
Maximum A Posteriori Path Estimation with Input Trace Perturbation:
Algorithms and Application to Credible Rating of Human Routines

Daniel H. Wilson
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh PA 15213
dwilson@cs.cmu.edu

Matthai Philipose
Intel Research

6th Floor
1100 NE 45th Street
Seattle WA 98115

matthai@cs.washington.edu

Abstract

Rating how well a routine activity is performed can
be valuable in a variety of domains. Making the rat-
ing inexpensive and credible is a key aspect of the
problem. We formalize the problem as MAP esti-
mation in HMMs where the incoming trace needs
repair. We present polynomial time algorithms
for computing minimal repairs with maximal like-
lihood for HMMs, Hidden Semi-Markov Models
(HSMMs) and a form of HMMs constrained with
a fragment of the temporal logic LTL. We present
some results to show the promise of our approach.

1 Introduction
Rating how well a person performs a routine activity is a
broadly useful capability with many applications: professors
train medical students by rating their execution of established
procedures, caregivers assess the well-being of their wards
by rating how well they are able to perform activities of daily
living, and managers and workflow experts identify poorly
performed procedures that cause bottlenecks in a system. Al-
though rating routine activity is certainly useful, as conven-
tionally done it is also very expensive – each activity perfor-
mance requires a dedicated human observer (often an expert).
Many situations where gauging the performance of routine
activities could be helpful are therefore either not rated at all,
or rated in a cursory manner. Clearly, an opportunity exists
for automated techniques to reduce the cost of rating. In this
paper, we explore methods for automatically rating perfor-
mances of routine activities.

The basic classification task of rating, going from obser-
vations to scores, is amenable to a variety of standard ap-
proaches. Rating becomes challenging, however, if we wish
to make it bothincrementally inexpensiveandcredible. We
define an incrementally inexpensive rater to be a rater in
which the extra cost of rating a new activity is relatively low.
The main determinant of cost is whether rating a new activity
requires a custom classifier to be developed from scratch, or
whether a generic classifier of some kind can be easily cus-
tomized to the task. A credible rater is one that is bothrel-
evantandtransparent. By relevant, we mean that the classi-
fication model for a particular rating task should reflect con-
straints on activity performance that are important to those

using the rating. For example, a professor grading anesthesi-
ology students performing an intubation may want to indicate
what her notion of good performance is. By transparency, we
mean that the system should be able to justify why it has as-
signed a particular rating. Ideally, the justification should be
constructive, in that it should suggest how a low-rated perfor-
mance may be altered to obtain a high-rated one.

Our techniques for rating activity routines are designed to
satisfy the above requirements. To lower incremental cost,
we choose a representation that is easily learned: all activi-
ties to be rated in our system are modeled by variants of Hid-
den Markov Models (HMMs). We intend that these models,
especially given simple prior information, can be learned eas-
ily from training examples. More crucially, we formulate the
justification for a rating relative to this model generically as
the set of edits required on the trace generated by the rated ac-
tivities; we therefore do not require special identification and
modeling of errors and their causes. A fundamental weak-
ness of these models is that they are first order, preventing
them from capturing certain important correlations. We aug-
ment the Markov models with an intuitive constraint formal-
ism (a small fragment of the temporal logic LTL[1]) that al-
lows raters to explicitly state relevant constraints. Given these
relevant and easy-to-construct models, we formulate rating as
the likelihood of (possibly edited) observation sequences.

The core of this paper consists of efficient algorithms to
compute maximum likelihood paths of minimally edited ver-
sions of incoming observations with respect to various repre-
sentations for activities, including HMMs, HSMMs and tem-
porally constrained HMMs. The algorithms use the dynamic
programming technique used to great effect by the well-
known Viterbi algorithm. A preliminary evaluation shows the
promise of our techniques.

2 Overview
In this section, we describe how we expect our system to
be used, and we sketch how our system supports this usage
model. In this paper, our goal is to develop a system that
rates how well an elder performs day-to-day activities. Such
a system is of great interest to the eldercare industry. In the-
ory, caregivers will assess the elders’ well-being by consult-
ing ratings summaries and credible explanations of perfor-
mance deficits. For example, the system may recognize that
an elder is no longer able to prepare their daily bowl of soup,

and report why (e.g., can’t reach cabinet or difficulty holding
spoon).

To end-users, our system represents activities as a set of
steps. Each step has a duration and a set of observed actions
performed, and is succeeded by other steps. For instance,
the activity “making soup” for a particular elder may have
the following steps: “preheat water,” “open can,” “mix and
boil ingredients,” “serve,” and “clean up.” The step “open
can,” may have an average duration of 45 seconds and contain
the following actions: “use utensil drawer,” “use can opener,”
“use can,” and “use pantry door.”

For concreteness, we will assume in what follows that we
are using RFID-based[4] sensors that will directly sense the
action of using particular objects. Therefore, all of our actions
are of the form “use X” where X is some object. Inherently,
our system requires that actions are observable by sensors.
Given an activity trace (i.e., a trace of actions that constitutes
a particular execution of an activity), our system provides a
rating (e.g.,passor fail). If the grade is afail, the system pro-
vides an alternate sequence of actions as close to the original
as possible that would have elicited apassgrade (essentially
a constructive justification of the grade). In more detail, use
of the system proceeds as follows:

Learning the model A human demonstrator performs the
routine in an exemplary fashion. The system collects
tracesY1, . . . , Yn of the routine. Each traceYi is a
sequence of time-stamped observationsyi1, . . . , yimi

of the demonstrator’s actions. The traces are used
to learn a dynamic stochastic model (either an HMM
or an HSMM) with parametersλ. The hidden states
s1, . . . , sN of the model correspond to the “activity
steps” above, and are labelledl1, . . . , lN with the names
of the step.

Adding global constraints Typically, the first-order model
learned in the previous step cannot capture important
higher-order correlations. For instance, in a successful
soup-making routine, the stove, if it is used, should even-
tually be turned off after it is turned on. The turning on
would happen in the “preheat water” step, but the turn-
ing off may not happen until the end of the “serve” step.
The human rater explicitly adds a setC of constraints on
the sequence of hidden states or observations that spec-
ify these required higher-order correlations. In this case,
a possible constraint would be of the form use(“stove
control knob”)E use(“stove control knob”), read as “a
use of a stove control knob should eventually succeeded
by a use of a stove control knob”.

Learning rating thresholds A human rater rates each trace
Yi with a rating ri ∈ {pass, fail}. Let the con-
strained MAP likelihoodof trace Y given λ and C,
l̂Y = CMAP(M,Y, C), be the likelihood of the patĥSY

with maximum a posteriori (MAP) likelihood givenλ
andY that satisfiesC. We perform a simple thresholding
computation to calculate the likelihood thresholdL such
that, given the classification functionR(l) = if l < L

then fail else pass, R(l̂Yi
) = ri for as many of theYi

as possible. Intuitively,L separates the passes from the
fails.

Generating a rating and justification Given the con-
strained model(λ, C) and thresholdL, the automated
rater is ready for use. The person to be rated generates
a traceY = y1, . . . , ym to be rated automatically. The
rater finds the constrained MAP likelihood̂lY and path
ŜY = (ŝ1, y1), . . . , (ŝm, ym) for Y , and assigns it the
rating r = R(l̂Y). If r = fail, the rater attempts to
produce arepaired tracetraceY ′ = y′1, . . . , y

′
m such

that the edit distance betweenY andY ′ is as small as
possible, and̂lY ′ > L. In other words,Y ′ is the closest
trace toT that passes. The rater offersr as the rating for
the activity and, if appropriate,δŜY ,ŜY ′

, the set of edits

needed to transform̂SY into ŜY ′ , as the justification for
the rating.

As described above, our rating system employs two key
non-standard pieces of machinery.

1. A method to compute the repaired observation traceT ′,
that is a minimum edit distance from a given traceT
whose likelihood is above a pre-specified thresholdL.

2. A method to compute the constrained MAP likelihood
function CMAP(M,T, C).

3 Trace Repair for Hidden Markov Models
A Hidden Markov Model (HMM)λ = (A,B, π) is a com-
monly used stochastic model for dynamic systems[5]. We
formally pose the trace repair problem as a variation of esti-
mating the most likely state sequence given a sequence of ob-
servations (classically solved via the Viterbi algorithm). An
HMM is defined as follows. LetQA = {q1, . . . , qN} be the
states of the process being modeled, andOB = {o1, . . . , oM}
the observation signals possibly generated by the process.
We use meta-variablesst and yt to denote the states and
observations respectively at timet. Aij is the probabil-
ity p(st+1 = qj |st = qi) of transitioning from stateqi at
time t to qj at time t + 1 for any t; Bij is the probability
p(yt = oj |st = qi) of generating observationoj when in
stateqi (we writeBiyt

for Bij such thatyt = oj). The initial
state distributionπi = p(s0 = qi).

3.1 The Repaired MAP Path Estimation Problem
We now formulate the problem of MAP path estimation given
an observation sequence if we are allowed to first make a lim-
ited number of edits or “repairs” to the sequence. We begin
by formalizing the notion of an edit. We then state the re-
paired MAP path estimation problem and present a variation
of the Viterbi algorithm to solve it.

Let Y N be the set of length-N strings of observa-
tions over some finite alphabetY . Then ek,N =
((b1, s1), ...(bN , sN)) is a length-N k-edit vector onY N ,
with bi boolean,si strings overY , andk =

∑
1≤i≤N (bi +

|si|). For instance,̂y1 = “cat” is a string inY 3; e4,3
1 =

((false, “BB”), (false, “”), (true, “R”)) is an edit vector on
Y 3. Applyingan edit vectore to stringŷn = y1 . . . yn, writ-
ten e(ŷ) results in a new strinĝy′ obtained as follows. For
1 ≤ i ≤ n, let if e.bi is true, then replaceyi with ŷ′i, else
replaceyi with yie.si (e.si appended toyi). For example,

δti1

δtik

…

δtiK

…

ψti

τ

S
T

A
T

E

k+2
TIME STEP

1

N

1

0

2

i

j

0 2k + 3 t TM

… …

… …
ψτj

2

y2y1 y3 y[τ] y[t] yT

original observations

δτj1

δτjκ

…

δτjK

…

K added observations

Figure 1: Trellis fork-Edit Viterbi on HMMs

e4,3
1 (ŷ1) = “cBBaR”. A string ŷ′ is a k-edit of anotherŷ if

there exists edit vectorek,N such that̂y′ = ek,N (ŷ).
We are now ready to specify the problem of MAP estima-

tion with repairs:

Definition 1. (Repaired MAP Path Estimation Problem
(RMAP)) Given observation sequencêyT , HMM λ =
(A,B, π) and edit distanceK find observation sequence
ŷ′T ′ = ẏ1 . . . ẏT ′ that is aK-edit of ŷT and path ŝT ′ =
ṡ1, . . . , ṡT ′ maximizingp(ŝT ′ , ŷ′T ′) over allT ′, ŝT ′ and ŷ′T ′ .

Before discussing our solution, we define stringŷ′ as
the (k,a)-edit of string ŷn if ŷ′ = ek,n(ŷ) for someek,n,
|ek,n.sn| ≤ a, and additionally,ek,n.bn if a = 0 and
|ek,n.sn| > 0 if a > 0. The (k, a)-edit of a string requires
its last character to be either preserved or replaced by at least
one character, with at mosta characters added. Edits com-
pose as follows (dνn = n− ν ; a′ = 1 if a 6= 0, 0 otherwise;
(ν, α)<k(n, a) if ν < n andα ≤ k, or if ν = n andα < a):

Lemma 1. (Edit Composition)Let Y kaŷ
n be the set of all

(k, a)-edits of then-prefix of stringŷ overY . ThenY kaŷ
n =

{ŷ′y|y ∈ Y, ŷ′ ∈ Y καŷ
ν , (ν, α)<k(n, a), κ+ dνn + a′ = k}.

Table 1 specifies an algorithm (thek-Edit Viterbi (KEV)
algorithm) to solve RMAP. KEV iterates over theT origi-
nal observationsin the incoming observation string. For each
original observation, it iterates over possibilities for theK
added observationsat that position, for a total ofTK + T
iterations. At each iterationt corresponding to original ober-
vation [t] = t div (K + 1) + 1 and added observation#t =
t mod(K+1), KEV computes the likelihoodδtik of the most
likely path ending in statei given an observation string that
is a(k,#t)-edit of y1 . . . y[t] over all such edit vectors; KEV
also records asψtik the penultimate state and edit in this path.
Following the chain ofψtik ’s back to the start state iteration
gives the MAP repaired path.

The trellis of figure 1 illustrates KEV. Columns of the
trellis represent edits considered for inclusion into the final
string. Large circles represent original observations and small
ones represent adds. For technical reasons (to allow skipping
the first original observation), we add a distinguished start
stateq0 with new start probabilitiesπ′0 = 1, A0i = πi and
Ai0 = 0 and add a column (t = 0) processed in the initializa-
tion step. To allow skipping the last original observation with

Initialization: t = 0, k = 1 . . .K, 1 ≤ i ≤ N

δt0k = 1 δtik = 0 ψtik = −1

Iteration: 1 ≤ t ≤ TK+T, k = at, at+1, . . . ,K

(ψtik)δtik = (arg)max
τ,j,κ s.t.κ+at+dτt=k

δτjκBiyitAji

Termination: t = TM = TK + T + 1

(ψtik)δtik = (arg)max
τ,j,κ s.t.κ+at+dτt=k

δτiκ ; iM = argmax
1≤i≤N

δtiK

Backtracking: (t, i, k) = ψTM iM K ; while t > 0,

1)(ṡt, ẏt) = (qi, yit) 2)(t, i, k)← ψtik

Table 1: Thek-Edit Viterbi Algorithm for HMMs

no adds, we add a column (t = TM = TK + T + 1). Rows
represent possible hidden states.

The end result of the algorithm is a forward path (shown
in light grey in figure 1) through the trellis that, unlike in the
conventional Viterbi algorithm, may jump between nodes in
non-adjacent time slices. If the path jumps over the slice for
an original observationyi (wherei is the position of the obser-
vation in the input strinĝy), we conclude thatyi was deleted
from ŷ, otherwise not. Further, if the path passes through
a sequence of added nodes with no intervening original node
such thatyi is the first original observation to the left of the se-
quence, and the observations at these nodes areyi1 , . . . , yin

,
we conclude that the stringyi1 . . . yin

was added at thei’th
spot in the incoming string. The forward path is the required
solutionŝT ′

, and the string of observations along the path is
the edited strinĝyT ′

.
The algorithm uses three intermediate variables,at, dtτ

and yit. Variable at = 1 if #t 6= 0 and 0 otherwise;
dτt = [t] − [τ], represents the number of deletes skipping
original observations betweenτ and t; yit is the observa-
tion considered when processing statei at slice t. Note
that we only process original observations at time slices
1,K + 1, 2K + 1, In all other “added” slices, we need
to propose the observed value to be added. A simple but inef-
ficient approach would be to consider for each state,k-value
and iterationt, every possible observableo ∈ OB as a candi-
date. In fact, we can consider a single observation instead of
all |OB |. The key insight is that, when processing statei in
an added slice, it is sufficient to consider adding as observable
the most likely observable in that state. LetSN andYN be the
sets of all length-N sequences of states and observables. Let
ẏi = argmax

1≤j≤M
Bij . Let ŝq be the result of appending stateq to

sequencês, and similarly forŷy. Then, for allqi ∈ QA:

Lemma 2. max
ŝ,ŷ′∈SN ,YN+1

p(ŝqi, ŷ′) = max
ŝ,ŷ∈SN ,YN

p(ŝqi, ŷẏi)

This follows from the fact that max
yi

p(ŝqi, ŷyi) =

max
yi

πs1Bs1y1(
∏

1≤i≤N,siqj∈ŝN
AijBjyj)(AsN iBiyi) =

πs1 . . . AsN i max
yi

Biyi
= πs1 . . . AsN iẏi. Given this identity

for the optimal observable to be added in stateqi, we setyit

to ẏi if t is an “added” timeslice, and toy[t] otherwise.
We are now ready to establish the soundness of the KEV

algorithm. LetSi
n be the set of length-n sequence of states

ending in stateqi. Let Y tik
n be the set of length-n strings of

observables that are(k,#t)-edits ofy1 . . . y[t].

Lemma 3. (ψtik)δtik = (arg)max
n,ŝ∈Si

n,ŷ∈Y tik
n

p(ŝ, ŷ)

Proof sketch.Proof is by induction ont. We focus on the
inductive case forδ. Forψ, replace “max” with “argmax”.

δtik = max
τ,j,κ

AjiBiyit
δτjκ∀j,τ,κ s.t.(κ+ at + dτt) = k

= (by the inductive hypothesis)

max
τ,j,κ

(AjiBiyit
max

n,ŝ∈Sj
n,ŷ∈Y τjκ

n

p(ŝ, ŷ))

Givensn, sn+1 is independent of̂sn−1, ŷn:

Aji = p(sn+1 = qi|ŝ, sn = qj , ŷ) ∀n,ŝ∈Sn−1,ŷ∈Y τjκ
n

= p(sn+1 = qi|ŝ, ŷ) ∀n,ŝ∈Sj
n,ŷ∈Y τjκ

n

Similarly, for yn+1 givensn+1:

Biyit
= p(yn+1 = yit|ŝ, sn+1 = qi, ŷ) ∀n,ŝ∈Sj

n,ŷ∈Y τjκ
n

Substituting forAji andBiyit
above, and usingp(A,B) =

p(A|B)p(B) twice, we have, with(κ+ at + dτt) = k:

δtik = max
τ,j,κ,n,ŝ∈Sj

n,ŷ∈Y τjκ
n

p(sn+1 = qi, ŝ, yn+1 = yit, ŷ)

Lemma 2 ensures that maximizing overŷyit maximizes over
all stringsŷy. By lemma 1 maximizing over all̂yy with ŷ ∈
Y τjκ

n maximizes over̂y ∈ Y tik
n+1. Finally,∀1≤j≤N,ŝ∈Sj

nqi
ŝ =

∀1≤i≤N,ŝ∈Si
n+1

ŝ. Modifying the previous equation to reflect
these insights:

δtik = max
n,ŝ∈Si

n+1,ŷ∈Y tik
n+1

p(ŝ, ŷ) = max
n,ŝ∈Si

n,ŷ∈Y tik
n

p(ŝ, ŷ)

The soundness of KEV follows in a straightforward way
from the above lemma. Further, given that the trellis has
O(TKN) nodes, that at each node we computeO(K) δ and
ψ values, and we consultO(NK) preceding data values to
do so, the complexity of KEV as a whole isO(TN2K3).

4 Trace Repair for HSMMs
A Hidden Semi-Markov Model (HSMM) [3] λ =
(A,B,D, π) is identical to an HMM except for theduration
distributionD. Where an HMM generates a single observa-
tion according toB on each visit to a states, the HSMM gen-
eratesl independent observations fromB on each visit, where
l is drawn according toDsl = p(l|s). The added flexibility is
useful when modeling human activities, since the duration of
stay in a state is restricted to be geometric (and therefore bi-
ased to small values) in HMMs. In what follows, we assume
thatD is over a finite set (of size|D|) of durations, where the
longest duration isL steps.

The RMAP problem is: given HSMM(A,B,D, π), obser-
vationsŷT and limitK, find argmax

t,ŝ∈Qt
A,ŷ∈Ot

B ,ŷ k-edit of ŷT

p(ŝ, ŷ).

Init., Term., Bactracking: See table 1.
Iteration: 1 ≤ t ≤ TK+T, k = at, at +1, . . . , t

(ψtik)δtik = (arg)max
1≤τ≤t,j,κ,yκkτti

δτjκp(yκkτti)AjiDi|yκkτti|

Table 2: Thek-Edit Viterbi Algorithm for HSMMs

Table 2 specifies a variant of KEV to solve the problem,
and figure 2 shows a trellis for this algorithm. The trellis is
identical to that used by KEV (we representk added nodes
with a single small circle), only its use is different. We fo-
cus on howδtik is calculated. At each timestept, statei
and edit distancek, as with KEV, we iterate over previous
timesteps, states and edit distancesτ , j andκ. However, this
time instead of discarding the observations in the intervening
timesteps, we seek their sub-sequenceyκkτti. We assume that
stept only ends a stay in stateqi that begins immediately after
the stay inqj that ended in stepτ . If eτt is the number of ed-
its in yκkτti (added nodes included + original nodes ignored),
we requireκ + at + eτt = k. The problem of maximizing
the likelihood of the path ending at(i, t) then reduces to the
problem of findingyκkτti maximizingp(yκkτti)Di|yκkτti|.

We find this maximum by iterating through durationsl in
Di; for eachl, we iterate through predecessors(τ, j, κ) of
(t, i), finding a sequenceyκkτti of length l with the high-
est probability; we keep a running tally of the maximum
p(yκkτti)Dil. Finding yκkτti reduces to identifyingNA

added nodes (to include inyκkτti) andNO original nodes
(to ignore), such thatNA + NO = k − κ − at (to satisfy
the k-edit criterion), andNA + (([t] − [τ]) − NO) = l (to
satisfy the duration constraint). The two equations fixNA

andNO. Since all the added nodes have the same probability
ẏi = p(ôi|qi), it doesn’t matter which particularNA we pick.
On the other hand, we pick theNO original nodes with low-
est probability of observation for exclusion; this can be done
by sorting the original nodes inO(T log T) time offline, with
O(L) access during execution. Once the sequence of nodes
is picked to getyκkτti, we simply multiply their observation
and transition probabilties together to getp(yκkτti), a process
that takesl operations, since|yκkτti| = l = O(L).

GivenO(TNK) trellis nodes, computingO(K) δ andψ
values at each node, consultingO(|D|NK) preceding values
for each value, and spendingO(L) for each preceding value
considered, the entire algorithm takesO(TN2|D|LK3)
steps. Note that in the (fairly) common case thatD andL
are unbounded, this running time becomesO(T 3N2K3).

Figure 2: Trellis for KEV on HSMMs

5 Trace Repair for Constrained HMMs
We define atemporally constrained HMM (TCHMM)as
λ = (A,B, C, π), where C is a temporal constraint
of the form φ1Eφ2E . . . Eφ|C|. The φi are proposi-
tional boolean formulas over state labelsl and observa-
tions y: φ ::= state(l)|obs(y)|φ ∧ φ|¬φ. Path suffix
si . . . sT and observationsyi . . . yT satisfy the constraint suf-
fix Cj = φj . . . φW if for any k ≥ j, φj(sk, yk) im-
plies that (sk+1 . . . sT , yk+1 . . . yT) satisfy Cj+1, written
(sk+1 . . . sT , yk+1 . . . yT) ` Cj . Intuitively if one for-
mula in the constraint sequence is true w.r.t. the head
of the state/observation sequences, then the formulas that
follow must also eventually be true in their specified or-
der later in the sequences. The constraint(state(COOK)∧
obs(oil))E(state(WASH)∧obs(soap)) could, for instance cap-
ture the constraint that if oil is used in the cooking step of
making dinner, soap should be used in the eventual required
washing step.

The RMAP problem may now be reformulated as given
TCHMM with constraintsC, observationŝyT and limit K,
findSY = argmax

t,ŝ∈Qt
A,ŷ∈Ot

B ,ŷ k-edit of ŷT

φ(ŝ, ŷ) such thatSY ` C.

Our solution for RMAP estimation is restricted to formulas
of the formφ ::= state(l)|φ∧φ|¬φ (we disallow dependences
on observables). A small modification to the KEV algorithm
enables polynomial time solution of this problem. We use the
same trellis as in KEV. For each timestept, statei and edit
distancek, we also now maintain an additional|C|-vector. An
elementδtikm with 0 ≤ m < |C| represents the likelihood of
the MAP path ending at statei in time slicet with (k,#t)
edits that still requires constraint suffixCm+1 to be satis-
fied (exceptδtik0, which has no outstanding constraints to be
satisfied). This likelihood can be computed compositionally
from δτjκµ, with τ < t and (κ, µ) pointwise≤ (k,m) in
O(TN2k3|C|2P) steps, where formulasφi can be evaluated
in O(P) steps (whereP is the size of the formulas).

Even MAP estimation (without trace perturbation) for
TCHMM’s has apparently neither been formulated nor solved
previously, although it is potentially quite powerful. For in-
stance, the constrained inference work of Culottaet. al. [2]
is a special case of TCHMMk-edit MAP estimation (with
k = 0, andC = state(q0)Estate(qi)). MAP estimation is a
special case of RMAP estimation withk = 0. Our variant
of KEV above therefore performs MAP estimation. Interest-
ingly with k = 0, we can allow the more general version
of formulasφ and still retain the fast running time. It is open
how generalC can be while remaining tractable. For instance,
our constraints can be viewed as a fragment of Linear Tem-
poral Logic (LTL)[1]. It is interesting to consider larger frag-
ments as candidates.

6 Evaluation
How does model choice affect advice?Thek-edit Viterbi al-
gorithm dispenses advice based on the parameters of its activ-
ity models. The credibility of this advice will suffer from any
differences between these models and the reality they repre-
sent. In order to illustrate this point, we conducted two exper-
iments over three different activity models. The two experi-

ments compare a regular HMM and a time-sensitive HSMM,
and a regular HSMM with an HSMM that has temporal logic
constraints, respectively.

First, we compare the output of HMMs versus HSMMs on
three activity traces from different activity models (see the
top row of Figure 3). Each activity trace was intentionally
made incorrect: for making tea, the preparation step was hur-
ried; for making a sandwich, not enough ingredients were
collected; and for grooming, brushing teeth and combing hair
were performed too rapidly. In the top row of Figure 3, we
plotted the maximum likelihood values at each step of the
activity traces (where a “step” is considered to be a state tran-
sition). HMMs fail to detect any problem, exhibiting high
likelihood. However, HSMM likelihoods plummet, due to
sensitivity to the amount of time spent in each state. The
KEDIT trace correctly adds the proper number of observa-
tions to each state, resulting in a high likelihood.

Second, we compare the output of HSMMs with and with-
out temporal logic constraints (TLCs) (see the bottom row of
Figure 3). Again, we intentionally chose incorrect sequences
for the three activities: for making tea, the stove is turned on
but never turned off; for preparing a sandwich, the refriger-
ator door is opened and never closed; and for grooming, the
sink water is turned on and never turned back off. In the top
row of Figure 3, we plotted the maximum likelhood values at
each step of the activity traces. Regular HSMMs fail to detect
any problem, reporting high likelihood. HSMMs with TLCs
report low likelihood, because they are only allowed to con-
sider state-transitions which satisfy all constraints. In these
traces, constraints are broken and alternate, low-likelihood,
paths must be considered. The KEDIT trace correctly adds
the necessary steps (i.e., turn off stove, shut refrigerator, and
turn off sink), resulting in high likelihood.

How does the rating change ask increases?Thek-edits
Viterbi algorithm provides advice for up toK edits. Ideally,
we desire a trace that is above the likelihood threshold with
the minimum number of edits. One method is to incremen-
tally increasek until the threshold is exceeded. For this rea-
son, we are interested in how the likelihood changes ask in-
creases.

In this experiment we rank-edits Viterbi for HSMMs on
an empty trace of the “making tea” activity. In Figure 4 we
plotted the overall likelihood of each trace as the number of
possible edits was increased. The dashed line is a threshold
showing the likelihood of an acceptable “good” trace. Ob-
viously, the original empty sequence had low likelihood. As
k was increased from one to three, the algorithm was forced
to assemble partially complete activity traces which had even
lower overall likelihood. Whenk = 4 the algorithm formed a
complete trace and met the threshold. Ask increased further,
the algorithm tweaked the sequence for a slightly higher like-
lihood. The most likely possible path was reached atk = 6.
Afterwards, we see an “odd-even” effect as the algorithm is
forced to add new (less likely) observations, and then oppor-
tunistically delete other observations. Fork ≥ 9, the likeli-
hood drops as the algorithm performs too many modifications
to the trace and is unable to reach the optimal solution.

How intuitive is the advice? We now examine the advice
dispensed byk-edits Viterbi in several scenarios. We ran the

Figure 3: One activity per column; top row compares HMMs to HSMMs, bottom to TCHMMs

algorithm on activity traces that had the following problems:
restarted the activity, got two steps out of order, performed
a step too quickly, and missed or sped through several non-
consecutive steps. All traces are from the “making tea” activ-
ity and likelihoods are reported using the optimal number of
edits (i.e.,k value).

The beginning steps of the next trace were performed
twice (i.e., a “start” and a “restart”). The algorithm finds
the maximum likelihood solution by deleting extra observa-
tions. However, the algorithm did not delete the entire start
or restart, but decided to “pick and choose” among the two,
keeping the best observations of both. In contrast, our in-
tuition would be to advise the user to keep either the start
or the restart. Similarly, in a trace in which two steps were
performed out of order, the algorithm deletes one of the mis-
ordered steps and inserts new steps in the correct position.
We found this to be less intuitive than simply telling the user
to switch the two steps to the correct order.

In the next trace, one step was performed too quickly: the
“preparation step” only generated one observation, when it
should have generated at least two. The algorithm suggested
new observations that corrected the amount of time is spent
in the state. However, the algorithm will always suggest the
most likely observation from the state, because this maxi-
mizes the overall likelihood. At first glance, we found this
suggestion strategy to be non-intuitive (although mathemati-
cally optimal), however, it became a non-issue for models in
which observations were spread across multiple states.

In the last trace several non-contiguous steps were missed
entirely or performed too quickly. Ask increased, the algo-
rithm first chose to insert states that had been missed entirely,
and then to add more observations to states that had been vis-

Figure 4: The likelihood of KEDIT traces ask increases.

ited too briefly. In other words, the algorithm advises the user
to at least visit each step of the activity before it advises how
to perfect each step. This “top-down” approach fits with our
intuition of how advice should be given.

7 Conclusions

In this paper, we describe the credible activity rating prob-
lem. We introduced thek-edits Viterbi algorithm and showed
that given model parameters and an activity trace it can pro-
vide optimally repaired traces with from zero tok edits. We
improved the algorithm by incorporating high-level temporal
logic constraints. Finally, we evaluated the strengths and lim-
itations of the algorithm on data from three activity models.

References
[1] E.M. Clarke, O. Grumberg, and D. A. Peled.Model Checking.

MIT Press, Boston, 2000.

[2] A. Culotta and A. McCallum. Confidence estimation for infor-
mation extraction. InProc. of Human Lang. Tech. Conf. (HLT-
NAACL), 2004.

[3] M. Ostendorf, V. V. Digalakis, and O. A. Kimball. From hmms
to segment models: A unified view of stochastic modeling
for speech recognition.IEEE Trans. Speech Audio Process,
4(5):360–378, 1996.

[4] M. Philipose, K.P. Fishkin, M. Perkowitz, D.J. Patterson,
H. Kautz, and D. Hahnel. Inferring activities from interactions
with objects. IEEE Pervasive Computing Magazine, 3(4):50–
57, 2004.

[5] L.R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition.Proceedings of the IEEE,
77(2):257–286, 1989.

