activity. Correlations between events in the RFID and
video streams are modeled using a Dynamic Bayesian net-
work (DBN) and used as a training signal to automatically
acquire object models. The second source of information is
how-to websites such as about.com, which could be mined
automatically to extract activity models [27]. Our DBN rep-
resentation encodes this common-sense knowledge about
which objects are used in various activities, e.g. making a
cup of tea involves a teacup, a teabag, and hot water.

Our method builds upon recent techniques in the ob-
ject recognition community for clustering object descrip-
tors across a set of static images that have been labeled
with the objects that they contain [23]. In our approach,
RFID tags are attached to standard kitchen objects to obtain



sparse and noisy object-use information. An RFID reader
bracelet worn on the user’s wrist indicates whenever the
user’s hand is in close proximity to a tagged object. Si-
multaneously, video frames of the scene are acquired and
segmentation techniques are used to generate candidate re-
gions in the frame which may correspond to manipulated
objects. SIFT features [13] are extracted from these regions
and each object is modeled as a bag of SIFT features. The
EM algorithm is used to estimate the DBN parameters that
specify the distribution of the SIFT features for each object.
Once the DBN has been trained, it can be used to jointly in-
fer both activities and objects from novel video sequences.

The main contribution of this work is a scalable approach
to activity recognition based on detecting object use that
does not rely on explicit human labeling of sensor data.
Specifically,

1. We show that activity recognition based on object-use
information is viable, in that it results in good recogni-
tion performance under realistic imaging conditions.

2. We demonstrate a scalable approach to automatically
learning object models from video using sparse and
noisy RFID sensor data and common-sense knowledge
of activities. Our object models are obtained without
any form of manual labeling or intervention (either at
the frame level or the region level).

3. We describe a DBN model that synergistically in-
corporates common-sense activity descriptions, RFID
sensor events, and video data.

We have conducted an extensive set of experiments on
the classification of kitchen activities carried out in two real-
istic settings. We demonstrate that the automatically learned
vision-based object models can be successfully utilized to
recognize activities and objects.

2. Related Work
Much early work on the analysis of activities took place

within the computer vision community and leveraged video
cameras as passive and non-invasive sensors [5, 6, 9, 14,
25]. More recently, alternative paradigms based on dense
sensors have emerged [1, 18, 19]. In this approach, tiny
battery-free wireless sensors are attached to objects and sur-
faces in a space and can provide direct measurements of
the user’s proximity to objects and regions of the environ-
ment. For example, [18] described a system based on RFID
tags for recognizing a subset of the activities of daily living,
a canonical activity recognition task for computer-assisted
care applications. While dense sensors are appealing due to
their low cost and simplicity, they have several drawbacks
in comparison to video-based analysis. First they require
objects and often people to be instrumented. Second, they

do not work with certain types of objects such as metallic
objects, food items, and objects that are very small. In ad-
dition there are problems with signal drop out, latency, and
confusion between labels during reading.

Many activity recognition methods in computer vision
have focused on the representation and modeling of ac-
tions, which are the atomic units within activities. This
line of work explores tracking methods and other forms
of spatio-temporal video analysis in order to sense what
the actor is doing. In other words, they attempt to iden-
tify the activity by sensing the verbs. A common theme in
these works is the exploration of spatio-temporal video fea-
tures [3, 5, 11, 21, 25]. Other work has addressed the use of
multiple resolutions [24]. Temporal constraints on actions
are addressed either through the use of probabilistic models
such as HMM’s [4, 16] or SCFG’s [9], or through explicit
temporal correlation methods [21, 26].

The recognition of actions can often be aided by incor-
porating context from the environment. We loosely charac-
terize these approaches as sensing verbs plus context. For
example, in the work of Moore et al. [14] and Peursum et
al. [17], actions can be discriminated by identifying the spa-
tial location within the scene in which they occur. Hand
motions which might be ambiguous in general can be cor-
rectly classified as typing when they occur in the vicinity
of the keyboard. The W 4 system used outdoor scene con-
text in conjunction with a robust blob-tracking algorithm to
analyze scenarios in which multiple people interacted and
exchanged bags and other objects [6]. Other sources of
task-specific context include the identification of roads and
entrances/exits in parking lot surveillance [8] and tracking
the components of a blood glucose monitor in [22].

In contrast to these works, we are interested in domains
where the action and spatial location are of limited utility
in recognizing activities. Many different cooking activities,
for example, involve picking up and putting down objects
within a single counter-top area. To differentiate among
these activities it is necessary to identify the objects which
are being manipulated. We characterize this approach as
recognizing activities by sensing the object use (i.e. the
nouns). The cooking domain involves a large number of
different objects which are shared across multiple activities
and are not restricted to any particular location in the image.
A major challenge in this approach is the need for a robust
general-purpose object recognition system which could re-
liably discriminate between hundreds of different cooking
items under real-world imaging conditions.

Building models for object recognition usually requires
labeled training images without a cluttered background. In
order to obtain this, a significant amount of work (seg-
mentation and labeling of objects) is required. In contrast,
our work leverages temporal continuity in video frames to
roughly segment the moving object. An object is modeled



as a bag of SIFT features and learning object models is
equivalent to assigning the probabilities of seeing different
SIFT features in an object. Our approach is similar to [23],
which assigned features from independent images into ‘top-
ics’ using pLSA, an unsupervised learning method. Their
results showed that the revealed topics usually coincided
with objects. In contrast, we use sparse and noisy RFID
measurements to guide the learning process.

Recently, dense sensors have been proposed as an al-
ternative to vision-based object recognition for obtaining
object information in activity recognition tasks. In these
works, wireless sensors attached to both humans and ob-
jects make it possible to directly measure actor-object inter-
actions. Possible sensor data includes the identities of peo-
ple and objects (e.g. RFID sensors) as well as their positions
and velocities (e.g. accelerometers and audio sensors). In
RFID-based systems, activities are represented as probabil-
ity distributions over sequences of object-use [18] obtained
from sparse and noisy RFID readings. In other approaches,
information from accelerometers is used to identify actions
such as walking and climbing stairs [1, 20]. RFID and vi-
sion were also used as complementary sensors. In [12],
RFID and vision were used to track object and human in-
dependently, and were combined using rules. In contrast to
this latter work, we utilize RFID sensors to fit vision object
models in an integrated DBN framework.

Another aspect of activity recognition which has re-
ceived significant attention is computational models of ac-
tivity which can serve as a constraint on the interpretation
of noisy sensor data. Complex activities such as baking a
cake can be decomposed into subtasks, and constraints from
the domain (e.g. the oven must be preheated before it can be
used) result in partial orderings of these subtasks. There has
been much interesting work in representing and exploiting
these constraints during recognition [7, 15, 22].

3. Object-use Based Activity Recognition
Our object-use based activity model is depicted in fig-

ure 1(a) as a DBN, in which At, Ot, Rt, and V t rep-
resent activity, object, RFID, and video frame respec-
tively. The superscript t indexes video frames and stan-
dard first-order Markov assumptions are made for At and
Ot. The DBN model is fully specified by the following
parameters: the prior distribution P (A1), the observation
model P (O1|A1) and P (Ot+1|Ot, At+1), the state transi-
tion model P (At+1|At), and the output model P (Rt|Ot)
and P (V t|Ot). Tables 1 and 2 list the activities and ob-
jects used in our experiment (c.f . page 5). For example,
A5 = b, O5 = 3 means that at frame 5, the activity is make
tea, and the object is teabag.

In this section we introduce the RFID sensors, present
how to learn the object model P (V t|Ot) using RFID read-
ings without any manual labeling, and how the learned mod-
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Figure 1. Various graphical models for activity and object recog-
nition.

Figure 2. A typical kitchen setup. The user is manipulating a water
jug (red rectangle) while wearing an RFID bracelet (blue rectan-
gle). Some objects have RFID tags attached (green rectangle).

els can improve both activity and object recognition. Except
for the object model P (V t|Ot), all other parameters can ei-
ther be specified from domain knowledge (c.f . Sec. 3.5) or
generated automatically by mining common-sense knowl-
edge from web as described in [27].

3.1. Sensors and setup

Figure 2 illustrates our setup. One camera overlooks the
space, in this case a kitchen counter, where the activities
take place. Users wear RFID bracelets on their dominant
hands. A bracelet incorporates an RFID reader, battery, and
radio. RFID tags are attached to some objects in the space.
These tags are postage-stamp to credit-card sized, battery-
free, 40-cent stickers available off the shelf. When the user
handles a tagged object, the bracelet scans ID of the tag and
sends it wirelessly to a nearby computer that maps the ID to
an object name.

Although RFID can sense the use of objects, in practice
it has several limitations which motivate us to bootstrap the
RFID readings using vision. If the bracelet is close to an ob-
ject by accident, it may indicate erroneously that the object
is being manipulated. If a tagged object is grasped far from
the tag, on the other hand, the manipulation may be missed.
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Figure 3. Erroneous object-use detection with RFID.

Consider the RFID trace depicted in figure 3, which was
obtained during the making cereal activity. In this example,
the RFID reader erroneously detected the use of sugar and
creamer, and missed the use of the cereal box. Furthermore,
some objects such as toothbrush are too small to be tagged.
In many cases the manipulating hand may be bracelet-free:
only some users in a space may wear bracelets, and even
bracelet wearers may use non-dominant hands or wear the
bracelets intermittently. We believe therefore that it is use-
ful to have a sensing modality that can exploit RFID-based
object-use data when it is (sporadically) available, but can
detect objects even when it is not available.

3.2. Segmentation using change detection

We assume that the object currently being moved is al-
ways the object in use, and utilize change detection to
segment the object. Since some kitchen utensils are tex-
tureless, simple change detection by subtracting pixel val-
ues will have difficulty handling these objects. We group
pixels into 8x8 square superpixels, thus a 640x480 frame
is converted into 80x60 superpixels. The difference be-
tween two superpixels x and y at the same position in two
frames is calculated as one minus the normalized dot prod-
uct 1 −

∑64
i=1 xiyi√∑64

i=1 x2
i

√∑64
i=1 y2

i

. A frame t is compared with

both frames t + 3 and t − 3. Superpixels that have both
differences bigger than a predefined threshold is classified
as have changed and belong to the object. One failure mode
of this approach is the user’s hands and arms. They always
move along with the object, and should be excluded. We
use skin color detection to detect skin colored pixels and re-
move them [10]. Using change detection in the superpixel
mode, we can get a roughly correct segmentation for the ob-
ject currently being used, which constitutes the set V t for
frame t. As appeared in figure 4, segmentation is difficult
for some objects, e.g. the spoon.

3.3. Object Model Representation

Given a video frame, SIFT features that are within the
segmented area are extracted. The object in this frame
is modeled as a bag of these SIFT features. In this
model, a video frame V t consists of a set of SIFT features
vt
1, v

t
2, . . . , v

t
nt , where vt

i and vt
j are supposed to be condi-

Figure 4. Examples of segmentation results, with the left and right
row being original frame and segmented result, respectively. Only
pixels in the biggest connected component (depicted by the rect-
angle) are used. The three rows are examples of good, moderate,
and bad segmentation results, respectively.

tionally independent for 1 ≤ i, j ≤ nt, i 6= j. Thus,1

P (V t|Ot) =
nt∏

i=1

P (vt
i |Ot) =

nt∏
i=1

hOt(vt
i) (1)

in which hOt(vt
i) is the probability of observing a SIFT fea-

ture vt
i when the object is Ot, i.e. a histogram of SIFT fea-

tures. Thus, learning object model requires specifying the
values hOt(vt

i) for all possible values of O and v.
Since the number of possible SIFT features is vast. A

vector quantization procedure same as that used in [23] is
used. 2000 clusters are constructed using the k-means algo-
rithm from about 600k SIFT features collected from images
of the objects of interest. A SIFT feature is then represented
by the closest cluster center.

3.4. Learning object models w/o human labeling

The maximum likelihood estimates for histogram pa-
rameters are the counts of features falling into a bin, divided
by the total number of features. Thus, if we are given the
object identities Ot, learning is simply a counting proce-
dure. However, one of our goals is to avoid any manual
labeling and we have no direct access to Ot. Instead, the
RFID readings are used in the EM algorithm to learn the
object models.

RFID readings are sparse in comparison to video frames
and very noisy, i.e. we only have a few RFID labels and
these labels are not reliable (c.f . figure 3). The idea is to use
the common-sense knowledge and temporal continuity of

1In practice we use P (V t|Ot) =
nt
√∏nt

i=1 hOt (vt
i) in order to be

fair to objects containing different numbers of features.



object use to infer object identity in each frame. Precisely,
we build a DBN that models the relationship between activ-
ities, objects, frames, and RFID readings, as shown in fig-
ure 1(a). RFID readings are viewed as evidences to a small
subsets of the Rt nodes, and the noise in RFID is modeled
by P (Rt|Ot). In learning the object model P (V t|Ot) using
the EM algorithm, all other parameters are specified from
domain knowledge and fixed in the learning process.

The E-step is then to estimate the marginal distribution
of Ot given the Rt evidences, the video frames V t, and the
current hOt(vt

i). The standard junction tree algorithm is
used to infer the marginal distributions of Ot for every t.
Since V t is independent of At, given the marginal distribu-
tion of Ot, the M-step is a simple counting procedure that
updates hOt(vt

i). The E-step and M-step are iterated until
the log-likelihood of the DBN converges.

We should highlight that object models are learned on
the fly which makes it very easy to install our system in a
new environment without requiring any user-specific train-
ing. However, it is also possible to use previously learned
object models directly in a new video (c.f . Sec. 4.2).

3.5. Specify parameters from domain knowledge

Parameters beside P (V t|Ot) can easily be specified by
a human expert or automatically mined using techniques
proposed in [27]. We specify these parameters as follows,
based on domain knowledge and our assumptions.

The prior P (A1) is set to be uniform. P (Ot|At) is de-
fined as follows

P (Ot|At) =

{
2

nO
if Ot is used in At,

1−2nAt/nO

nO−nAt
otherwise

where nO and nAt are the number of total objects and the
number of objects used in At, respectively. This choice of
parameter values ensures that an object used in an activity
will have higher probability than an object not involved in
the same activity.

P (Ot+1|Ot) is set to be θO if Ot+1 = Ot, and 1−θO

nO−1 if
otherwise. θO is usually set to a large number, in order to
reflect the fact that an object is usually used in consecutive
frames. The CPT P (Ot+1|Ot, At+1) is then specified as

P (Ot+1|Ot, At+1) ∝ P (Ot+1|At+1)P (Ot+1|Ot) (2)

P (At+1|At), the state transition model, is set to be θA

if At+1 = At, and 1−θA

nA−1 if At+1 6= At, where nA is the
number of possible activities. Again, θA is usually large
since an activity will span multiple frames.

The final CPT models RFID noise as P (Rt|Ot) = θR

if Rt = Ot, and 1−θR

nO−1 if Rt 6= Ot. The fact that θR 6= 1
encodes noise in RFID readings.

It is also possible to learn all the above parameters from
data, using the same EM algorithm. However, our experi-
ments showed that learning these parameters lowers activity

a.boil water e.cheese sandwich i.tend plants m.make popcorn
b.make tea f.buttered toast j.take medicine n.drink juice
c.make cereal g.peanut butter sand. k.make salad o.wipe counter
d.make coffee h.pack lunch l.make TV dinner p.phone call

Table 1. List of 16 activities.

1.water jug 8.cereal 15.knife 22.plant 29.microwave
2.kettle 9.bowl 16.toaster 23.plant care 30.popcorn
3.teabag 10.coffee 17.plate 24.watering 31.juice
4.cup 11.creamer 18.butter 25.pill box 32.cloth
5.spoon 12.sugar 19.peanut but. 26.salad tosser 33.phone
6.milk 13.cheese 20.jelly 27.dressing
7.honey 14.bread 21.lunch bag 28.meat in box

Table 2. List of 33 objects.

and object recognition rates. This is likely due to the fact
that the initial estimates based on domain knowledge is a
good starting point and in the absence of a large amount of
training data these priors achieve better generalization per-
formance during testing.

4. Experimental Results

The proposed framework was tested using videos con-
taining 16 daily kitchen activities involving 33 objects. The
list of activities and objects are shown in tables 1 and 2.
Videos 1 and 2 were collected at Intel Seattle lab on differ-
ent days. An additional Video 3 was collected at the Aware
Home in Georgia Tech. Video 3 contained 13 activities and
28 objects, in which the objects were different than those
used in Videos 1 and 2.

For testing purposes, we manually labeled the activity
and object in every frame.2 After the most probable se-
quence of At and Ot are inferred, they are compared to the
groundtruth. The activity and object recognition rates are
then computed as the percentage of frames in which the ac-
tivity or object is predicted correctly.

The viability of object-use based activity recognition
was verified in three ways. First it was tested empirically
by learning object models from Videos 1. The learned mod-
els were then used to recognize activities and objects in the
same video (Sec. 4.1). The same experiments were repeated
using Videos 2 and 3. Second the models learned from
Video 1 were used to recognize activities and objects in
Video 2 without fitting the models again, i.e. generalization
was tested in Sec. 4.2. Third, the approach was evaluated
under ideal conditions, when groundtruth object labels are
provided in every frame of the test video (Sec. 4.3). These
results demonstrate the viability of object-use based ap-
proach and our automatic object model acquisition method.
Furthermore, the proposed approach exhibited tolerance to
adverse conditions, e.g. in case when some RFID tags were
missing (Sec. 4.4). Finally, we showed that the common-

2We assumed there was one active object in each frame. In the small
fraction of frames where multiple objects were used, we only chose one.



Common sense used Testing sensors Activity Object
Yes RFID only 64.31% 63.00%

Yes
RFID+Vision 80.67% 72.36%
Vision only 80.97% 73.30%

No
RFID+Vision 60.84% 74.68%
Vision only 62.76% 74.72%

Table 3. Activity and object recognition rates using different sen-
sors, and different learning methods.

a b c d e f g h i j k l m n o p
a 35 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 0 96 0 4 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0
e 0 0 0 0 99 0 0 0 0 1 0 0 0 0 0 0
f 0 0 0 0 0 58 41 0 0 1 0 0 0 0 0 0
g 0 0 0 0 0 41 59 0 0 0 0 0 0 0 0 0
h 18 45 0 0 0 0 0 37 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
k 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
l 0 0 0 0 4 0 0 0 0 0 0 96 0 0 0 0

m 0 0 0 0 6 0 0 14 0 0 0 0 79 0 0 0
n 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0
o 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p 0 91 0 0 0 0 0 0 0 0 0 0 0 0 0 9

Table 4. Confusion matrix for activity recognition using Vision
only. Numbers are shown in percentage.

sense knowledge incorporated in the DBN framework was
essential for recognizing activities (Sec. 4.5).

4.1. Effect of learning object models

The first set of experiments examine the effect of the ob-
ject models bootstrapped from RFID readings. After fit-
ting object models, we test the performance under three
conditions when inferring activity and object labels: using
both sensors (figure 1(a)), RFID alone (figure 1(c)), and vi-
sion alone(figure 1(d)). Both activity and object recognition
rates are shown in the first three rows of Table 3. In this
set of experiments object models are learned with common-
sense knowledge (figure 1(a)).

We learn object models using our unsupervised approach
described in Sec. 3. We then use the learned models to
infer activity and object labels. Video 1 is used in both
stages. Although the object models are fitted from the noisy
and sparse RFID readings without any manual labeling,
the object models alone can recognize 80.97% activities
and 73.30% objects, which is significantly better than the
RFID only results (64.27% and 63.00%). The improvement
in recognition rates with the addition of the vision sensor
demonstrates the effectiveness of the learned object models.
It is also worth noting that the vision only results are indis-
tinguishable from the results when both RFID and vision
are used (80.67% and 72.36%). This observation suggests
that our DBN framework effectively utilized all the useful
information in RFID readings. After the object models are
learned, RFID readings no longer provide any useful infor-
mation.

The detailed activity recognition confusion matrix is
shown in table 4 for the vision only case. Table 4 reveals
that the activities a.boil water, o.wipe counter, and p.phone
call have very low recognition rates. This is not surprising
since objects involved in these activities (water jug, cloth,
and phone) are all white and textureless, thus indistinguish-
able. Another group of activities, e,f,g, all deal with differ-
ent sandwiches and are inherently error prone. In addition
the lunch bag is almost textureless. Furthermore, the RFID
readings are sparse for these examples: there is only one
RFID reading of kettle and none of cloth. This may explain
why these activities had low recognition rates.

We repeated the same experiments using Videos 2 and
3. The RFID only activity and object recognition rates on
Video 2 are 80.33% and 66.54% respectively. By learn-
ing object models from Video 2, RFID+Vision improves
the rates to 82.52% and 80.16%. The Vision model alone
achieves 82.53% and 80.29% recognition rates.

Activities in Video 3 are relatively easier to recognize
than those in Videos 1 and 2. Using RFID alone, the ac-
tivity and object recognition rates in Video 3 were already
88.55% and 67.49%. Many objects in Video 3 are texture-
less, and make them difficult for vision based object model-
ing. RFID+Vision had lower recognition rates (83.10% and
60.34%). However, it is worth noting that even with the dif-
ficulty in visually modeling objects, the vision sensor alone
could still recognize activities in 83.42% of the frames, but
only 56.40% for the objects.

4.2. Generalizability of the learned models

In previous experiments, we fit the object models and
then infer activity and object labels using the same video. In
real applications we are interested in training models on a
representative corpus of unlabeled video and then applying
those models to new videos without retraining. In order
to evaluate the ability of our models to generalize to new
videos, we conducted a second experiment. We learn object
models using Video 1, and test the models on Video 2.

Using the object models learned from Video 1 and
the RFID readings accompanying Video 2, RFID+Vision
achieved activity and object recognition rates of 73.37%
and 71.02% respectively. Comparing with the RFID only
rates on Video 2 (80.33% and 66.54%), RFID+Vision had
higher object recognition rate but lower activity recognition
rate. Confusion matrices revealed that although on average
RFID+Vision recognized objects better, all occurances of
2.kettle and 21.lunch bag were misclassified (both objects
were textureless). Thus activities “boil water” and “pack
lunch” were completely misclassified. Excluding these 2
activities, RFID+Vision had higher activity recognition rate
than RFID only (81.91% vs. 71.72%). Furthermore, us-
ing models learned from Video 1, Vision only achieved on
Video 2 recognition rates of 59.22% and 56.43% respec-



tively, which was significantly better than chance (chance
probability is 6.67% and 3.33% respectively). Thus, the
learned models can be used directly in new videos in case
RFID is not available (e.g. user not wearing bracelet), and
can improve recognition when RFID is available.

4.3. Limit of performance in ideal situations

The above experiments showed that the object-use based
activity recognition worked well in practice. Our next ex-
periment evaluates the viability of this approach in ideal sit-
uations, i.e. given the groundtruth object identity informa-
tion in every video frame, how well can the system perform?

Given the groundtruth object information, the system is
modeled as an HMM (figure 1(e)), and activities are cor-
rectly recognized in 90.29% of the frames. The RFID read-
ings are sparse and noisy, which makes the RFID only ac-
tivity recognition rate (64.27%) significantly lower than the
recognition rate using groundtruth information (90.29%).
However, by learning object models, the vision based recog-
nition rate reached 80.67%. The gap between the real world
and empirical best case performance was greatly reduced.

4.4. Dealing with missing RFID tags

Another important benefit of combining RFID and vi-
sion is to deal with missing RFID tags, e.g. objects that are
not RFID taggable. Common-sense knowledge can be used
to infer the existence of certain objects that are not tagged.
For example, the combination of bowl and milk would sug-
gest a nearby ‘cereal’ object, which is then reflected in the
marginals computed in the E-step. The learned object mod-
els would then locate the frames with the “cereal” object.

The intuition sketched above is verified by experiments.
For example, the cereal object does not have any RFID read-
ings in our data set (c.f . figure 3). In the RFID only method,
none of the 123 frames containing the cereal object are rec-
ognized correctly. After object models are learned using
the common-sense knowledge (i.e. when object models are
learned using figure 1(c)), all 123 frames of cereal are rec-
ognized successfully. In contrast, if the object models are
learned without common-sense knowledge (figure 1(b)), no
frame of cereal is recognized.

To explore this issue further we conducted an additional
experiment in which increasing numbers of RFID tags were
systematically removed. Our goal was to study the im-
pact of missing tags on the overall performance. Figures 5
and 6 show activity and object recognition rates respec-
tively, when a fixed number of RFID tags were removed.

The x-axis in figures 5 and 6 is the number of missing
tags. For a fixed number of K missed tags, we removed K
tags from randomly chosen objects. We experimented with
1 ≤ K ≤ 20. For any fixed value of K, the experiment
was repeated 10 times. Figures 5 and 6 show the average
recognition rates and one standard deviation error bars.
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Figure 5. Activity recognition rates with different number of miss-
ing RFID tags.
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Figure 6. Object recognition rates with different number of miss-
ing RFID tags.

We observe in figures 5 and 6 that the vision only results
are almost the same as RFID+Vision results. Recognition
rates in both cases are significantly higher than those in the
case only RFID is used. The system performance degrades
smoothly when the number of missing tags increases.

4.5. Importance of common-sense knowledge

The common-sense knowledge is encoded in the edge
from At to Ot in figure 1(a), i.e. which objects are likely to
be used in a given activity. Its importance can be verified
by comparing systems in which the common-sense knowl-
edge is present or absent during learning object models.
When common-sense knowledge is removed, the DBN in
figure 1(a) becomes the HMM depicted in figure 1(b). We
use the standard EM algorithm in this HMM to fit the ob-
ject models. After the object models are learned, activity
and object labels are inferred using figure 1(a).

Recognition rates of models learned using this DBN are
shown in the last two rows of Table 3. When the common-
sense knowledge is missing, the learned object models still
have roughly the same object recognition rates. However,
the activity recognition rates drop significantly to the level
when only RFID is available.

5. Conclusions and Future Work
We presented a scalable approach to recognizing activi-

ties by recognizing the objects that are manipulated in these



activities. We proposed a framework that can automati-
cally learn object models from video using sparse and noisy
RFID readings and common-sense knowledge. A dynamic
Bayes network was designed to systematically incorporate
common-sense knowledge, the RFID sensor data, the vision
sensor data, and time continuity in these sensors. Using the
DBN framework, learning object models is naturally for-
mulated as an Expectation-Maximization problem.

Our experiments validate the object-use based activ-
ity recognition approach in both realistic and ideal situ-
ations. In a realistic kitchen setup involving 16 activi-
ties and 33 objects, activities were correctly recognized in
80.97% of the video frames using the automatically learned
object model, and objects were recognized in 73.30% of
the frames. In addition, the activity recognition rate was
90.29% if groundtruth object labels were given during test-
ing. Our experiments also showed that the learned object
models can be used directly in recognizing activities and
objects in new video if RFID is missing, and can improve
recognition rates if RFID is available.

There are a few research directions that will improve the
proposed approach. Faster features (e.g. SURF features [2])
could be used to replace SIFT features. Further recogni-
tion of human hand motion and interactions with objects
in video frames may also reveal actions (e.g. chop, scoop),
which are useful to activity analysis. With actions recog-
nized, subtasks and partial ordering constraints could also
be applied.
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