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Abstract

In this paper we present results related to achieving fine-
grained activity recognition for context-aware computing
applications. We examine the advantages and challenges
of reasoning with globally unique object instances detected
by an RFID glove. We present a sequence of increasingly
powerful probabilistic graphical models for activity recog-
nition. We show the advantages of adding additional com-
plexity and conclude with a model that can reason tractably
about aggregated object instances and gracefully general-
izes from object instances to their classes by using abstrac-
tion smoothing. We apply these models to data collected
from a morning household routine.

1. Introduction

The convergence of advances in wearable sensing tech-
nology and representations and algorithms for probabilistic
reasoning is pushing the boundaries of the types of context
with which a computer may reason. In the realm of wear-
able computers context is primarily used to refer to the state
of the user: his or her location, current activity, and social
environment.

In this paper we provide evidence that reasoning about
objects in an environment, both in general and specific
terms, is fruitful for inferring aspects of context related to
activity performance. We obtain information about object
use by utilizing a glove outfitted with a Radio Frequency
Identification (RFID) antenna. Notably, RFID antennae are
able to discriminate among specific instances of objects that
are otherwise the same (e.g., two spoons), with a 0% false
positive rate [22].

Previous work has approached activity recognition from
several directions. Early work on plan recognition [11, 23]
had the insight that much behavior follows stereotypical
patterns, but lacked well-founded and efficient algorithms
for learning and inference, and did not ground their theories
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in directly sensed experience. More recent work on plan-
based behavior recognition [4] uses more robust probabilis-
tic inference algorithms, but still does not directly connect
to sensor data.

In the computer vision community there is much work
on behavior recognition using probabilistic models, but it
usually focuses on recognizing simple low-level behaviors
in controlled environments [9]. Recognizing complex, high-
level activities using machine vision has only been achieved
by carefully engineering domain-specific solutions, such as
for hand-washing [13] or operating a home medical appli-
ance [17].

There has been much recent work in the wearable com-
puting community, which, like this paper, quantifies the
value of various sensing modalities and inference tech-
niques for interpreting context. This includes unimodal
evaluations of activity and social context from au-
dio [3, 19, 18], video [5], and accelerometers [10],
multi-modal sensor evaluations [12] and work which opti-
mizes sensor selection for arbitrary activity recognition [2].
A theme of much of this work is that “heavyweight” sen-
sors such as machine vision can be replaced by large
numbers of tiny, robust, easily worn sensors [7, 21].

Object-based activity recognition relies on the “invisible
human hypothesis” of [15] which states that activities are
well characterized by the objects that are manipulated dur-
ing their performance, and therefore can be recognized from
sensor data about object touches. Although little work has
explored this hypothesis, Philipose et al. [15] looked at the
problem of detecting 65 activities of daily living (ADLs),
from 14 classes such as cooking, cleaning, and doing laun-
dry, and used data from a wearable RFID tag reader de-
ployed in a home with tagged objects. This work was able
to categorize activities that were disambiguated by key ob-
jects (for example, using a toothbrush versus using a vac-
uum cleaner), used hand-made models, and did not model
how activities interact and flow between each other.

In this paper we begin to explore extending object-
interaction based activity recognition in a more realistic set-



Figure 1. RFID tag types and the RFID glove
used in this experiment.

ting. We address fine-grained activity recognition — for ex-
ample, not just recognizing that a person is cooking, but de-
termining what they are cooking — in the presence of in-
terleaved and interrupted activities collected during the per-
formance of a morning household routine. The following
are our novel contributions:

e We demonstrate accurate activity recognition in the
presence of interleaved and interrupted activities.

e We accomplish this using automatically learned mod-
els.

e We demonstrate the ability to disambiguate activities
when models share common objects.

e We show that object-based activity recognition can be
improved by distinguishing object instances from ob-
ject classes, and learning dependencies on aggregate
features.

e We implement abstraction smoothing, a form of rela-
tional learning, that can provide robustness in the face
of expected variation in activity performance.

2. Problem Domain

Our experiments focused on routine morning activities
which used common objects and are normally interleaved.
Table 1 lists the 11 activities which were observed. To cre-
ate our data set, one of the authors performed each activ-
ity 12 times in two contexts: by itself twice, and then on 10
mornings all of the activities were performed together in a
variety of patterns.

In order to capture the identity of the objects being
manipulated, the kitchen was outfitted with 60 RFID tags
placed on every object touched by the user during a prac-
tice trial. The list of tagged objects is shown in table 2.

RFID tags have a form factor comparable to a postage
stamp. The two tag technologies that we used are shown in
figure 1. Unlike barcodes they do not require line-of-sight in
order to be read and they identify specific globally unique
instances of objects, rather than merely classes of objects.

1 | Using the bathroom

2 | Making oatmeal

3 | Making soft-boiled eggs
4 | Preparing orange juice
5 | Making coffee

6 | Making tea

7 | Making or answering a phone call
8 | Taking out the trash

9 | Setting the table

10 | Eating breakfast

11 | Clearing the table

Table 1. Activities performed during data col-
lection

For example, a bar code might identify a can of orange juice
of a specific brand and size, but an RFID tag will identify
which of the millions of those cans are being used.

The user simultaneously wore two gloves (see figure 1),
built by Intel Research Seattle [8], outfitted with antennae
that were able to detect when an RFID tag was within 2
inches of the palm. The time and id of every object touched
was sent wirelessly to a database for analysis. These gloves
function as a prototype for a more practical bracelet antenna
which is under development.

The mean length of the 10 interleaved runs was 27.1 min-
utes (0 = 1.7) and object touches were captured at 10 per
second. The mean length of each uninterrupted portion of
the interleaved tasks was 74 seconds. Most tasks were in-
terleaved with or interrupted by others during the 10 full
data collection sessions.

This data introduces three confounding factors over pre-
vious work by [15]:

e The activities that the user performed shared objects
in common. This made interleaved activity recogni-
tion much more difficult than associating a character-
istic object with an activity (such as a vacuum).

e The activities were not performed sequentially or in
isolation. During a pause in any given activity, progress
was attempted in other parallel activities (such as when
waiting for water to boil) and some activities inter-
rupted others at uncontrolled times (such as answer-
ing the phone).

e Data was collected in the presence of four people, only
one of whom was instrumented, which added uncon-
trolled variability to the data set.
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Figure 2. State diagrams for models A,B and C. A consists of 11 independent one-state HMMs. The
log likelihood of each HMM was calculated on overlapping windows of data. B is a single 11-state
HMM. C is a single 660-state (60 tags x 11 activities) HMM. In both B and C the most likely state se-
quence was recovered using the Viterbi algorithm over the entire data sequence.

bowl, coffee container, coffee grinder, coffee tamper,
cupboard(6), dishwasher, door(2), drawer(2), egg carton,
espresso cup(2), espresso handle, espresso steam knob,
espresso switches, faucet(2), freezer, milk, hand soap, juice,
juice pitcher, kettle, measuring cup-half, measuring cup-
one, measuring scoop, milk steaming pitcher, mug, oatmeal,
refrigerator, salt, saucepan, cooking spoon, stove control(2),
sugar, table cup(4), table plate(4), table spoon(4), tea bag,
tea box, telephone, toilet flush handle, toilet lid, vanilla

syrup

Table 2. The 60 objects tagged for this ex-
periment. Parentheses denote multiple in-
stances.

3. Models Which Improve Accuracy

In order to maximize activity recognition we focused on
accuracy, presented in this section, and then on robustness,
presented in section 5. To improve accuracy we developed a
very simple probabilistic model, evaluated its performance
and then successively augmented it with features that dis-
ambiguated errors by adding representational power.

We chose to perform activity recognition using the prob-
abilistic generative framework of Hidden Markov Models
(HMMs) and their factored analog, the Dynamic Bayes Net
(DBN). We chose these techniques because they are robust
to sensor noise, they have well-understood algorithms for
inference and parameter learning [16] and they have well-
characterized temporal properties [14].

3.1. Baseline Model A:
Markov Models

Independent Hidden

As a baseline we modeled the activities as 11 indepen-
dent one-state HMMs (see figure 2-A). Used in a genera-
tive context, each state emits an object-X-touched event or
a no-object-touched event at each clock tick. Each state’s
emission probability was trained on the 12 recorded exam-
ples of the corresponding activity. After training, the prob-
ability of emitting a no-object-touched event was equalized
across all HMMs so that the timing characteristic of the
model was completely captured by the self-transition proba-
bility. The HMMs were trained and tested on data in which
object types were equalized so that there was no distinc-
tion made between spoon #1 and spoon #2, for example,
but both appeared identically as a “spoon”.

To infer the activity being performed at each second,
each HMM was presented with a 74 second window of
data ending at the query second (the mean amount of un-
interrupted time spent performing an activity in the data.)
This produced a log-likelihood score for each model at each
clock tick. The HMM with the highest score was the sys-
tem’s estimate of the current activity.

3.2. Baseline Model B: Connected HMMs

As a second baseline we connected the states from the
11 independent HMMs of model A in order to learn ac-
tivity transitions. We retrained this HMM using the 10 ex-
amples of the user performing the 11 interleaved activi-
ties. The no-object-touched emission probability was again



equalized across all states (see figure 2-B).

This HMM was evaluated over the entire data window
and the Viterbi algorithm [16] was used to recover the ac-
tivity at every time point given by the maximum likelihood
path through the state-space. Again, this model was trained
and tested on data in which object types were equalized to
eliminate distinctions between instantiations of objects.

3.3. Baseline Model C: Object-Centered HMMs

As a third baseline we split the states in baseline B into a
separate state for each activity and observable object. This
allowed this model to capture some information about how
objects were used at different temporal points in the execu-
tion of an activity at the expense of introducing more train-
able parameters. We retrained this HMM using the 10 ex-
amples of the user performing the 11 interleaved activities.
The no-object-touched emission probability was equalized
across all states. The conditional probability table associ-
ated with state observations was degenerate for this model
since each state could only emit an observation of one par-
ticular object or no-object-touched (see figure 2-C). This
HMM was also evaluated over the entire data window us-
ing the Viterbi algorithm and was trained and tested on data
with object types equalized.

3.4. Aggregate Model D: Dynamic Bayes Net with
Aggregates

For our fourth model we examined the effect of reason-
ing about aggregate information by adding a feature which
captured how many objects of a given type were touched
during the current activity. This aggregate can only be com-
puted if globally unique object instances can be identified.
This choice was motivated by the desire to differentiate set-
ting the table from eating breakfast. Both of these activities
require touching objects in common, for example a spoon,
but they differ by whether one spoon is touched four times
or four spoons are touched once.

Figure 3 shows a DBN with this feature. Unlike fig-
ures 2-A,B,C, which are state diagrams, this figure is a de-
pendency diagram in which the state of the system is fac-
tored into independent random variables indicated by nodes
in the graph. It has been rolled out in time showing nodes
from three different time steps and dependency diagrams for
models A-C are also shown for comparison. The top row of
model D has the same dependency structure as models A-
C. Model D adds an additional deterministic state variable,
the boolean exit node “E”, which captures dynamic infor-
mation about when an activity has changed. It is true if the
state has changed from one time step to another.

The gray box denotes an aggregation template which
groups each class of objects with multiple instantiations.

Each “Obj” node in the template is a deterministic boolean
node indicating whether a given instantiation of an object
has been touched since the last time the activity changed.
The “Obj” nodes are aggregated by a summation node, “+”.
When the DBN changes activities (“Exits”), the system ex-
plicitly reasons about the number of different instantiations
of objects that were touched. This is captured by the de-
pendence of the aggregate distribution node, “AD”, on the
state node,“S”. The “AD” node is constrained to be equal
to the summation node from the previous time step through
the observed equality node, “=". The equality node is al-
ways observed to be true and coupled with its conditional
probability table force “AD” to equal “+”. The overall ef-
fect is that the probability of the model inferring whether
or not an activity has ended is mediated by an expectation
over the number of objects in each class which have been
touched.

This model, including the aggregate distribution for ac-
tivities, was also automatically learned from the 10 labeled
training traces, but in contrast to models A, B and C, this
model differentiates between instantiations of objects so
that, for example, spoon #1 and spoon #2 created differ-
ent observations.

3.5. Model Summary

The various features of these models are summarized in
table 3. Models with “Exponential Timing” distributions
implicitly expect the length of uninterrupted portions of
an activity to be distributed exponentially because of their
structure. The parameters of the distribution are learned
from the data. “Inter-Activity Transitions” refer to the abil-
ity of the model to represent the tendency of certain activ-
ities to follow or interrupt other activities. “Intra-Activity
Transitions” refer to the ability of the model to represent bi-
ases about when in the course of an activity certain objects
are used. (e.g., one uses a kettle early in the process of mak-
ing tea). Finally “Aggregate Information” refers to the abil-
ity of the model to represent aggregations over unique ob-
jects.

4. Accuracy Experiments

We calculate two accuracy metrics using leave-one-out
cross validation across the 10 interleaved runs. The first was
what percentage of the time the model correctly inferred
the true activity. This metric is biased against slight inac-
curacies in the start and end times and will vary based on
the time granularity with which the experiments were con-
ducted. We also evaluated our models using a string edit dis-
tance measure. We treated the output of the inference as a
string over an 11 character alphabet, one character per ac-
tivity, with all repeating characters merged. We calculated
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Figure 3. A dependency diagram showing the DBN used for inference in comparison to the baseline
models, rolled out for three time steps. Time steps are separated by a vertical dotted line. Observed
variables are shaded, hidden variables are not. All variables are discrete multinomials.

Model
A B C | D
Representational Power
Exponential
Timing Distribution v v v
Inter-Activity
Transitions v v v
Intra-Activity
Transitions v
Aggregate J
Information
Accuracy
Time-Slice 1w | 68% | 88% | 87% | 88%
() | 9 | 42| 93) | 3.1
Edit Distance  p 12 9 14 7
(o) | 29) | (6.2) | (104) | 2.2)

Table 3. Summary of model representational

power and performance.

the minimum string edit distance between the inference and
the ground truth. A string edit distance of 1, means that the
inferred activity sequence either added a segment of an ac-
tivity that didn’t occur (insertion), it missed a segment that
did occur (deletion), or it inserted an activity that didn’t oc-
cur into the middle of an activity (reverse splicing). A per-
fect inference will have a string edit distance of 0. The string
edit distance is biased against rapid changes in the activity
estimate and is tolerant of inaccuracies in the start and end
time of activities. Table 3 summarizes the results of the ex-
periments.

4.1. Inference Evaluation

Figure 4-A shows a short portion of the inference in
which model A performed badly and demonstrates some
of the key reasons why inference with this model only ob-
tained 68% accuracy. In this figure ground truth is indi-
cated with a thin line and the inference is indicated by a
dot at each time slice. The independence assumptions of
this model allow a rapid switching between activities which
clearly need to be smoothed.

Figure 4-B shows a short portion of the inference per-
formed by model B. In contrast to model A, the benefits
of learning inter-activity transitions are seen in a smoother
trace, and higher accuracies. There are two places in the



figure where the activity “Eat Breakfast” is confused with
the activity “Clear the Table”. These two activities weren’t

Clear The Table — [ differentiable by the objects that were used in their perfor-
Fat Breaidast ) mance: both activities used plates, spoons and cups. Two
Set The Table = i bl t h . d f d b t. th
Take out trach possible techniques emerged for disambiguating these ac-
Use The Phone — Ground Truth tivities. The first was to allow the model to learn a tendency
Make Soft Boiled Eggs A for objects to be used earlier or later in the activity — moti-
Make Oatmeal vating model C. The second was to allow the model to dif-
Make Juice ferentiate activities based on the number of objects which
Make T . .
y ka: & were touched — motivating model D.
ake espresso . . .
Use The Bathroom Figure 4-C shows a short portion of the inference per-
formed by model C. The graph demonstrates how this
4500 4750 5000 5250 5500 5750 6000 6250 6500 . .
Time (seconds) model is able to correct for the errors of model B, but it
clearly makes an inter-activity error by inferring a transition
clear Thek:ab'e from eating breakfast to setting the table then to clearing the
Eat Breakfast . . . .
S | table. This caused the string edit accuracy of this model to
et The Table R
Take out trash | get worse, although temporal accuracy remained constant
Use The Phone - Cround T compared to model B. Given a sufficient amount of trainin,
P g
Make Soft Boiled Eggs B data, this model will not make such inferences. However a
Make Oatmeal huge number of transition parameters, 6602, are required to
Make J . . . .
. specify this model and our data simply did not have enough
ake Tea . . . . . .
Make Espresso data to capture statistically significant information for ev-
Use The Bathroom ery transition. Unlike model B, which captures information
4500 4750 5000 50 5800 5750 6000 650 6500 about transitions for activity A; to A;, model C represents
Time (seconds) information about transitions from A;,  to Ay, .
. . J .
Cloar The Tal Figure 4-D shows a short portion of the inference per-
ear e Table . . . . .
Eot Breakfact formed by model D. In this grapl'l, legrnlng a (.11str1bu.t10'n
Set The Table i - over the aggregate number of object instantiations elimi-
Take out trash nates the ambiguity in figures 4-A,B,C without requiring an
—Ground Truth . . . .
Use The Phone C inordinate number of parameters to be introduced into the
Make Soft Boiled Eggs model. The variance in temporal accuracy is reduced and
Make Oatmeal . - . - . ..
Make Juice both accuracy and variance in the string edit distance is im-
Make Tea proved.
Make Espresso
Use The Bath °
s e mseon 5. Models Which Improve Robustness
4500 4750 5000 5250 5500 5750 6000 6250 6500
Time (seconds)
One of the weaknesses of the previous models is their
Clear The Table — response to the observation of an unexpected, but function-
Eat Breakfast ally similar object-use in an activity. For example, our data
Set The Table demonstrated making oatmeal with a cooking spoon. Our
Take out trash * Model Inference . - . .
Vst The Phone inference should not fail if the same task is performed with
Make Soft Boiled Eqgs D a table spoon. It should be a less likely, but still plausible al-
Make Oatmeal ternative. To solve this problem we implemented a version
Make Juice of the general concept of abstraction smoothing introduced
Make Tea in [20]
Make Espresso
Use The Bathroom

4500 750 507 53507500 5% 00 6250 50 5.1. Abstraction Smoothing Over Objects
Ime (seconds,

Inspired by [1] we used a relational model of object sim-
ilarity, but unlike the full power of that work, we used a sin-
various models. Ground truth is indicated by gle hierarchical object relation rather than a lattice. The hi-
the thin line. Inference is indicated by the erarchy that we used was mined with supervision from an

dots. internet shopping site [6] (see figure 5). The name of each

Figure 4. Small segment of inference with
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Figure 5. Object abstraction hierarchy with
data set objects shaded.

object was entered into the shopping search engine and the
hierarchy that was returned for that object was inserted into
a global object tree. In the case of objects with multiple hi-
erarchies, one was manually selected.

The semantics that we applied to the tree were that
objects that were close to each other in the graph were
functionally similar. To specify the notion of “close”, we
weighted all edges on the graph equally and created an all-
pairs functional equivalence metric according the following
formula:

exp(— Dist(gi ,05) )
P(O; — 0;) = Zexp(iDiSt(oi,Oj)) M
J

2

Where Dist(O;, Oy) is the shortest-path distance between
O; and Oj; on the graph. When object O; is expected in the
model, it will be substituted by object O; with probabil-
ity P(O; — Oj). The likelihood of substituting one object
for another falls off exponentially with distance in the hier-
archy.

Figure 6 shows how the abstraction function is inserted
graphically into model D. This changes the semantics of the
model. Now, node O; represents the object that “should” be
touched when what is observed is O;. The conditional prob-
ability table associated with the dependency is captured by
equation 1.

5.2. Robustness Experiments

To validate how well this technique worked when objects
were substituted, we reran our experiments with abstraction
smoothing added to model D. This resulted in an insignifi-
cant decrease in accuracy of 0.1% and -.1 in edit distance.
Then we reran our experiments with the same data streams
in which all instances of a mug were replaced with a cup.

Figure 6. The O; and O; nodes replace the
previous “OBS” node in model D.

As table 4 demonstrates, abstraction smoothing greatly
increases robustness to object substitution. In the two low-
parameter baseline models accuracy is dramatically low-
ered, but in comparison the abstraction model suffers a rel-
atively modest decrease in accuracy.

6. Discussion and Conclusions

In this paper we have made a methodological point of ap-
plying increasingly sophisticated models to the RFID-glove
activity recognition problem. Such an approach makes it
clear what features are relevant for improved performance
without sacrificing efficient inference and learning.

Training separate HMMs, as in model A, although popu-
lar in the literature (see [2]), performs poorly once activities
share objects or interact in time. Coupling the HMMs into
one system, as in model B, greatly improves accuracy by
learning transitions between activities, but can be confused
by activities which use the same class of object. Many activ-
ities have this property, for example, doing laundry versus
getting dressed, reading a book versus organizing a book-
shelf, etc.

An RFID-glove can distinguish members of a class of
objects at the risk of losing the ability to generalize in those
cases where object identity is irrelevant. The heart of the
matter is that many activities are naturally non-Markovian,
i.e., they are best modeled in terms of the history of ob-
jects that were used during their execution. Model D main-

Model
A B D
Mean Accuracy | 52.5% | 77.4% | 81.2%
Net Change -15.1% | -10.9% | -6.4%
Mean Edit Dist. | -12.7 -26.6 -1.1

Table 4. Accuracy metrics given object sub-
stitution.




tains such a history and allowed us to reason about the ag-
gregate number of objects used.

Comparing model C, which allows for objects to be used
at different temporal points in an activity, versus model
D demonstrated that both techniques had disambiguation
power. However, Model D had fewer free parameters and
therefore requires less training data to achieve equal levels
of performance.

Finally, we saw that the use of smoothing over an ab-
straction hierarchy of object types greatly enhances the ro-
bustness of the system with no significant change in accu-
racy, and no significant additional computational burden.

These results argue that key features for modeling activ-
ities of everyday life on the basis of object interaction in-
clude a way to capture transition probabilities between ac-
tivities; a way to compute aggregate features over the his-
tory of instantiated events in the activity; and a way to han-
dle abstract classes of events. With these features alone, it is
possible to perform quite fine-grained activity recognition.
The activity recognition is successful even when the activi-
ties are interleaved and interrupted, when the models are au-
tomatically learned, when the activities have many objects
in common and when the user deviates from the expected
way of performing an activity.
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