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Abstract

We seek to tackle the problem of human state
recognition, in which sensor-based observations
are used to reason about the state of the general
human environment. Recent work [Pentney et
al., 2006] has shown promise in using large pub-
licly available hand-contributed commonsense
databases as joint models that can be used to
interpret day-to-day object-use data. We dis-
cuss the development of a statistical model for
reasoning over large amounts of commonsense
information about human activity, and the use
of Web-based information retrieval techniques
to evaluate and enhance such information for
more effective use. Additionally, we discuss
how to improve the performance of our model
through the use of learning techniques which
can scale to the very large networks induced by
this commonsense data. Finally, we present ex-
periments to show how these techniques can be
used to provide improved results in the predic-
tion of everyday human state.

1 Introduction

Sensor-based methods for inferring the state of people
and their environment have a variety of applications in-
cluding elder care management [?], institutional work-
flow management and proactive computing [?]. A sys-
tem that could tell whether an elderly person living alone
has a cold, has taken medication or is depressed, for in-
stance, could substantially reduce the financial burden
of care. A key challenge in building such systems is the
need for models that relate low-level sensor signals (e.g.,
vision) to high-level concepts (e.g., depression). The con-
ventional approach to acquiring such models is to ap-
ply machine learning techniques to labeled sensor data,
given a “structure” prior on the dependencies between
variables. The structure itself is often provided by hand
by application developers.

This method, however, becomes quite expensive when
trying to track and make predictions regarding the tens

of thousands of aspects of daily life. A system to reason
over everyday activity on such a scale requires a “com-
monsense” encoding of daily life and the numerous re-
lationships between everyday objects, actions, and con-
cepts - e.g. the fact that people will eat when they are
hungry, or that flipping the lightswitch will turn on the
light. There are two particular challenges with respect
to creating such a representation. First, encoding such
information generally requires human effort for manually
entering the many commonsense facts that such reason-
ing requires. Second, using known reasoning techniques
over such information can be computationally quite ex-
pensive, and may scale poorly due to the quantity of
information necessary to perform meaningful inference.

Fortunately, many efforts to accumulate everyday
commonsense knowledge exist; well-known efforts such
as Cyc [Lenat and Guha, 1990] and OpenMind/OMICS
[Singh et al., 2002; Gupta and Kochenderfer, 2004] have
been devoted to accumulating and codifying this infor-
mation. The OMICS database has aggregated many re-
lational predicate groundings contributed by anonymous
web surfers, providing information such as “An action as-
sociated with the object cereal’ is ’eat”’. Since emerging
dense sensor networks [Fishkin et al., 2005] can directly
report high-level object-use data, and since the OMICS
database is grounded extensively in terms of object use,
it is feasible to automatically obtain a commonsense in-
terpretation of the world state by connecting dense sen-
sors to a propositional model representing the OMICS
database. Here we will describe a system that produces
a statistical model for reasoning over many possible vari-
ables pertaining to the state of the world in a manner
that provides both reasonable efficiency and reasonable
accuracy.

2 Common Sense Representation

A diagram of the architecture of our system, called
SRCS, may be seen in Figure 77; this is an aug-
mented version of the system described in [Pentney et
al., 2006]. SRCS takes as its input the OMICS com-
monsense database, which contains roughly 50,000 in-
stances of roughly 15 relations on a small set of domains



describing day-to-day life. Domains include Object
and Action, which denote physical objects and ac-
tions performed by people respectively. Relations in-
clude people(Action,Context), which relates actions
to their contexts; an instance of this relation may be
people(eat, hungry). SRCS transforms these rela-
tions in a sequence of steps into a set of weighted Horn
clauses, in which each antecedent and consequent repre-
sents a random variable about the state of the world (e.g.
userInState(hungry), stateOf (kitchen light,on)).
These random variables are encoded into a large prob-
abilistical graphical model (PGM) called a chain graph
[Buntine, 1995]. Some nodes of the chain graph represent
the use of objects; by connecting these nodes to actual
observations of the use of these objects, we may provide
observations to use for inference over other propositions
about the world (e.g. “The user is hungry”.)

Although the random variables in SRCS’s Horn
clauses could represent predicate groundings in first-
order logic, the reasoning is currently done in a proposi-
tional fashion for efficiency; we do not reason more gen-
erally over the truth of predicates.

While OMICS provides us with many valuable com-
monsense facts, it also suffers from semantic gaps and
noisy information. Facts that could be represented
amongst the random variables induced by the above pro-
cess (e.g. wuse(lightswitch) = stateOf(kitchen light,on))
may not be represented, and some facts may be irrelevant
or simply nonsensical. We thus make use of Web mining
techniques, in the form of the KnowItAll system [Etzioni
et al., 2004], both to evaluate the predicates OMICS pro-
vides and to mine new predicates that may produce ad-
ditional Horn clauses. For example, KnowItAll success-
fully mines the fact contextactions(toothpaste, squeeze,
brushing teeth), whose semantic meaning is “You will
squeeze the toothpaste when you are brushing your
teeth”. These supplemental facts help fill in gaps in the
existing OMICS data.

3 Probabilistic Graphical Model

To reason about the environment, we view the state of
the world as a collection of random variables, each rep-
resenting the truth of a Boolean predicate, such as “The
light is on” or “The user is making the bed”, for an in-
terval of time . We wish to track these facts over a suc-
cession of such time intervals. There will be dependen-
cies between related variables; for example, if “The user
is making a sandwich” is true, this should imply, with
some relatively high probability, the truth of the predi-
cate “The user is hungry”. In the following sections, we
describe in more detail how this model is constructed.

3.1 PGM Construction

As described, our processing of the OMICS data pro-
duces approximately 60,000 random variables represent-
ing facts about the environment at a given moment in
time, and defines potential functions upon these random
variables. We represent each of these random variables
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Figure 2: System architecture.

as nodes in a chain graph, a mixed directed /undirected
graphical model. Let py = (pi,,.-,Pn,) be random
variables representing the truth of all predicates de-
fined by the process previously described at time ¢t. Let
ot = (01,...0r, ) be Boolean random variables, each rep-
resenting the use of object o; at time ¢ when true. The
set of random variables p¢, observations oy and func-
tions ® = (¢1, pa...¢0pnr) can be used to define a graph
G; representing a conditional random field [Lafferty et
al., 2001] over py. However, we also must consider the
relationships of variables between time slices. We rely
on the relatively simple assumption that, independent
of other influence, true predicates at ¢ will remain in the
state they are in with some fixed probability o. To incor-
porate temporal data, we can then use a “double-slice”
graph in which the graphs G; and Gy, are connected
by directed edges from each p;, to p;,_.,. We may then
define a set of temporal potential functions v; in which
¥i(pigs Pir,, ) = or if both predicates are true, op if they
are both false, 1 — o if p;, is true and p;,,, false, or
1 — op otherwise. The probability of an assignment at
time £ 4 1 is

~ “ “ 1 i (D3 B ;i (Pt,0¢
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where \; and p; are weights on features ¢; and ;.
This defines a chain graph over p;...pn for data over
time slices 1..IV, as depicted in Figure 1. The model can
also be seen as an HMM in which the full set of non-
observation random variables at ¢ represents the hidden
state of t. We use the BP algorithm of Pearl [Pearl, 1988]
to obtain a decent approximation of the distribution.



4 Learning

To improve the quality of inference, we employ ma-
chine learning techniques to improve SRCS’s prediction.
Given our model, we can optimize the log-likelihood of
a set of training data D with respect to the vector of
weights \u, i.e. we wish to maximize log P(D|A, p)
over A, u. This calculation, however, is intractable
given the size of our graph. We must thus employ
approximation techniques. One option is to estimate
log P(DI\, u) using loopy BP over each time slice; how-
ever, even this can be computationally expensive over
large amounts of data. Another method is to instead
optimize the log of the pseudolikelihood PL(D) [?],
a more computationally efficient approximation to the
likelihood used in some contexts for weight learning on
MRFs [?]. The log pseudolikelihood of p; given ps—1
is log PL(pt[pr-1) = ., . log P(ps,[MB(p;,)), where
MB(p;,) is the Markov blanket of p;,. Given this ob-
jective function, we can maximize log PL(D) over possi-
ble A, i using standard convex optimization techniques.
We employ the L-BFGS algorithm for this optimization,
adding in a Gaussian prior as in [?] to prevent overfitting.

4.1 Thresholding

The probabilities that SRCS outputs, are currently not
an effective as an absolute measure of a predicate’s dis-
tribution, but are still often useful as a relative measure.
To label object use traces, we feed SRCS traces labeled
with ground truth for the variables being tracked, and
train decision stumps on each proposition to recognize
the optimal threshold value, as measured by a weighted
f-measure, for labeling variables. We then perform in-
ference over object traces via the technique described
and label according to whether the probabilities output
fall above or below the learned thresholds.

5 Clustering for Inference and Learning

While one can perform inference on a full double times-
lice graph with BP to infer the probability of the state of
the environment, it is computationally quite expensive
this manner requires about 30 minutes on our system.
In [Pentney et al., 2006], this issue was resolved through
pruning the graph to a subgraph G’, defined by the union
of all breadth-first traversals to a depth d on each fact
p; (in the paper, d = 2.) While this is an effective tech-
nique, it requires foreknowledge of what predicates one
wishes to query over before constructing the graph and
the input of observations for inference.

To improve efficiency in another manner, we take ad-
vantage of some intuition about the structure of our
graph. Our collection of everday commonsense predi-
cates contains many predicates whose respective states
are likely to be mostly unrelated. Given this intuition,
we seek to partition the timeslice graph into subgraphs
based on the features defined upon the graph. We cluster
the graph G, containing both predicates p and observa-
tions o, into k distinct clusters C1, ...C}, using single-link
clustering, with the weight of the edge between p;, and

pj, defined by the weight A; of a potential ¢; dependent
on both ¢ and j, if it exists, and zero otherwise. Un-
der this scheme, clusters with high potentials between
their respective weights are merged in the iterations of
the clustering algorithm. Intuitively, this corresponds to
the discovery of subsets of predicates which have strong
relationships with each other, and likely share a similar
context (e.g. the predicate location(kitchen) is likely
to be associated with kitchen implements).

The clustering gives us a means of approximating
queries on specific nodes based on evidence. If ¢(x) is
the cluster of node z, then given that observed nodes
01, ...0,, and we wish to query over ¢, ...qs, we may limit
our inference to the subgraph represented by the union
of all ¢(g;) and ¢(0;). Thus we are able to “zoom in” on
the nodes whose value is most likely to be affected by
the observations, or which nodes we are most interested
in querying.

Our clustering technique can help improve the effi-
ciency of learning as well; when performing inference
during learning, we may approximate the likelihood of
the training data with clustered inference in a similar
manner, calculating PL(D) strictly over subgraphs de-
fined by the clustering described in the previous section.
In our model, the majority of the predicates in labeled
data are going to be false at any given time, and most
of the predicates in the graph will, in fact, never be seen
as true (some of them are not measurable, irrelevant, or
even nonsensical). To minimize the number of terms we
need to compute in our objective function, we consider
C;, the union of the clusters of every node labeled true
in the slice ¢, along with a sampling of false query nodes,
and then use as our objective function log APL(D) =
oy log APL(B,) = Y, log P(pi, M B(p,)). Intu-
itively, by using this objective function we are only con-
sidering terms relating to predicates that appear as both
true and false, as well as predicates in their neighbor-
hood. The sampling of false query nodes is included to
ensure a sampling of false instances of each predicate
that appears is also included in the learning of the ob-
jective function.

6 Experiments

For our experimental evaluation, we used traces of house-
hold object use in an experimental setting as produced
by three users while performing various daily activities
in a simulated home environment, as used in [Pentney
et al., 2006]. Data was collected via the use of an RFID
reading bracelet in conjunction with tagged household
objects. A total of 5-7 minutes worth of performance of
each activity was collected, for a total of approximately
70-75 minutes of data. These traces were divided into
time slices of 2.5 seconds; reasoning was to be performed
over each of these time slices.

For these activities, we considered a variety of vari-
ables about the state of the world which could be relevant
to these activities. We then selected a set of 24 Boolean
variables in the collected SRCS database which repre-



| Method | Learning | Acc | Prec | Recall |
Random - 50.00% | 8.07% | 50.00%
All false - 93.00% - 0.00%
Orig No 81.81% | 24.85% | 51.34%
Orig Yes 83.40% | 23.80% | 67.22%
Mined No 84.92% | 22.62% | 52.11%
Orig/Mined no 86.01% | 30.20% | 83.55%
Clustered no 73.58% | 16.43% | 72.18%
Clustered | Clustered | 79.94% | 21.29% | 74.32%

Figure 3: Results from SRCS experiments.

sented these variables, or were semantically very close to
them, such as stateof (cereal, prepared). We then
recorded their “truth” value as being true or false for
each interval of time in the trace.

In [Pentney et al., 2006], we performed inference on
the same set of variables on a system using the Know-
TtAll priors but no learning of weights; here we perform
learning in the method described before performing in-
ference. One way we judge the effectiveness of our clas-
sifier is simply by judging its accuracy in labeling facts
true or false. However, in practice most predicates are
false most of the time (approx. 94% of the labels in the
test data are false), and we would be more interested in
correct labeling of true predicates in practice. We thus
also measure the precision and recall of the classifier with
respect to labeling the true predicates.

First, we ran our system with the graph pruned to
depth d = 2 from the query predicates, with and with-
out learning, with the original SRCS weights and mined
quality measures from [Pentney et al., 2006]. Next, we
ran our system with newly mined predicate groundings
discovered using KnowItAll. We then ran the system
with the combined data. Finally, we also ran the system
using the clustered inference method, with and with-
out the clustered method of learning, so as to test the
effectiveness of a (presumably) less accurate but more
efficient classifier.

Our results are shown in Figure 3; we compare the
performance to baselines of both random selection and
labelling all facts as “false”. We see that using learning
on the system with a relatively small amount of train-
ing data provides some increase in accuracy and a con-
siderable improvement in recall. Additionally, we find
that adding predicate groundings mined using Know-
ItAll improves all measures. The accuracy and preci-
sion of the algorithms using clustering is lower, but still
provide good recall. Clustered inference also takes less
time (about 50% less) to run than inference on the whole
graph; the loss of accuracy may be acceptable in some
circumstances due to the improved efficiency.

7 Conclusions and Future Work

We have presented SRCS, a model for human state es-
timation which makes use of available large-scale com-
monsense data, Web mining, and machine learning tech-

niques to provide good prediction of the state of the ev-
eryday human environment using sensor data. We have
shown that such a system provides good accuracy in pre-
diction with little direct human effort in specifying the
necessary commonsense data, and that machine learn-
ing techniques, used in conjunction with labeled data
traces, may provide improved performance in such pre-
diction. There remains much ground for future work in
improving both the prediction accuracy and efficiency of
such a system; we continue to investigate methods of im-
proving the efficiency of inference using more advanced
techniques of isolating relevant subgraphs, and more ef-
ficient means of performing learning over large amounts
of labeled or partially labeled data.
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