
Approximation Trade-Offs in a Markovian
Stream Warehouse: An Empirical Study

UW TR: #UW-CSE-09-07-03

Julie Letchner #1 Christopher Ré +2

Magdalena Balazinska #3

Matthai Philipose ∗4

#University of Washington, Seattle, WA
{1letchner, 3magda}@cs.washington.edu

+University of Wisconsin, Madison, WI
2chrisre@cs.wisc.edu

∗Intel Research, Seattle, WA
4matthai.philipose@intel.com

September 25, 2009

Abstract

A large amount of the world’s data is both sequential and low-level. Many ap-
plications need to query higher-level information (e.g., words and sentences) that
is inferred from these low-level sequences (e.g., raw audio signals) using a model
(e.g., a hidden Markov model). This inference process is typically statistical, re-
sulting in high-level sequences that are imprecise. Once archived, these imprecise
streams are difficult to query efficiently because of their rich semantics and large
volumes, forcing applications to sacrifice either performance or accuracy. There
exists little work, however, that characterizes this trade-off space and helps appli-
cations make an appropriate choice.

In this paper, we study the effects—on both efficiency and accuracy—of vari-
ous stream approximations such as ignoring correlations, ignoring low-probability
states, or retaining only the single most likely sequence of events. Through exper-
iments on a real-world RFID data set, we identify conditions under which various
approximations can improve performance by several orders of magnitude, with
only minimal effects on query results. We also identify cases when the full rich
semantics are necessary. This study is the first to evaluate the cost vs. quality
trade-off of imprecise stream models.

We perform this study using Lahar, a prototype Markovian stream warehouse.
A secondary contribution of this paper is the development of query semantics and

1

algorithms for processing aggregation queries on the output of pattern queries—we
develop these queries in order to more fully understand the effects of approxima-
tion on a wider set of imprecise stream queries.

1 Introduction
People and computers worldwide generate exabytes of audio, video, text, GPS1,
RFID2, and other types of multimedia and sensor data—and because disk storage is
cheap, most of this data is archived for future use [14]. These information-rich archives
are poised to revolutionize data-centric applications in diverse areas including patient
and asset tracking in hospitals [33], activity monitoring for elder care [29], scientific
environment observation [10], e-Learning [43], phone conversation mining, and multi-
media search/retrieval.

While some applications can use raw sensor or multimedia streams directly [12,27],
most rely on higher-level streams inferred from the low-level data. Search engines, for
example, can index audio files by content only after these files have been translated into
text. Similarly, location tracking or activity monitoring applications require that raw
sensor streams be transformed into location or activity sequences, respectively, before
they are processed. Due to noise in the data or ambiguity in the inference process (or
both), these inferred, high-level streams are imprecise (e.g., a spoken word might be
either “eight” or “ate”; while an RFID reading might only narrow a person’s location
down to one of several adjacent rooms).

The current state of the art for supporting imprecise sequences is the model-based
view [11]. A model-based view allows applications to query data as if it were determin-
istic; internally, however, the DBMS answers the query on the imprecise sequence and
returns results annotated with appropriate confidence scores. Model-based sequence
views are most commonly used to represent imprecise location streams, typically in-
ferred from GPS [26] or RFID data [20, 24, 32, 39]. They are also used to model en-
vironmental statistics (temperature, light levels, etc.) inferred from distributed sensor
networks [10,18,42], wildlife population counts inferred from sparsely-deployed habi-
tat sensors [19], and structured language information inferred from written text (i.e.
information extraction) [20].

A model-based view decouples the queried view from the model used to represent
the underlying imprecise sequences, giving a DBMS designer considerable flexibility
in choosing an appropriate model. The simplest model, called MAP in the AI litera-
ture [35], represents the imprecise stream using only a single deterministic sequence
(e.g. the most likely path a person took through a building) [1, 9]. A slightly richer
model might represent uncertainty within each individual sequence element (e.g. dis-
tributions over a person’s uncertain location at each timestep) [35, 38], while an even
richer model might additionally represent correlations between these uncertain values
(e.g. distributions over entire paths through a building) [19, 24, 32]. An orthogonal
design question involves the level of detail at which the chosen model is expressed.
In the location domain, for instance, imprecision might reflect uncertain values at the

1Global Positioning System
2Radio Frequency Identification

2

level of every room, or might instead model many rooms as the same entity, using a
single label (e.g. “Office” or “Lab”).

In general, model choice has a significant impact on DBMS quality and perfor-
mance: increased complexity yields higher accuracy, but incurs additional computa-
tional and I/O costs. The appropriate model choice is complicated by the fact that ap-
plications generally require support for complex queries, including event queries [1, 9]
(e.g. “Find all times in May when Bob entered the coffee room.”), and aggregated event
queries (e.g. “How many people entered the coffee room each day in May?”) [32].
Such queries are expensive to compute on sequential, imprecise data, where the utility
of scalability techniques like indexing and compression is limited. These high pro-
cessing costs naturally raise the question of whether rich imprecise sequence models
are worthwhile. Would applications notice a difference in result quality if rich, impre-
cise streams were approximated using simple, deterministic ones? What performance
benefits could be gained from such an approximation, which would allow any of sev-
eral high-performance, deterministic stream processing engines [1, 9] to be leveraged?
How might a system achieve a flexible trade-off between the accuracy and efficiency
of imprecise sequence processing?

In this paper, we address these questions using an empirical study of several com-
mon Markovian stream approximations. We show using examples and a brief theoreti-
cal analysis that worst-case error bounds on these approximations are too large to be of
practical consequence; however, we demonstrate that in practice, errors are often orders
of magnitude smaller than these bounds would indicate. We report both performance
and accuracy results on real-world location sequences inferred from an office-building
RFID deployment. We provide heuristics to guide model choice for various types of
query, and finally we generalize our results beyond our application domain by identi-
fying the underlying properties of our data that are responsible for the effects that we
measure.

We perform our study using the Lahar Markovian stream warehouse prototype [24,
32]. Lahar natively supports Markovian model-based sequence views, which are the
richest of the models used in practice [17,19,22,24,31,32]. With simple modifications,
Lahar also supports the approximations that we study here. As part of this study, we
additionally augment Lahar to support novel aggregated-event queries. The semantics
and processing algorithms for these queries are a secondary contribution of this paper,
developed to support our primary goal of studying the effects of approximation on a
wide variety of imprecise stream queries.

Through our study, we find that the accuracy/performance trade-off space is rich. A
sample of the trade-offs achieved using approximation are shown in Figure 1 (we return
to this Figure in Section 5). In our study we identify two models—called independence
and MAP—that accelerate performance by 1 and 2 orders of magnitude respectively,
incurring typically-low but occasionally-high errors. These models are best suited for
performance-critical applications. We identify two additional models—thresholding
and rollups—that are best suited for applications that prioritize accuracy. These models
accelerate performance only moderately, but consistently return errors that are either
zero or so close as to be negligible. Interestingly, we find that richer stream models do
not always produce better accuracy than simple models. In particular, the accuracy of
the two high-performance models varies significantly based on query characteristics:

3

10000

m

Av
er

ag
e

Di
ffe

re
nc

e
In

 R
es

ul
t P

ro
ba

bi
liti

es

CPU Time (Milliseconds) Per Processed Timestep

1

0.1

0.01

1E-3

1E-4

1E-5

1E-6

1E-7
1 10 100 1000

Zero
error

0.1

U

I

I U

I

M

M

M
M

I

U
10000
U

Figure 1: Accuracy/efficiency trade-offs achieved on four queries (identified by
shape/color) on three different approximations (identified as ‘U’ (unapproximated),
‘I’ (independence), and ‘M’ (MAP)). Note that the relative accuracies of independence
and MAP change depending on the query.

the simpler (and faster) of the two models consistently outperforms the more complex
model on some types of aggregate-event query, while on other query types the more
complex approximation achieves better accuracy, as one would expect.

The remainder of this paper is structured as follows: In Section 2, we introduce
the Markovian stream model and our query models in more detail. In Section 3, we
introduce the approximate stream models that form the trade-off space that we study.
In Section 4, we briefly overview Lahar, the prototype used to perform our study. In
Section 5, we present our study, and in Section 7, we conclude.

2 Data & Query Model
In this section, we present the data model and queries used in our study.

2.1 Data Model: Markovian Stream Warehouses
Our study focuses on an imprecise, sequential data model called a Markovian stream.
Markovian streams are the most popular type of imprecise stream model [17, 22, 31];
this model or a simplified version has been adopted in nearly all imprecise-sequence
management systems [18–20, 24, 32, 38, 39, 42].

The real-world Markovian streams in our study are derived from an office-building
RFID deployment in which RFID antennas are mounted in hallways. Figure 2(a) shows
a small portion of this office environment, in which RFID readers A, B, and C are
highlighted. When a mobile RFID tag (attached to a person or an object) moves within
the read range of an antenna, it records the time and presence of the tag using tuples of
the form (Tag id, Reader id, Time).

The low-level tuples recorded for each tag are used to infer a Markovian stream over
the tag’s location. This Markovian stream represents a probability distribution over the
different paths the tag may have taken through the building. This Markovian stream is
imprecise, both because of sensor noise (readers often fail to detect nearby tags) and

4

Office1
(0.45)

0.9

HallA
(0.1)
Lab1
(0.45)

Office1
(0.445)
HallA
(0.11)
Lab1

(0.445)

0.1

0.9

0.1

0.4

0.4
0.2

Office1
(0.5)
HallA
(0.0)
Lab1
(0.5)

1.0

1.0

0.5

0.5

12:00 12:01 12:02

(a)

RFID
ReadersA

Office1

Lab1 Lab2

HallA

Ha
llC

B

C

(b)

(c)

(d)

(e)

UserID Time LocIDPREV LocID p

Bob 12:00 Office1 Office1 0.9

Bob 12:00 Office1 Hall 0.1

Bob 12:00 Lab1 Lab1 0.9

Bob 12:00 Lab1 Hall 0.1

Bob 12:00 HallA Office1 0.4

Bob 12:00 HallA Lab1 0.4

Bob 12:00 HallA Hall 0.2

Bob 12:01 Office1 Office1 1.0

...

UserID EdRole Research Dept.

Ann Student AI CS

Bob Student Databases CS

Che Faculty Databases CS

LocID RoomType Structure

Lab1 Lab Room

Office1 Office Room

HallA Hallway Hallway

Figure 2: Markovian stream warehouse (RFID/location domain). (a) A schematic view
of an RFID deployment. (b) A schematic view of a distribution over location (Marko-
vian stream). The number on an arrow a → b indicates the conditional probability
p(b | a); the number inside each box represents the box’s marginal probability. (c) A
relational representation of the Markovian stream in (b). (d-e) Dimension tables.

because of inherent ambiguity (even on noise-free data it is impossible to distinguish
between Office1 and Lab1). The stream in Figure 2(b), for example, states that Bob
was in one of three locations at time 12:01, but at 12:02 was in either Office1 or Lab1.
The Markovian stream is also temporally correlated: the distribution over the tag’s
location at time t + 1 depends on its uncertain location at time t. Temporal correlations
in Figure 2(b), for example, indicate that if the tag (i.e., Bob) was in some room at
time 12:01, then he remained in that same room at time 12:02 with probability 1.0—
but there is zero probability that he switched between rooms (Bob cannot teleport).
Temporal correlations also encode “soft” constraints, such as the fact that Bob was
“probably” (with probability 0.9) in Office1 at 12:01 if he was in Office1 at 12:00.

More precisely, a Markovian stream of length N with uncertain attributes A1, . . . , Ak

(where Ai has domain Di for i ∈ [1, k]) is a pair (p0, ~C). Here p0 : (D1 × · · · × Dk) →
[0, 1], such that the elements of p0 sum to 1.0, is a probability distribution over the
initial element of the stream. ~C is a sequence of conditional probability tables (CPTs)
C(t) : (A′1, . . . , A

′
k × A1, . . . , Ak) → [0, 1] for t ∈ [1,N − 1], represented as a relation.

Each entry in C uniquely describes the probability of a specific state transition between
time t and t+ 1. For example, a tuple C(t)(a′1, . . . , a

′
k |a1, ..., ak) = p in C(t) (written using

a bar to suggest conditional probability functions) indicates that p is the conditional
probability that the state of the stream is (A1 = a′1, . . . , Ak = a′k) at time t+ 1, given that
the state at time t was (A1 = a1, . . . , Ak = ak). The set of tuples sharing a value of T = t
together define the entire stream transition (CPT) between t and t + 1.

A Markovian stream is thus a compact representation of a probability distribution
over an exponential number of deterministic sequences of length N. Markovian streams
implement a standard possible worlds semantics in which each stream-length sequence
is a distinct possible world [19, 32]. Without loss of generality, consider a Markovian

5

stream over a single uncertain attribute A with domain D. A path ~x in this stream
is an element of DN . Element xi of ~x represents the imprecise value at time t = i
(e.g. a tag’s location at a specific time i). The probability of path ~x is thus p(~x) =
po(x1)

∏
i=1...N−1 C

(i)(xi+1|xi).
The relational schema of the location-based Markovian streams used in this study

is shown in Figure 2(c). This relation may contain tuples from many different logical
streams (i.e. from different RFID tags). Each logical stream is identified by its key
attributes (UserID in the example). Within each logical stream, element ordering is
determined by a sequence attribute (Time in Figure 2(c)). The stream’s uncertain do-
main is represented using uncertain attributes (LocID in the example). Each uncertain
attribute is replicated (LocIDPREV is the replication of LocID in the example) in order
to represent conditional probability distributions (e.g. p(loct+1|loct)); whose values are
stored in the p column.

A Markovian stream warehouse is a Markovian stream relation (Figure 2(c)) and,
optionally, a set of dimension tables on the Markovian stream attributes (Figures 2(d)
and (e)). The Markovian stream relation is analogous to the facts table in a standard
OLAP system. In the Lahar system, the uncertainty in a Markovian stream warehouse
is hidden from applications, which instead query a deterministic view schema. In order
to simplify Lahar’s syntax (introduced in Section 4.1), this view schema is also pre-
joined with all dimension tables. This joined view is of course never materialized. It
serves only as a conceptual model for applications to query.

In general, Markovian stream warehouses over any domain share the structure
described above. The Markovian stream relation is inferred via probabilistic infer-
ence [17], regardless of the domain of either the raw input data or the inferred Marko-
vian stream. Any of many well-established inference algorithms can be used to gen-
erate Markovian streams; once they are materialized, query processing algorithms are
agnostic to the type of inference used to produce them.

2.2 Query Model: Event and Event-OLAP Queries
In this section, we introduce the different types of Markovian stream queries (event
and event-OLAP) that we use to study the effects of approximation. We also briefly
introduce Lahar’s algorithms for evaluating these queries, since familiarity with these
algorithms is important for understanding the effects that approximation have on their
performance.

2.2.1 Event Queries

At the heart of Markovian stream processing are event queries, which search for pat-
terns in a Markovian stream (e.g. “Find all times when Bob entered the coffee room
last week.”). An event query in Lahar is defined as an ordered sequence of query links,
which are simply NFA states with 1) a single incoming edge and 2) an optional self-
loop edge. The link structure and associated edge predicates together define the event
query pattern. Examples are shown in Figures 3(a1), (a2), and (a3). Single-link event
queries are equivalent to traditional select queries (Figure 3(a1)), which in this con-
text simply select the subset of timesteps that satisfy a given predicate with non-zero

6

1.0

0.8

0.6

0.4

0.2

0
0 2 41 3 5

Count

p(
Co

un
t)

True
Count

Lahar
Query Result

p(
Q

ue
ry

)

Stream timestep

1.0

0.8

0.6

0.4

0.2

0 200 300... 400 500

True
Events

Lahar Query
Result

MAP
signal
is zero

MAP
Count

S0

Hall Office1
S1

Office1
S1

(b1)

(a1)

S0

Hall Office1

¬ Office1

S1

(a2) (a3)

(b2)

Figure 3: Markovian stream event queries [top] and sample query results [bottom].
(a1) A SELECT query on predicate ‘Office1’. (a2-a3) Event queries using NEXT
(a2) and BEFORE (a3) sequence semantics. (b1) Event query output (unaggregated) on
a real-world Markovian stream. (b2) Event query output aggregated temporally using
COUNT semantics.

probability.
An event query result comprises a 〈seqID, p〉 tuple for each timestep in the stream,

indicating the probability p with which the pattern was satisfied at stream element
seqID. A set of such tuples computed on a real RFID-derived Markovian stream is
shown in Figure 3(b1). In this example, the query pattern is correctly detected twice
on the Markovian stream, with probability around 0.25. In contrast, the most likely de-
terministic sequence (“MAP”) does not contain any query matches—a fact we explore
further in Section 5.

Lahar processes event queries on Markovian streams using an NFA-based algo-
rithm developed in prior art [32]. This algorithm maintains a joint distribution over
〈 current NFA state(s), last input 〉. Updating this distribution for a single Markovian
stream timestep, to process a query with k links, requires O(2k × D2) time: Each of
the 2k sets of possible NFA states (sets instead of individual states because an NFA
can be in multiple states simultaneously) must be updated with each of the D2 entries
of the incoming timestep’s CPT (correlation matrix). Although D2 may potentially be
large, it is usually tractable: In our study, the number D of discrete office locations
was 966. The above algorithm can be easily optimized to operate on only the active
domain, which is the set of elements in a given timestep that have non-zero probability.
This domain changes with each timestep and its size D ranged between 5 and 30 in our
study.

2.2.2 Event-OLAP Queries

Many applications additionally require OLAP-style analytics on top of event queries.
In order to study the effect of model approximation on aggregated event query results,
we introduce here several classes of Markovian stream aggregations inspired by tra-
ditional data cubes [13]. These queries have not been previously studied and Lahar’s

7

algorithms for processing them are novel. These aggregations include temporal and
cross-stream aggregations; we first introduce temporal aggregation.

Lahar supports two types of temporal aggregation. The first type is EXISTS, which
determines whether the event query was satisfied at any timestep (e.g. “Did Bob enter
the coffee room at any time last Monday?”). The second type is COUNT, which deter-
mines the number of timesteps that satisfied the event query (e.g. “How many times did
Bob enter the coffee room last Monday?”). Additional temporal aggregation functions
(e.g. MIN/MAX) are an area of ongoing work; prior art shows that supporting richer
aggregations may require some care [15].

Intuition suggests that temporal aggregation might simply be computed by post-
processing event query results. Such a naı̈ve aggregation would be incorrect, however,
since event query results produced for different timesteps are correlated. In the Marko-
vian stream in Figure 2(b), for example, the pattern (HallA, Office1) is satisfied at
timesteps 12:01 and 12:02, but these matches are mutually exclusive because they de-
pend on Bob being in two different locations at time 12:01.

In order to properly compute temporal aggregations, Lahar maintains the joint dis-
tribution over 〈 current NFA state(s), last input, aggregated-value 〉. Updating this
distribution with a single Markovian stream timestep requires O(2k × D2 × A) time,
where A is the size of the aggregated value’s domain.

For EXISTS aggregation, A ∈ {0, 1}; however, for COUNT aggregation, A grows
linearly in the length of the Markovian input stream (in the worst case). This linear
scaling of count domains on imprecise inputs has been noted in prior art and can be
avoided in cases where only summary statistics (e.g. the expected value) about the
final count are required [19]. For the purposes of this study, Lahar always computes
an exact count distribution. Importantly, we show in Section 5 that the performance
consequences in practice are usually minor.

The second class of aggregation introduced for this study is cross-stream aggre-
gation. Lahar supports two types of cross-stream aggregation whose semantics—
STREAMEXISTS and STREAMSUM—mirror its EXISTS and COUNT semantics.
However, unlike temporal aggregation, cross-stream aggregation is not complicated
by correlations because Lahar assumes independence between different Markovian
streams. We refer readers to the full version of this paper for a detailed discussion
of cross-stream aggregation [25].

3 Markovian Stream Approximations
In this section we introduce the Markovian stream approximations whose performance
and accuracy we study in Section 5. We defer our discussion of error bounds to Sec-
tion 5.

1) MAP: MAP approximation represents a Markovian stream with its single most
likely deterministic sequence (called the Maximum a Posteriori sequence). The MAP
estimate is an important approximation because it is the AI community’s standard
technique for obtaining a deterministic representative of a distribution (e.g. using the
Viterbi algorithm [35]). MAP achieves quadratic space and computational savings by
reducing the size of a single timestep from D2 to a single value.

8

A secondary reason for our inclusion of MAP in this study is the fact that MAP
streams can be directly processed by deterministic stream processing systems like
SASE [1] or Cayuga [9]. Our characterization in Section 5 of the accuracy/performance
trade-off of MAP approximation is thus equivalently a study of the performance/error
achieved by applications that determinize their imprecise inputs in order to leverage
these deterministic systems.

2) Independence: Independence approximation reduces the Markovian (i.e. first-
order) stream to a zero-order stream in which each timestep is independent of the
others; that is, independence simply discards the temporal correlations of the Marko-
vian stream. The the probability of a path ~x in an independent stream is thus p(~x) =
po(x1)

∏
i=2...N M

(i)(xi), where marginal distributions M(i) have replaced the conditional
distributions C(i) of the full Markovian stream. Assuming independence between val-
ues that are correlated in reality is a common practice in the AI community. One of
the most widely-used classifiers (naı̈ve Bayes) makes independence assumptions which
are usually known to be false in the data, but which work well and efficiently in prac-
tice [35]. Independence approximation reduces the size of a single timestep from D2

to D. Our study of the trade-offs achieved using independence sheds light directly on
the performance/accuracy of systems that dispense with Markovian correlations and
use independent streams as their input [38]. Of the four approximations that we study,
independence is the only one that is not consistent: it can assign non-zero probability
to paths that had zero probability in the original Markovian stream.

3) Thresholding: Thresholding approximation uses a parameter T to prune/discard
any temporal correlations (conditional probabilities) v such that v < T . The remain-
ing values are normalized. Pruning is used in the AI community—as it is here—to
eliminate highly unlikely possible worlds in order to produce a more tractable dis-
tribution over the remaining worlds [16]. Clearly, higher values of T produce more
aggressively-approximated streams. T values of 0.5 or higher produce deterministic
streams in which the most likely element at each timestep has a normalized probability
of 1.0. We discuss the trade-offs of various choices of T in Section 5.

4) Rollups: In contrast to the previous approximations, rollup approximations are
constructed with an awareness of the semantics of Markovian streams—much in the
same way that OLAP aggregations are semantically informed [13]. Rollup approxima-
tion is inspired by and similar to “rollup” aggregation in a data cube [13]. Markovian
stream rollups represent uncertain domain elements at a coarser level of granularity
than the original Markovian stream. For example, consider the uncertain location do-
main shown in Figure 2(a): {Office1, Lab1, Lab2, HallA, HallC}. One possible rollup
on this domain is defined by a “Floor Plan” concept hierarchy that groups all room
locations into a single concept and all hallway locations into another. The resulting
rollup has the smaller domain: {Room, Hallway}.

Rollups retain temporal correlations, so each timestep requires quadratic space to
represent. However, this space is quadratic in the size of a domain of size C which is
generally much smaller than the original domain size of D. A rollup over a domain C
is equivalent to a Markovian stream produced by inference on a model (e.g. an HMM)
defined over C. The resulting rollup is lossless with respect to C, but is not lossless with
respect to the original Markovian stream over domain D (for an example see the full
version of this paper [25]).

9

4 The Lahar Warehousing System
In this section we briefly introduce Lahar’s query syntax and architecture.

4.1 Query Syntax
An example of Lahar’s query syntax is shown in Figure 4. In this figure, lines 2-
4 identify the stream schema and filtering predicates that are applied to the stream
before event query processing begins. These predicates include key-based selection
predicates, and temporal windowing predicates, identified by WITHKEY and WINDOW
keywords, respectively.

Every Lahar query contains an event query specification, identified in an EVENT
clause. In Figure 4, line 5 specifies the structure of the query NFA. Link sequence
definitions use either the NEXT or BEFORE keywords to specify links lacking or con-
taining self-loop edges, respectively. The WHERE clause includes additional conjuncts
to specify the predicates on each link edge (e.g. lines 6-8 in Figure 4).

Temporal aggregation semantics are specified in Lahar’s syntax in the SELECT
clause (line 1 of Figure 4); alternately, the keyword INSTANTS is used to signal that
Lahar should not perform temporal aggregation. Cross-stream aggregation is specified
syntactically in the optional GROUP BY clause (lines 9-10 of Figure 4).

4.2 System Architecture
The flow of data in Lahar is shown in Figure 5(a). Markovian streams are generated
outside of the system. Approximate stream views are computed and materialized dur-
ing loading. At query time, Lahar constructs a query plan (Figure 5(b)) and executes it
using the standard getNext() iterator model. Our current optimizer is trivial, a point we
revisit in Section 5.

Lahar query plans (Figure 5(b)) include a separate branch for each stream selected
by the query. Within each branch, the Ex (Extract) operator retrieves Markovian
stream timesteps from disk. In our study, we refer to Ex operator latency and I/O
latency interchangeably. Indexing methods to accelerate the Ex operator have been

1. SELECT <EXISTS | INSTANTS | COUNT>
2. FROM Location L
3. WITHKEY L.researchArea = ‘Databases’
4. WINDOW L.seqID=12:00 TO L.seqID=16:00
5. EVENT E1 BEFORE E2 NEXT E3
6. WHERE E1.LocID = ‘Room 609’
7. AND E2.RoomType = ‘Hallway’
8. AND E3.RoomType = ‘Office’
9. GROUP BY L.EdRole
10. USING <STREAMEXISTS | STREAMSUM>

Figure 4: Lahar’s query syntax. Lines 1-4 specify selection predicates and temporal
aggregation semantics, applied before every query processing begins. Lines 5-8 specify
the event query. Lines 9-10 specify the stream aggregation semantics and grouping
criteria.

10

Inference
(Filtering/Smoothing)

Compression

Storage

Raw data

Retrieval
(Extract Operator)

NFA Evaluation
(Reg Operator)

Preprocessing/
Loading Runtime

Query
Results

Model

mStream

mStream

mStream

mStream

(a)

Stream Aggregation
(Agg Operator)

Per-Stream
Results

Ex

Reg

Ex

Reg

Agg

Ex

Reg

(b)

Storage

…
…

Figure 5: Lahar data flow (a) and query plan (b).

studied in prior art [24]; however, we implement Ex as a sequential scan in this study
to better isolate the effects of approximation on performance.

Lahar’s Reg (RegularExpression) operator processes the event query on
timesteps received from Ex, and (optionally) performs temporal aggregation. The re-
sult tuples from each branch (stream) are then aggregated together by the root Agg
(Aggregation) operator.

5 Empirical Study
In this section, we study the impact of various approximations on both performance
and query accuracy, using real-world data from an RFID-based location tracking do-
main. In Section 5.2, we study performance and find that event query processing
is heavily CPU-bound: approximations accelerate performance in proportion to the
amount by which they reduce the complexity of the Reg operator, with data size hav-
ing only a secondary effect. In Section 5.3, we study accuracy and find that threshold
approximations can be tuned to achieve effectively zero error, while MAP and inde-
pendence errors vary considerably based on the type of query. Interestingly, MAP
achieves higher accuracy than the richer independence approximation on count-based
temporally-aggregated queries. In Section 5.4 we offer practical heuristics for lever-
aging trade-offs: performance-critical applications can use a combination of MAP and
independent models to achieve high performance and low error, while applications that
value accuracy highly can use non-aggressive thresholding or rollup approximations to
achieve effectively zero error with moderate query acceleration. We begin our study in
Section 5.1 with a detailed explanation of our study setup.

11

5.1 Study Setup
5.1.1 Data

Real-world Markovian streams are critical to our study, which focuses on empirical
rather than worst-case accuracy. Our streams are inferred using a particle filter from
RFID readings collected by a real deployment [40]. Our deployment includes 160
RFID readers installed in the hallways (and only the hallways) of our 6-story office
building. This hallways-only setup is similar to RFID deployments in hospitals, which
are becoming increasingly common [28, 30, 33, 41] and which restrict RFID reader
placement because of interference with medical equipment. The readers in our deploy-
ment record the locations of over 300 RFID tags attached to books, laptop computers,
and even to people. From over 6.6 million tag sighting events, we have curated two
data sets which we label unambiguous and ambiguous. Each set comprises five distinct
RFID traces manually annotated with detailed ground-truth location information, for a
total of 2.2 hours of Markovian streams (sampled at 1Hz).

The traces in both sets reflect a person walking around an office environment like
the one shown in Figure 2(a), entering various rooms for 1-minute visits. The Marko-
vian streams inferred from the unambiguous data set contain significant uncertainty, but
identify a single most likely room during each in-room interval; in contrast, streams
inferred from the ambiguous data set generally identify 2-3 most likely rooms with
roughly equal probability. The ambiguous data set thus reflects the inherent ambiguity
problem discussed in Section 2.1, where temporal correlations are important because
they encode the constraint that objects cannot teleport.

5.1.2 Queries

We evaluate Lahar on a set of queries designed to highlight the strengths and weak-
nesses of various approximations as well as their sensitivity to Markovian stream am-
biguity/correlations. These queries are specified using varying numbers of query links,
according to the purpose of each experiment. We chose event query link predicates that
search for room-entry events, although this particular choice is not critical to any of the
performance or error trends that we study. For simplicity we restrict our study to event
queries that use NEXT sequence semantics (equivalently, fixed-length queries [24]).
Although the approximations and aggregations that we study apply equally to queries
using BEFORE semantics (equivalently, variable-length queries), the effects of approx-
imation are in general stronger and more clearly observed on fixed-length queries.

5.1.3 Defining Error

Throughout this study, we measure and present error with respect to a full, unapproxi-
mated Markovian stream. For Boolean queries, this error is e = |pm− pa|, where pm and
pa are the probabilities with which the query is satisfied in the Markovian and approx-
imate streams, respectively. For count-based queries, the error is defined as the Earth
Mover’s Distance (EMD) [34] between the count distributions Dm and Da computed on
the Markovian and approximate streams. We chose EMD over other distance metrics

12

because it is well-defined over distributions with different support, which are common
in our measurements.

An alternative definition of error compares query results to the actual underlying
sequence of events represented by a Markovian stream. We studied accuracy using
both metrics, but restrict our discussion to the definitions above because they isolate
approximation-induced error from inference error (even an unapproximated stream
contains errors with respect to the actual events it represents). Approximation error
is important because it is the only error that a query optimizer can control.

In this section, we measure error at the level of query results because this is the error
felt by applications. In Section 5.4, we briefly discuss the effects of approximation on
Markovian streams themselves (i.e. independent of any queries).

5.2 Performance Study
In this section we study the following questions about the performance of event and
event-OLAP processing:

1. What are the performance bottlenecks of event and event-OLAP query
processing? We find that NFA processing dominates performance, and has a
stronger effect than both disk I/O costs and the theoretically-unbounded costs of
aggregation, which we find to be small in practice. The performance of NFA
processing degrades exponentially with event query length.

2. Which approximations yield the best performance, and why? We find that
approximations accelerate performance in proportion to the amount by which
they reduce the dimensionality of the state tracked by the Reg operator. Thus
independence and MAP perform best, accelerating processing by one and two
orders of magnitude, respectively, while thresholding and rollup approximations
yield only moderate speedups.

We address these two questions in detail below.

5.2.1 Performance Bottlenecks

We identified query processing bottlenecks by measuring the baseline (no approxima-
tion) performance of each type of event processing operator on a set of representa-
tive queries. These queries include all combinations of four basic event specifications
(NFAs), each processed using three temporal aggregation semantics and two cross-
stream aggregation semantics, for a total of 4×3×2 = 24 queries. The four basic event
specifications include queries of length 1, 2, 4, and 8 links. The three temporal aggre-
gation semantics and two cross-stream aggregation semantics are of course EXISTS,
INSTANTS, and COUNT; and STREAMEXISTS and STREAMSUM, respectively. For
simplicity, we show only the results of the twelve queries processed using STREAMSUM
cross-stream aggregation semantics. These results appear in Figure 6 (note the logscale
y-axis). The performance of the other twelve STREAMEXISTS-aggregated queries are
identical except that the Agg costs are smaller. Each query was aggregated over five

13

./Output_ToPlot/AggTiming_REG_MEAN.txt

./Output_ToPlot/AggTiming_AGG_MEAN.txt

./Output_ToPlot/AggTiming_EX_MEAN.txt

 1

 10

 100

 1,000

 10,000

8
_
C

O
U

N
T

4
_
C

O
U

N
T

2
_
C

O
U

N
T

1
_
C

O
U

N
T

8
_
IN

S
T

A
N

T
S

4
_
IN

S
T

A
N

T
S

2
_
IN

S
T

A
N

T
S

1
_
IN

S
T

A
N

T
S

8
_
E

X
IS

T
S

4
_
E

X
IS

T
S

2
_
E

X
IS

T
S

1
_
E

X
IS

T
S

M
il

li
se

co
n
d
s_

p
er

_
st

re
am

_
ti

m
es

te
p
_
p
ro

ce
ss

ed

Query_Type

LaharOLAP_Performance

EXISTS
1 2 4 8 1 2 4 8 1 2 4 8

INSTANTS COUNT

Mean Operator Cost Per Processed Timestep

Query length and temporal aggregation semantics

Reg Agg Ex

1.0 2.0

8.2

88.4

1.2 2.4

10.0

104.0
62.5

11.3 12.4

83.7

M
illi

se
co

nd
s

Figure 6: (a) Overview of operator performance on STREAMSUM queries aggregating
together 5 streams. Note the logscale y-axis. Numbers above each query bar give the
ratio of Reg

Ex latency.

Markovian streams, and Figure 6 reports the average timing results over five separate
evaluations of each query.

The key points characterizing the baseline performance of Markovian stream ware-
housing are as follow:

B1. Reg dominates performance: Figure 6 shows that the Reg operator is consis-
tently the most expensive, sometimes by several orders of magnitude (the ratio between
the time spent in the Reg and Ex operators is shown above each bar in the plot). This
feature sets Markovian stream processing apart from standard data warehousing where
disk I/O costs, rather than CPU costs, would traditionally dominate in an untuned pro-
totype equivalent to Lahar.

B2. Reg slows exponentially with query length: The exponential scaling of the
Reg’s operator’s state matrix with the number of query links, and the direct effect of
this matrix size on performance, is clearly visible on the EXISTS and INSTANTS
queries in Figure 6. The Reg operator’s latency ranges from 50 milliseconds on 1-link
queries to nearly ten full seconds per stream timestep for 8-link queries! The expo-
nential trend is obscured in the COUNT queries by the cost of the COUNT aggregation
(included in the Reg time), which we discuss shortly. Figure 6 demonstrates clearly
that exact processing of 4-link or longer queries is simply not scalable.

B3. Aggregation latency is minimal: Recall from Section 2.2 the incremental
update cost of count-based aggregations (COUNT, STREAMSUM) slows with the size of
the count domain. This unbounded update cost could potentially grind Lahar to a halt;
however, in practice we find that count-based aggregations in our domain scale well.

Figure 6 shows that the latency of the STREAMSUM operator (shown as the Agg
cost) is low compared to the latency of the Reg operator. The amortized costs of one-
time cross-stream aggregations (i.e. over EXISTS and COUNT results) are all below
25 milliseconds and are not even visible in Figure 6. The single-link COUNT query is

14

an exception whose slow performance is due to the large STREAMSUM domain, which
reaches 1536 elements (the ground truth sum is 711 by comparison). The amortized
cost of per-timestep cross-stream aggregations (i.e. over INSTANTS output) is natu-
rally somewhat higher (6-35 milliseconds per timestep), but is still dominated by the
cost of the Reg operator.

The cost of count-based temporal aggregation (i.e. COUNT) is included in Figure 6
in the performance of the Reg operator on the four COUNT queries. These queries ex-
hibit a somewhat-constant latency. Short event queries are faster to process but are sat-
isfied relatively frequently, producing larger count domains (511 for the 1-link COUNT
query in Figure 6). Longer event queries are slower to process but are satisfied in-
frequently, meaning that count domains remain small (27 for the 8-link COUNT query
in Figure 6). Thus only queries satisfied frequently incur non-trivial COUNT costs.
Addressing this problem using approximations—for example, returning the expected
value instead of the full count distribution—is an area of ongoing work in Lahar.

5.2.2 Performance on Approximate Streams

In this section we study the performance benefits of approximation, and find that the
dimensionality of approximated timesteps is is the primary factor determining the per-
formance benefits of each approximation. The effect of approximation on the imprecise
domain has a second-order effect. We develop and illustrate these findings using the
twenty-four representative queries described in Section 5.2.1. The relative effects of
each approximation technique are consistent across all query lengths and all types of
aggregation, so for clarity we present results for a single 4-link query that uses no ag-
gregation. Figure 7 shows the latency of this query, averaged over five trials on each
of five different Markovian streams. The y-axis of Figure 7 is not in logscale, as small
timing differences appear more clearly on linear axes.

P1. Reg state dimensionality dominates efficiency: Figure 7 shows clearly that
the MAP and independence yield the largest performance gains, of two and one order(s)
of magnitude, respectively. Interestingly, these speedups stem almost exclusively from
acceleration of the Reg operator. The reduction in Reg latency is a direct result of the
fact that MAP and independence reduce the Reg operator’s state matrix dimensionality
as discussed in Section 3. In contrast, although thresholding accelerates performance
proportionally as thresholds increase, threshold approximations do not reduce state di-
mensionality and thus do not yield the performance benefits achieved by independence
or MAP.

The smaller physical size of both independent and MAP streams is only a sec-
ondary factor in the higher performance achieved on these views. Smaller timesteps
proportionally reduce the cost of the Ex operator; for space reasons we omit graphs
showing the data size reduction ratios achieved by each approximation. The dramatic
effect of the dimensionality of the Reg operator’s state on latency underscores the fact
that CPU cost, not disk I/O, is the performance bottleneck of event query processing.

P2. Approximation-aware optimizations are important: In order to reduce the
dimensionality of the Reg operator’s state, a DBMS must be optimized to leverage
the simplified structure of MAP or independence approximations. To underscore this
point, consider in Figure 7 the Reg latency on the stream approximated with thresh-

15

./Output_ToPlot/INSTANTS_4__REG_MEAN.txt

./Output_ToPlot/INSTANTS_4__EX_MEAN.txt

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

Id
en

ti
ty

In
d
ep

en
d
en

ce

M
ap

T
h
re

sh
o
ld

_
0
.0

0
0
,0

0
1

T
h
re

sh
o
ld

_
0
.0

0
0
,1

0
0

T
h
re

sh
o
ld

_
0
.0

1
0
,0

0
0

T
h
re

sh
o
ld

_
0
.1

0
0
,0

0
0

T
h
re

sh
o
ld

_
0
.2

0
0
,0

0
0

T
h
re

sh
o
ld

_
0
.3

0
0
,0

0
0

T
h
re

sh
o
ld

_
0
.4

0
0
,0

0
0

T
h
re

sh
o
ld

_
0
.5

0
0
,0

0
0

M
il

li
se

co
n
d
s

Compression_Technique

Title

Un
ap

pr
ox

-
im

at
ed

In
de

pe
n-

de
nc

e

M
AP 1E-6 1E-4 1E-2 0.1 0.2 0.3 0.4 0.5

Thresholding

Reg Operator

Ex Operator

M
illi

se
co

nd
s

(n
or

m
al

ize
d)

100

200

300

400

Figure 7: Unaggregated Reg and Ex operator performance on various approximate
stream views. Performance on EXISTS and COUNT semantics is similar and we omit
these plots.

olding using T=0.5. This stream is effectively deterministic. However, Lahar was
able to process the independence view—which maintains full uncertainty within each
timestep—2.3 times faster than it processed the “deterministic” thresholded stream, de-
spite the fact that the independence view is 1.45 times larger than the thresholded view!
Because the determinism of the thresholded view is a side-effect, but not a guaranteed
property, of the thresholded view, Lahar must still process it using a 2D state matrix
that is an order of magnitude slower to update than the 1D state vector used to process
the independence view.

P3. Domain size has a second-order effect: A secondary factor in the perfor-
mance of the Reg operator is the size of the uncertain domain, which affects both the
size of the Reg operator’s state matrix and the size of each Markovian stream timestep.
Recall that rollup approximation works precisely by reducing the size of this domain
from D to a smaller value C. The performance of Reg on two rollups is shown in
Figure 8.

The performance numbers in the “4 Link” column of Figure 8 are directly com-
parable to the Reg latencies in Figure 7. Not surprisingly, rollups do not achieve the
performance of MAP; in this example, however, they do surpass the average Reg la-
tency (26.8 milliseconds per timestep) on independent streams. On highly aggressive
rollups like the ones used to generate Figure 8, the comparatively lower cost of C2 (1
or 16) vs. D (966) can result in superior performance on the rollup stream. In general,
however, the order-of-magnitude acceleration achieved by independence is likely to
outperform a rollup approximation.

1 Link 2 Links 4 Links 8 Links

Original (D=966)

Rollup View
(C=4)

Rollup View
(C=1)

57.37 ± 43.45 96.80 ± 68.70 391.4 ± 298.3 9924 ± 7356

4.36 ± 1.80 6.37 ± 3.10 19.12 ± 10.39 256.3 ± 203.1

3.60 ± 0.91 4.86 ± 1.20 12.64 ± 2.25 212.7 ± 10.9

Query Length

Rollup

Milliseconds per stream timestep (INSTANTS query)

Figure 8: Performance of Lahar using two rollup approximations.

16

5.3 Accuracy Study
In this section we examine the effect in practice of approximation on the accuracy of
query results. We omit rollup approximations from this discussion because rollups are
lossless with respect to the errors we measure. We continue to omit cross-stream ag-
gregation from our analysis, since STREAMEXISTS and STREAMSUM errors derive
directly from errors in event and temporally-aggregated results, whose errors we char-
acterize shortly. Specifically, in this section we study the following question:

1. In practice, what are the effects of MAP, independence, and thresholding
on the results of event and event-OLAP queries, and what characteristics
of Markovian stream data contribute to these effects? We find that MAP and
independence errors vary dramatically based on the type of temporal aggregation
used in a query, while thresholding errors increase predictably with the threshold.
We find that the deterministic MAP model produces higher-quality results than
the richer independence model on some types of aggregation, due to temporal
uncertainty in our test data.

Our discussion of accuracy is guided by Figure 9, which shows the error incurred
by various stream approximations on two types of data (Figure rows) and using differ-
ent (or no) temporal aggregations (Figure columns). Errors incurred by event queries
of different lengths were similar, and for brevity we show only the results on 4-link
queries. Figures 9(a-f) plot this error using the metrics described in Section 5.1.3. All
plots show errors computed on five Markovian streams.

We now characterize the errors of approximation.

U I M 0.01 0.1 0.2 0.3 0.4 0.5

0.1

0

0.2

0.3

0.4

0.5

0.6

0.1

0

0.2
0.3

0.4
0.5
0.6
0.7

0.1
0

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.1
0

0.2
0.3
0.4
0.5
0.6
0.7
0.8

2

0

4

6

8

10

1

0

2

3

4

5

U I M 0.01 0.1 0.2 0.3 0.4 0.5

U I M 0.01 0.1 0.2 0.3 0.4 0.5 U I M 0.01 0.1 0.2 0.3 0.4 0.5

U I M 0.01 0.1 0.2 0.3 0.4 0.5U I M 0.01 0.1 0.2 0.3 0.4 0.5

EXISTS INSTANTS COUNT

Un
am

bi
gu

ou
s

da
ta

Am
bi

gu
ou

s
da

ta

U : Unapproximated view I : Independence view 0.01 0.1 0.2 0.3 0.4 0.5M : MAP view Thresholded views: Quartiles Mean *

(a) (b) (c)

(d) (e) (f)

R
es

ul
t D

iff
er

en
ce

 (A
bs

ol
ut

e)

R
es

ul
t D

iff
er

en
ce

 (A
bs

ol
ut

e)
R

es
ul

t D
iff

er
en

ce
 (A

bs
ol

ut
e)

R
es

ul
t D

iff
er

en
ce

 (A
bs

ol
ut

e)

Ea
rth

 M
ov

er
's

D
is

ta
nc

e
Ea

rth
 M

ov
er

's
D

is
ta

nc
e

Figure 9: Differences in query results computed on full vs. approximate Marko-
vian streams. Differences are shown for each approximation on a set of five 4-link
queries with varying temporal aggregation semantics (Figure columns) and on two
trace sets (Figure rows). Differences in result probabilities are reported for EXISTS
and INSTANTS queries, while COUNT differences are reported as the Earth Mover’s
Distance between distributions over the count value.

17

A1: MAP error is high on EXISTS queries, bimodal on INSTANTS queries,
and low on COUNT queries in our location domain. Recall that a MAP stream is
deterministic and thus produces event query results with probability 0.0 or 1.0. Fig-
ures 3(b1) and (b2) show examples of query results computed on a real-world MAP
stream. When the MAP estimate omits a pattern match that is present in the original
Markovian stream with probability p, the error incurred by the false negative is p. In
our data, p generally ranges between 0.0 and 0.3 with values heavily clustered in the
lower end of this range, so MAP errors tend to be small in magnitude. In cases when the
MAP estimate does include a pattern, however, the query is satisfied with probability
1.0 and the error incurred by the true positive is 1.0− p. Thus, although MAP errors are
generally low, they can approach 1.0 when the MAP estimate is a poor representative
of the original Markovian stream. The bimodal behavior of MAP error on INSTANTS
queries is visible in Figures 9(b) and (e), where the mean errors are close to zero but
the maximum errors are close to 1.0. Contrast this behavior with the theoretical error
bound for MAP on an INSTANTS query, whose worst-case example stream is shown
in Figure 10(a). This bound of 1.0 − (0.5k) quickly approaches 1.0 as the query length
k increases. For 4-link queries like those studied in Figure 9, the theoretical bound is
1.0−0.0625 = 0.9375. In our study, MAP error is far lower than this worst-case bound
in almost all cases.

MAP streams exhibit very different error behaviors on temporally-aggregated
queries. On EXISTS queries, which are Boolean, MAP’s deterministic result of 0.0
or 1.0 is generally a poor estimate of the true value, which almost always falls some-
where in the middle. MAP returns 1.0 if at least one pattern match occurs anywhere in
the MAP estimate, causing it to overestimate EXISTS probabilities in our study. We
manually verified that the MAP errors in Figures 9(a) and (d) resulted from this type of
overestimation. Again, however, even these overestimated results do not approach the
theoretical error bound of 1.0, as described in Figure 10(a).

On COUNT queries, on the other hand, the single count computed with probability
1.0 on a MAP stream was surprisingly accurate in our study. Although MAP’s count is
inaccurate in proportion to the number of false positives and false negatives in the MAP
stream, it is at least in the right order of magnitude (Figures 9(c) and (f)) in our loca-
tion domain. In other domains, however, the MAP count could be nearly perfect (e.g.
on clearly-spoken audio with little uncertainty) or nearly meaningless (e.g. on noisy
location data in which many paths are possibly correct, and MAP has little chance of
representing the correct one). The quality of MAP results in general is highly depen-
dent on the fidelity of the MAP estimate to the original Markovian stream, which is
dependent in turn on the amount of uncertainty in a data set.

A2: Independence error is high on COUNT queries, moderate on EXISTS
queries, and low on INSTANTS queries in our domain. Ignoring temporal cor-
relations in location-based data tends to yield slightly underestimated event query
probabilities—we manually verified that the errors incurred on the independent streams
in Figures 9(b) and (e) were the result of underestimation (note that these two plots in-
clude only non-zero errors, since the vast majority of timesteps incur zero error and
hence obscure the behavior of the remaining errors). In general, these underestimation
errors are not large: 3/4 of the non-zero errors on both data sets were of magnitude
less than 0.05, while the maximum error was less than 0.4. Contrast these errors with

18

(b) Independence

Theoretical Error Bounds for Independence and MAP
k: # links in query N: length of stream

(a) MAP

1.0

a
1.0

b

t0

0.5

0.5

t1

...

EXISTS INSTANTS

1.0

Error:
0.5k

Query Q: ak

lim=1.0

ab
0.0

(2N-N-1) /2N

lim=1.0

tN

a

b

a

b1.0

1.0

1.0

1.0
p(Q):

p(Q)IND:

N→∞ k→∞

0.5

0.5

b

0.5

0.5

t0

0.5

0.5

...a

b

t1

a

0.5

0.5
0.5

0.5
0.5

0.5
0.5

0.5
b

tN

a

EXISTS INSTANTS

1.0
Error:

0.5k
Query Q: ak

lim=1.0

ab

0.0
(2N-N-1) /2N

lim=1.0

p(Q):
p(Q)MAP:

N→∞ k→∞

Figure 10: Worst-case Markovian streams and associated theoretical error bounds.
MAP: (a) shows the worst-case scenario for MAP approximation, in which all paths
have equal probability. Assume that the MAP estimate is the path aN (highlighted). On
the original stream, the EXISTS query ‘ab’ is satisfied with probability approaching
1.0 as N → ∞, because there exist only N + 1 paths that do not satisfy ‘ab’. These
paths are the paths biaN−i, for 0 ≤ i ≤ N. However, the query ‘ab’ has a probability
of zero on the MAP estimate. Similarly, the INSTANTS query ‘ak’ (which searches
for k consecutive ‘a’ values) is satisfied with probability 1.0 in the MAP estimate, but
has probability 0.5k (0.0 as k → ∞) in the original stream. Independence: Worst-case
independence errors are derived using similar intuition, using the stream shown in (b);
its independence approximation is the stream in (a). Note that for both independence
and MAP, COUNT error can be generalized from EXISTS, which effectively computes
the probability that the count is greater than zero (the true count in these examples is
zero). In fact, much worse bounds can be demonstrated for COUNT, but we omit them
for brevity.

the theoretical error bound as described in Figure 10(b), which for a four-link query is
0.9375.

In contrast, assuming independence on temporally-aggregated queries tends to
yield results that overestimate the true values, often significantly—we manually veri-
fied that the errors incurred on the independent streams in Figures 9(a), (c), (d), and
(f), were overwhelmingly due to overestimation. Even these errors, however, did not
approach the theoretical worst-case limit of 1.0, described in Figure 10(b).

The overestimation problem is a direct result of the temporal uncertainty in our
location data. Temporal uncertainty appears when probabilistic inference cannot deter-
mine the precise time at which an event occurred, and thus produces large Markovian
stream intervals (30-60 seconds in our data) that contain event pattern matches. Tempo-
ral correlations are the only indication of consistent versus inconsistent paths through
these intervals. Independent streams lose the distinction between consistent and incon-
sistent paths, and overestimate the aggregated query result by counting both types in
the aggregation.

19

We expect that other temporally-based application domains (e.g. location inferred
from RFID in hospitals or retail stores, or activity sequences inferred from wearable
sensors or smart homes) will exhibit similar temporal uncertainty. Applications in
these domains will thus observe similar behaviors to the ones identified here, for all
queries. In other domains, however, such as audio, streams will contain little temporal
uncertainty. We expect that applications in these domains will observe lower errors
on independence approximations for temporally-aggregated queries, with INSTANTS
query errors remaining largely the same.

A3: Thresholding error increases smoothly with the threshold T on all types
of query in our domain. Not surprisingly, Figure 9 shows that the error incurred by
threshold-based approximations increases with the threshold T . Thus the error incurred
by thresholding is controllable in a way that MAP and independence errors are not. In
our study, error is negligible for low values of T (e.g. 0.01 and lower). In general,
thresholding error is proportional to the amount of probability mass pruned from the
original Markovian stream: In Figure 9, for example, thresholding errors are somewhat
higher on the “ambiguous” data set because distribution values are lower (a result of
the ambiguity). Thus the same threshold T prunes away more information from an
“ambiguous” Markovian stream than from an “unambiguous” one.

5.4 Performance/Accuracy Trade-Offs
In this section we synthesize our separate studies of performance and accuracy into a
discussion of the trade-offs between the two. We first outline heuristics to help ap-
plications choose an appropriate model. Next we discuss the higher-level question
of whether the performance costs of full Markovian models are justified by improved
accuracy. Finally, we close our study with a brief discussion of the challenges to de-
veloping query optimization algorithms to exploit the trade-offs studied in this paper.

5.4.1 Leveraging Tradeoffs in Practice

Thus far we have not addressed the key question for applications, which is: What
model will best satisfy my performance & accuracy needs? Based on our study
results, we offer the following guidelines:

• Applications for which performance is the top priority should use a combina-
tion of independence and MAP approximations, which accelerate processing by
one and two orders of magnitude, respectively. MAP is preferred for COUNT
queries because it avoids the overcounting exhibited by independence, while in-
dependence is preferred for INSTANTS and EXISTS queries because it bet-
ter captures uncertainty over Boolean query results. Event the most aggressive
thresholding or rollup-based approximations do not accelerate processing com-
petitively enough for use in a performance-critical application.

• Applications for which accuracy is the top priority should use rollup or threshold
approximations, whose errors can be controlled via approximation parameters
(e.g. the threshold parameter or rollup concept hierarchy). Threshold approxi-
mations can be tuned to provide effectively zero error (e.g. using a threshold of

20

T = 0.01 for our data, as in Figure 9), while still yielding moderate processing
speedups (e.g. by a factor of roughly 4, as in Figure 7). Rollup approximations
are lossless with respect to the rollup model, and when used aggressively can
process scores of timesteps per second 8, achieving performance close to that of
independence.

These characterizations are only guidelines, of course, and counterexamples exist
even within our study. In light of the above, re-consider Figure 1. The circle, diamond,
square, and triangle points correspond to 1-link INSTANTS, 1-link EXISTS, 4-link
INSTANTS, and 4-link EXISTS queries, respectively. Here, on the 4-link EXISTS
(triangle) query, independence error is several orders of magnitude greater than the
error incurred by MAP. This counterexample underscores the need for more refined,
data-specific model optimization, a point that we revisit shortly.

5.4.2 The Markovian Model

The final question addressed by this study, in light of the above analyses, is the fol-
lowing: Is the complexity of the Markovian stream model justified? Specifically,
is the improved accuracy of full Markovian stream processing, worth the orders-of-
magnitude higher processing costs, relative to the lower costs of approximations?

The short answer is clearly ‘yes’. In theory as well as in practice, there exist queries
(e.g. EXISTS aggregations on ambiguous location data, as in Figure 9(d)) for which
approximations yield highly inaccurate results. The full Markovian stream model is
the model of choice for obtaining accurate answers in these cases. Furthermore, there
is no single approximation that guarantees high accuracy across all types of data and
query—only the full Markovian stream can do this. In short, any system that does not
support the Markovian stream model risks serious inaccuracies.

On the other hand, this study demonstrates equally strongly that many queries can
be processed with high accuracy on approximate models (e.g. INSTANTS queries us-
ing independence or moderate thresholding, as in Figure 9(e)). Thus, any system that
supports only the Markovian stream model risks serious and unnecessary inefficien-
cies.

In summary, this study demonstrates that the Markovian stream model is justified,
but DBMS’s should take advantage of the many opportunities for optimization that
approximations can provide. We demonstrate that the accuracy/performance trade-off
space is rich and is indeed worth exploiting.

5.4.3 Toward Query Optimization

The findings in this paper evoke a natural follow-on question, which is how to develop a
query optimizer to automatically optimize the trade-off space for a given data set, query
load, and performance or accuracy requirement. While we provide general guidelines
above, fine-tuned optimization is beyond the scope of this study. A formal cost model
for optimization—and identification of the statistics that will allow an optimizer to
leverage such a cost model in practice—are important areas for future work.

21

Un
ap

pr
ox

-
im

at
ed

In
de

pe
n-

de
nc

e

M
AP 1E-6 1E-4 1E-2 0.1 0.2 0.3 0.4 0.51E-5 1E-3

Thresholding

0.0

0.2

0.4

0.6

0.8

1.0

St
re

am
-L

ev
el

 D
iff

er
en

ce
 (E

M
D

Di
st

an
ce

)

Figure 11: Statistical, query-independent differences between our full Markovian
streams and their approximations. Differences are computed for each pair of timesteps
separately, using the Earth Mover’s Distance. Such quantifications of the difference
between a stream and its approximation might yield tighter, data-specific bounds on
query errors.

One possible tool for addressing this question is the approximated streams them-
selves: structural or statistical differences between a Markovian stream and an approx-
imation may yield insights about (or limits on) the query-level errors incurred by the
approximation. There are many ways to quantify the differences between two Marko-
vian streams (or approximations). One possible measure is the EMD distance between
two streams, viewed as probability distributions over possible sequences. Computation
of this distance between two Markovian stream distributions is intractable, but can be
approximated using the EMD distance between every k-length substream, in a sliding-
window fashion. Figure 11 shows this difference, computed on our RFID/location data
for each type of stream approximation, using subsequences of length k=2.

Interestingly, Figure 11 resembles the plots in Figure 9(a-f), even though the data
in Figure 11 is independent of any query. The similarity between the plots suggests
that stream-level differences might be used to compute tighter, data-specific bounds on
query-level errors. Consider a simple example using MAP: if the MAP stream is very
similar to the original Markovian stream, then the original stream contains little uncer-
tainty and MAP will produce high-quality results. The quality of the MAP estimate can
be computed inside a DBMS, directly on the data. Of course, stream-level differences
do not capture the differences in error that result from different types of queries (e.g.
different temporal aggregations). Methods for leveraging distribution-level errors in an
effort to better characterize query-level error is an area for future work.

6 Related Work
We briefly survey the work synthesized in Lahar; for a more complete related work,
please see our technical report [25].

22

Graphical models and probabilistic inference have long been used in the AI
community to reason about uncertainty [7, 17]. Dynamic Bayesian networks [35], of
which Hidden Markov Models [31] are a simple example, are a well-established model
for temporally-correlated data [19, 24, 32]. The particle filtering [5] and associated
smoothing [7,21] algorithms used to generate this study’s data are only several of many
commonly-used probabilistic inference algorithms that can be applied to these models
to generate Markovian streams.

Approximation techniques for probability distributions, including the MAP, inde-
pendence, and thresholding approximations used in this study, are well-established in
the AI literature [16, 35]. Approximation has been applied in deterministic DBMS in-
dexes to create an accuracy/performance trade-off similar in spirit to the one studied
here [4].

Model-based views [11] are a popular way to expose uncertain relations to appli-
cations. Many systems based on model-based views perform probabilistic inference
at query time [19, 36, 37, 39, 42]; Lahar and its predecessors [24, 32] take an alternate
approach in which the output of inference (i.e. Markovian streams) are materialized.
This eliminates the cost of online inference and allows for materialization of different,
approximated versions of each stream.

The OLAP warehousing model [13] is well-studied for deterministic data, but is
not directly applicable to imprecise sequences. Recent work focuses separately on cube
models for deterministic sequences [27] and for imprecise relations [6]. Kanagal &
Deshpande [18, 19] study OLAP-style Markovian stream aggregations similar to those
introduced here; however this work does not support aggregations on event queries
with self-loops. Much data warehousing work targets RFID data specifically [12, 23].
In contrast, Lahar supports more general types of data such as speech/audio, GPS, etc.

Event queries are standard in stream processing. Several systems, including
SASE [1] and Cayuga [9], process these queries on deterministic streams. One system
by Shen et al. [38] processes event queries on independent, imprecise streams, while
still others support these queries on a full Markovian model [19, 20, 24, 32]. Lahar is
the only of these systems to exploit the tradeoff space created by the use of different
models to approximate the same data.

Probabilistic relational DBMSs handle uncertainty scalably by imposing inde-
pendence assumptions on the base data. Such systems include Mystiq [8], Trio [2],
and MayBMS [3]. These systems support standard SQL, which is richer than Lahar’s
language, but their data models exclude the ordered, correlated tuples of Markovian
streams.

7 Conclusion
In this paper, we studied the performance/accuracy trade-offs of several standard ap-
proximations of Markovian streams, in an RFID-based location tracking domain. This
study is the first to perform a cost/benefit analysis on imprecise stream models. We
found that the trade-off space is rich, affording many opportunities for query accel-
eration with minimal impact on query error. We characterized query error on event
queries and novel event-OLAP queries, including count- and existence-based temporal

23

and cross-stream aggregations. A detailed analysis of both performance and accuracy
revealed that high-performance applications are well-served by a combination of MAP
and independence models, while the needs of high-accuracy applications are best met
by threshold- or rollup-based model. We generalized beyond our application domain
by identifying data characteristics such as temporal uncertainty that are responsible for
observed error behaviors.

Acknowledgements
This work was partially supported by NSF grant IIS-0713123, NSF CRI grants CNS-
0454425 and CNS-0454394; by gifts from Intel Research, and by M. Balazinska’s Mi-
crosoft New Faculty Fellowship. J. Letchner is supported by an NSF graduate research
fellowship.

References
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In SIGMOD

’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 147–160, New
York, NY, USA, 2008. ACM.

[2] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara, and J. Widom. Trio: A system for
data, uncertainty, and lineage. In VLDB, pages 1151–1154, 2006.

[3] L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing incomplete information with probabilistic world-set de-
compositions (demonstration). In ICDE, 2007.

[4] T. Apaydin, G. Canahuate, H. Ferhatosmanoglu, and A. S. Tosun. Approximate encoding for direct access and query
processing over compressed bitmaps. In VLDB ’06: Proceedings of the 32nd international conference on Very large
data bases, pages 846–857. VLDB Endowment, 2006.

[5] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-linear/non-gaussian
bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188, Feb. 2002.

[6] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. Olap over uncertain and impre-
cise data. VLDB J., 16(1):123–144, 2007.

[7] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks and Expert Systems.
Springer, 1999.

[8] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, pages 864–875, 2004.

[9] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive publish/subscribe systems. In In
Proc. EDBT, pages 627–644, 2006.

[10] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-based approximate querying in sensor
networks. VLDB J., 14(4):417–443, 2005.

[11] A. Deshpande and S. Madden. MauveDB: supporting model-based user views in database systems. In SIGMOD ’06:
Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pages 73–84, New York,
NY, USA, 2006. ACM.

[12] H. Gonzalez, J. Han, and X. Li. Flowcube: Constructing rfid flowcubes for multi-dimensional analysis of commodity
flows. In In: VLDB 2006, 2006.

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov., 1(1):29–
53, 1997.

[14] IDC. The expanding digital universe: A forecast of worldwide information growth through 2010. An IDC White
Paper sponsored by EMC., March 2007.

24

[15] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating statistical aggregates on probabilistic data
streams. In PODS, pages 243–252, 2007.

[16] F. Jensen and S. K. Andersen. Approximations in bayesian beleif universes for knowledge-based systems. In Proc. of
the 6th Conference on Uncertainty in Artificial Intelligence, pages 162–169, 1990.

[17] M. I. Jordan, editor. Learning in graphical models. MIT Press, Cambridge, MA, USA, 1999.

[18] B. Kanagal and A. Deshpande. Online filtering, smoothing and probabilistic modeling of streaming data. In ICDE,
pages 1160–1169, 2008.

[19] B. Kanagal and A. Deshpande. Efficient query evaluation over temporally correlated probabilistic streams. In ICDE,
pages 1315–1318, 2009.

[20] B. Kanagal and A. Deshpande. Indexing correlated probabilistic databases. In SIGMOD, 2009.

[21] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and D. Lang. Fast particle smoothing: if I had a million
particles. In Proc. of the 23rd ICML, pages 481–488, New York, NY, USA, 2006. ACM.

[22] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML, pages 282–289, 2001.

[23] C.-H. Lee and C.-W. Chung. Efficient storage scheme and query processing for supply chain management using rfid.
In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages
291–302, New York, NY, USA, 2008. ACM.

[24] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Access methods for markovian streams. In 25th International
Conference on Data Engineering, 2009.

[25] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. LaharOLAP: Supporting OLAP queries on Markovian streams.
Technical Report #CSE-09-03-03, University of Washington, March 2009.

[26] L. Liao, D. J. Patterson, D. Fox, and H. A. Kautz. Learning and inferring transportation routines. Artif. Intell, 171(5-
6):311–331, 2007.

[27] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. Olap on sequence data. In J. T.-L. Wang, editor,
SIGMOD Conference, pages 649–660. ACM, 2008.

[28] New Oregon Hospital Adopts IR-RFID Hybrid System.
http://www.rfidjournal.com/article/view/4846/1, May 2009.

[29] D. J. Patterson, D. Fox, H. A. Kautz, and M. Philipose. Fine-grained activity recognition by aggregating abstract
object usage. In ISWC, pages 44–51, 2005.

[30] Philly Hospital Uses RTLS to Track Patient Flow, Care and Training.
http://www.rfidjournal.com/article/view/4934/1, May 2009.

[31] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of
the IEEE, 77(2):257–286, 1989.

[32] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries on correlated probabilistic streams. In SIGMOD
Conference, pages 715–728, 2008.

[33] RFID Journal. Hospital gets ultra-wideband RFID. http://www.rfidjournal.com/article/view/
1088/1/1, Aug. 2004.

[34] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In ICCV,
pages 59–66, 1998.

[35] S. J. Russell and P. Norvig. Artificial intelligence : a modern approach. Prentice Hall, 2nd edition, 2003.

[36] P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic databases. In ICDE, pages
596–605, 2007.

[37] P. Sen, A. Deshpande, and L. Getoor. Exploiting shared correlations in probabilistic databases. PVLDB, 1(1):809–820,
2008.

[38] Z. Shen, H. Kawashima, and H. Kitagawa. Probabilistic event stream processing with lineage. In Proceedings of Data
Engineering Workshop, 2008.

25

[39] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic inference over rfid streams in mobile
environments. In ICDE, 2009.

[40] University of Washington. RFID Ecosystem. http://rfid.cs.washington.edu/.

[41] R. van der Togt, E. J. van Lieshout, R. Hensbroek, E. Beinat, J. M. Binnekade, and P. J. M. Bakker. Electromagnetic
interference from RFID inducing potentially hazardous incidents in critical care medical equipment. Journal of the
American Medical Association, 299:2884–2890, 2008.

[42] D. Z. Wang, E. Michelakis, M. N. Garofalakis, and J. M. Hellerstein. BayesStore: managing large, uncertain data
repositories with probabilistic graphical models. PVLDB, 1(1):340–351, 2008.

[43] http://hr.dop.wa.gov/eln/.

26

