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Abstract. Activity inference based on object use has received considerable 
recent attention. Such inference requires statistical models that map activities to 
the objects used in performing them. Proposed techniques for constructing 
these models (hand definition, learning from data, and web extraction) all share 
the problem of model incompleteness: it is difficult to either manually or 
automatically identify all the possible objects that may be used to perform an 
activity, or to accurately calculate the probability with which they will be used. 
In this paper, we show how to use auxiliary information, called an ontology, 
about the functional similarities between objects to mitigate the problem of 
model incompleteness.  We show how to extract a large, relevant ontology 
automatically from WordNet, an online lexical reference system for the English 
language. We adapt a statistical smoothing technique, called shrinkage, to 
apply this similarity information to counter the incompleteness of our models. 
Our results highlight two advantages of performing shrinkage. First, overall 
activity recognition accuracy improves by 15.11% by including the ontology to 
re-estimate the parameters of models that are automatically mined from the 
web. Shrinkage can therefore serve as a technique for making web-mined 
activity models more attractive. Second, smoothing yields an increased 
recognition accuracy when objects not present in the incomplete models are 
used while performing an activity. When we replace 100% of the objects with 
other objects that are functionally similar, we get an accuracy drop of only 33% 
when using shrinkage as opposed to 91.66% (equivalent to random guessing) 
without shrinkage. If training data is available, shrinkage further improves 
classification accuracy. 

1 Introduction 

Automated reasoning about human activity is central to a variety of pervasive 
computing usage models and applications. Usage models include activity-aware 



actuation, proactive reminding, automated activities-of-daily-living (ADL) 
monitoring and prompting, embedded health assessment, computer supported 
coordinated care giving, and task monitoring and prompting in the workplace. 
Specific applications that have been proposed include the automated control of 
HVAC and home entertainment systems based on current user activity, automated 
filling of medical forms about activities of elderly users, delivery of information 
about care recipients’ behavior via shared scheduling tools, and the semi-automated 
evaluation of student performances of standard medical procedures. For these 
applications to be practical, the underlying activity recognition module often needs to 
detect a wide variety of activities (people may routinely perform dozens to hundreds 
of relevant activities a day, for instance) performed in many different ways, under 
many different environmental conditions; the particular aspects of the activity that are 
of interest (e.g. user motion, task progress, object usage or space usage) also vary 
widely across applications.  Such robust recognition across a variety of activities and 
their variations has proved to be difficult to engineer. 

A central challenge underlying activity recognition is that of bridging the gap 
between conventional sensors and informative high-level features such as objects 
used, body motion and words spoken. The most common approach is to use a few 
(typically one per room or user) very rich sensors such as cameras and microphones 
which can record very large quantities of data about the user and their environment.  
Although in principle the data captured by these sensors should be as useful as that 
captured by the key human senses of sight and hearing, in practice the task of 
extracting features from rich low-level representations such as images has proved to 
be challenging in unstructured environments. A popular alternate approach is to use 
specialized sensors (of the order of one per user) such as accelerometers and location 
beacons to get precise information about a particular small set of features related to 
the user, such as limb-movement and user location. The simplicity, however, comes 
at a price: by ignoring the environment of the user, these sensors limit the number of 
activities they can discriminate between. The inability to distinguish between opening 
a dishwasher and opening a washing machine can be a deciding factor in 
discriminating between the corresponding activities. 

Recent years have seen the emergence of a third approach to sensing that may be 
termed dense sensing. Exploiting advances in miniaturization and wireless 
communication, this approach attaches sensors directly to many objects of interest. 
The sensors are either battery-free wireless stickers called Radio Frequency 
Identification (RFID) tags[1-3] or small wireless sensor nodes powered by 
batteries[4, 5]. The sensors transmit to ambient readers the usage of the objects they 
are attached to by detecting either motion or hand-proximity to the object. Further, 
since each sensor has a unique identifier, information about the object that does not 
change (such as its color, weight or even ownership), which would conventionally 
have to be discerned by sensors, can be associated in a directly machine readable way 
with the object. The reliable sensing of detailed object use enabled by dense sensing 
has a few advantages. First, for very many day-to-day activities, the objects used 
serve as a good indicator as to which activity is being performed. Second, the objects 
used remain fairly invariant across different ways of performing these activities. 
Third, since the sensors detect the features quite well regardless of most 



environmental conditions, activity recognition can be robust to changes in these 
conditions. Finally, objects used can serve as a powerful cue as to other aspects of 
interest: if a hammer or a knife is known to be in use, the space of possible user 
motions is highly constrained. 

Systems based on dense sensors model activities in terms of the sequence of 
objects used, typically using generative Bayesian representations such as Hidden 
Markov Models (HMM’s)[6-8] or Naïve Bayesian models[9]. Models for individual 
activities in these representations are generated in one of three ways. The simplest, 
and least scalable, approach is to construct the model by hand: an application 
designer can simply list the objects expected to be used in an activity of interest, 
along with the probability of use. A conventional alternative is to learn the model by 
performing the activity in a variety of exemplary ways, labeling traces of objects used 
during the performances with the corresponding activities, and using supervised 
machine learning techniques to learn the corresponding model. A final approach is to 
note that the model is essentially a probabilistic translation between the activity name 
and the names of objects used, and to mine large text corpora such as the web to 
obtain these translations. The approaches are not mutually exclusive. For instance, 
both hand-made and web-mined models can be used as priors which are further 
customized using observed data. 

All three approaches to constructing models suffer from what may be termed the 
model incompleteness problem: the models they produce have objects that are either 
missing or that have inappropriate probabilities. Incomplete models can, of course, 
result in faulty inference. Humans who hand-write models typically do not have the 
patience (and often the judgment) to list all objects that may be used in an activity, 
especially when alternate or obscure objects need to be considered: the model for 
“making tea” may mention neither “coffee cup” nor “honey”.  Further, the probability 
of use ascribed to unfamiliar objects may be quite skewed.  Similarly, given the 
inconvenience of generating labeled examples of all (or most) possible ways to 
execute an activity, it is likely that uncommon objects will be missing or under-
represented. Finally, when models are mined from the web, the vagaries of the web 
may result in certain objects (e.g. “cup”) being ascribed vastly higher probabilities 
than others (e.g. “teacup”).  

The use of objects as the underlying features being modeled suggests a simple 
approach to countering incompleteness. Intuitively, we can exploit common sense 
information on which objects are functionally similar. If the model ascribes very 
different probabilities to two very similar objects, we can “smooth” these 
probabilities into more similar values. As a degenerate case, if the model omits an 
object while incorporating very similar ones, we can postulate that the omitted object 
is likely to be observed in the model. We show below how to realize this idea in a 
completely unsupervised way and provide evidence that the idea is quite effective. 
Earlier work [7, 10] has used manually extracted hierarchy to incorporate the notion 
of object similarity into activity models. In this paper, we show how to extract 
relevant information on the functional similarity of objects automatically from 
WordNet, an online lexical reference system for the English language. The similarity 
information is represented in a hierarchical form known as an ontology. Given the 
similarity measure provided by the ontology, we formalize the above intuitive notion 



of smoothing by adapting from statistics a technique called shrinkage. Shrinkage is a 
well established technique for estimating parameters in the presence of limited or 
missing training data and has been successfully used in classifying text documents 
[11, 12], in modeling the behavior of web site users [13], and in service-oriented 
context-aware middleware applications [14]. We use a mixture of real-world data and 
synthetic data to evaluate our system. Our results show that our techniques have three 
benefits. First, mined models that are smoothed recognize activities with significantly 
higher accuracy than those that are not. Second, models that are learned from data can 
make do with significantly less training data when smoothing is applied versus when 
it is not. Third, when faced with test data that contains objects not seen in training 
data, but that are similar to those in the model, smoothing yields substantially better 
recognition rates. 

This paper begins by describing the procedure for automatically extracting 
the ontology of objects from WordNet in Section 2. Then, Section 3 covers the 
algorithm used for performing shrinkage over the ontology of objects. Section 4 
shows the results of running simulated experiments over a large ontology of objects, 
and Section 5 of experiments ran over real sensor data. Finally, Section 6 summarizes 
the main results and conclusions drawn from this work.  

2 Automatic Ontology Extraction from WordNet 

WordNet [15] is a hierarchically organized lexical system motivated by current 
psycholinguistic theories of human lexical memory. WordNet resembles a thesaurus 
more than a dictionary since it organizes lexical information in terms of word 
meanings (or senses), rather than word forms. In WordNet, nouns, verbs, adjectives 
and adverbs are organized into synonym sets called synsets, each representing one 
underlying lexical concept.  For example the noun couch in WordNet has three senses 
or word meanings, and the synset corresponding to the first sense {couch#1} defined 
as ‘an upholstered seat for more than one person’ is {sofa, couch, lounge}.  The 
sense number in WordNet indicates the frequency of use, where 1 corresponds to the 
most commonly used.  
  The real power and value of WordNet relies on the way different semantic 
relations link the synonym sets (or word senses). Currently, WordNet comprises the 
following kinds of semantic relations between word meanings: (1) hypernyms, (2) 
hyponyms, (3) meronyms, and (4) holonyms. Two of these semantic relations are 
especially important for their usefulness in extracting a semantic hierarchy or an 
ontology of objects: hyponyms, and hypernyms. Hypernyms are is-a relationships 
were the meaning of a word is a superset of another. For example, {cooking 
utensil#1} is a superset or hypernym of {pan#1}. On the contrary, hyponyms are 
inverse-is-a relationships were the meaning of a word is a subset of the meaning of 
another.  Figure 1 shows examples of the hypernyms tree for three everyday objects.  

WordNet organizes nouns into a set of 25 semantic primes or unique 
beginners of separate hierarchies. Five of these unique beginners are particularly 
important because they encompass all possible natural and man made objects {non-
living things, objects}, and living organisms commonly used in meal preparation 



{living thing, organism}. These five semantic primes are: {natural object}, {artifact}, 
{substance}, {food}, and {plant, flora}.  All these unique beginners are hyponyms or 
subsets of the more abstract concept {entity}. 

 
Figure 1. Hypernyms tree for three objects: Coffeepot, eyeliner, and cheese.  

 
Since all the physical objects of interest found in everyday environments are 

subsets or hyponyms of {entity}, a tree-like ontology of objects can be automatically 
extracted. This follows from the lexical tree (free of circular loops) design imposed 
over the nouns by the creators of WordNet.  

As of September 2005, WordNet 2.1 contains approximately 117,097 noun 
word forms organized into approximately 81,426 word meanings (synsets) that make 
WordNet a unique and rich semantic database for recovering complete ontology of 
objects automatically. 

2.1 Ontology Extraction Algorithm 

The generation of the ontology or hierarchy of objects can be divided in two 
steps (1) the generation of the ontology skeleton, and (2) the expansion of the 
ontology. In order to generate the ontology skeleton, an initial list of objects of 
interest is required. In the context of our work, this initial list of objects is the list of 
all objects that appear in the mined activity models (or activity recipes) plus all the 
objects (RFIDs object labels) found in the sensor traces. The ontology skeleton 
generation algorithm proceeds as follows: (i) since everyday tangible objects 
correspond to nouns in natural language, we proceed to search the objects or words of 
interest in the noun files of WordNet, and (ii) once the noun has been found, we 
proceed to automatically select the sense of the word by looping through all the 
senses of the word until finding the first sense that is a hypernym or subset of 
{entity}. As discussed in the previous section, the node {entity} includes as subsets all 
possible natural and man made objects and living organisms commonly used in meal 
preparation. This guarantees that the selected sense will be the most commonly used 
sense that is also a physical object. 

After the appropriate word sense has been selected, we proceed to find the 
hypernym tree or superset (parent) nodes of the selected sense of the word (or object). 
It is important to notice that some words may have multiple parents (who are 
descendants of entity) at the same level of the hypernyms tree, since in the previous 
step, we only ensured that the leaf node has a unique sense that is a descendant of the 
{entity} node. Figure 1 shows an example of such case for the object cheese. In 
situations when multiple parents are found at the same level in the hypernyms tree, 



only the first one is considered for being the most common, and the other ones are 
discarded. In practice we have found that this does not represent a major problem in 
extracting the hierarchy of objects.  When the ontology is generated, a synonyms file 
is also generated so that any synonym of a word can be used while performing search 
operations in the ontology. For example, the synset for the object cleaner is 
{cleansing_agent, cleanser, cleaner}. 

It is important to note that in order to perform shrinkage, the ontology must 
not have any loops. Our algorithm generates a tree structured ontology by only 
selecting word senses that are hyponyms or subsets of the concept node {entity} and 
by ensuring each node has a unique parent. Thus, the node {entity} having the single 
sense: ‘that which is perceived or known or inferred to have its own distinct existence 
(living or nonliving)’ correspond to the root node, and the highest abstraction level of 
the ontology. Also note that the leaf nodes or most specific terms in the ontology will 
correspond to the objects provided in the original list.  

Once the ontology skeleton has been generated, it is useful to expand the 
ontology to accommodate for possible objects that might be used while performing an 
activity, but were not provided in the original list of objects. The expansion of the 
ontology consists of finding all the ancestor (parents) nodes for all the ontology leaf 
nodes up to a specified level MaxParentLevel. Then, we proceed to find all the 
hyponyms (children nodes) of those ancestor nodes up to a maximum depth level 
MaxChildLevel.  By performing this procedure, we create sibling nodes for the leaf 
nodes of our original ontology that might appear in sensor traces in the future. Figure 
2 shows a simplified version of the pseudo-code for extracting the ontology from 
WordNet. 

 
 

    
  //GENERATION OF ONTOLOGY SKELETON 
   For i:=1 to objectList.length(){ 
       object = objectList(i); 
       word = find_word_in_wordnet_noun_file(object); 
       If(!empty(word)){ 
       For j:=1 to word.getSenses.length(){ 
            wordsense = word.getSense(j);  
            If(wordsense.ishypernym(“entity”)) break; 
       } 
       hypernyms = getHypernymsTree(wordsense); 
       ontologytree.addNodes(hypernyms); 
   } 
 
   //ONTOLOGY EXPANSION 
   For i:=1 to ontologytree.getLeafNodes().length(){ 
       Node = ontologytree.getLeafNode(i); 
       ancestors = getHypernymsTree(Node, MaxParentLevel); 
       For j:=1 to ancestors.length{ 
           Hyponyms = getHyponymsTree(ancestors(j), MaxChildLevel); 
           ontologytree.addNodes(hyponyms); 
       } 
   } 

Figure 2. Simplified version of the pseudo-code for automatically extracting 
the ontology of objects from WordNet. 

 
 
 



3 Shrinkage over the Hierarchy of Objects 

Shrinkage [16] is a well established statistical technique for improving 
parameters values estimated for a given model, when they can not be computed 
reliably from training data alone. By exploiting the similarity between nodes in a 
hierarchy, shrinkage estimates new parameter values for child nodes by linearly 
interpolating the values from the child node to the root node [11]. This represents a 
trade-off between specificity and reliability. The child node estimate is the most 
specific (low bias), but high variance (less reliable), and the root node is the most 
reliable (low variance), but general (high bias). By combining these estimates we can 
end up with a better and more reliable model.  

In this work, we use shrinkage to create improved probability estimates of 
the leaf nodes of the ontology. Our assumption is that the leaf nodes in our ontology 
represent )|( ji aoP , the probability estimates of observing an object Ooi ∈ during the 
performance of an activity Aa∈ , and that the hierarchy structure characterizes the 
functional similarity between objects. We denote )|(~

ji aoP the new probability 
estimates of observing an object given an activity class, and we compute them as 
follows: 
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where ),( aoN i  is the number of times object io occurs in activity a , and O denotes 
the set of all possible objects. 

3.1 Determining Mixture weights 

The weights { }kλλλ ,..., 21  used during shrinkage balances the influence of the 
nodes containing specific information but little training data, with those nodes 
containing more generic information but larger amounts of training data. The mixture 
of weights can be computed in one of the following ways: (1) uniformly where all the 
weights are equal (2) by applying the Expectation-Maximization algorithm (EM) as 
in [11] to find the weights that maximize the likelihood of the data or (3) using 
heuristics schemes that are a function of the rank (level) of the node in the ontology 
[13].   

 Since the goal of this work is to have a completely unsupervised approach to 
activity recognition where no sensor traces are available, we decided to estimate the 
weights using the following heuristics: (1) levellevel c/1=λ , and (2) levelclevel e ⋅−=λ , where 



c is a constant. These heuristics correspond to exponentially decaying functions that 
will assign large weights to nodes in the neighborhood of the leaf node, and low 
weights to the generic nodes found in the upper levels of the ontology. 

 
 
//ASSIGNING COUNTS TO LEAF NODE IN ONTOLOGY  
ontology.setLeafNodeCounts(modelsObjectProbs*Factor); 
//COMPUTE MAXIMUM LIKELIHOOD COUNTS FOR INTERNAL NODES 
 internalNodes = ontology.getInternalNodes(); 
 For node:=1 to internalNodes.length(){ 
    inode = internalNodes(node); 
    childrenLeaves = getChildrenLeafNodes(inode); 
    inode.setMLCount(getCountsSum(childrenLeaves));  
 } 
 
 //OBTAIN LEAF NODES SMOOTHED COUNTS BY SHRINKAGE 
 leaves = ontology.getLeafNodes();  
 For leaf:=1 to leaves.length(){ 
    lnode = leaves(leaf); 
    nodes = getNodes2RootNode(lnode); 
    For l:=0 to nodesPath.length()-1{ 
        lambda = ComputeHeuristics(level); 
        If(level==0) //if leaf node 
           SmoothCount = lambda*lnode.getCounts(); 
        Else{ //if internal node 
           //substract node counts to reduce dependency 
           counts = nodes(l).getCounts()-nodes(l-1).getCounts(); 
           smoothCount = smoothCount + lambda*counts; 
        } 
    } 
    lnode.setCounts(smoothCounts);     
  } 
   

Figure 3. Pseudo-code for performing shrinkage over the ontology of objects. 
 

The use of shrinkage over the ontology of objects in our unsupervised 
approach provides two main benefits: (1) it improves the probability estimates in the 
leaf nodes by taking advantage of the functional relationship of objects represented 
by the ontology. The effect of this improvement is a reduction in the number of 
training examples required to achieve a desired accuracy. If the number of training 
examples is kept constant, an increased accuracy will be observed by performing 
shrinkage; (2) shrinkage provides robustness when objects not present in the activity 
models are used while performing an activity. This effect is achieved by creating 
object observation probability estimates for those objects not present in the models by 
shrinking them towards the objects present in the models using the ontology. This 
means that we are able to compute educated probability estimates for unseen objects 
when it was not previously possible.  

The pseudo-code for performing shrinkage over the ontology of objects is 
shown in Figure 3, and consists on the following steps: (1) set the object observations 
(counts) for each leaf node by converting object probabilities to counts by 
multiplying them by a factor (2) compute the maximum likelihood counts for all the 
internal (non-leaf) nodes and (3) compute the smoothed count (shrinkage) for all the 
leaf nodes using equation 1. The counts are converted back to probabilities by 
normalizing them. 



4     Experimental Results: Effect of Limited or Missing Data 

In this experiment, we test the effectiveness of shrinkage over a large 
ontology of objects when we have limited training data or missing objects. We use 
Hidden Markov Models (HMMs) to parameterize the activities and assume that the 
objects used during an activity appear on the leaf nodes of the ontology. This 
assumption is plausible since usually one interacts with a specific instance of an 
object during an activity and not the broader abstract category. HMMs are a particular 
type of dynamic Bayesian Networks (DBNs) consisting of three parameters: (1) prior 
probabilities for each stateπ , (2) a state transition probability matrix T , and (3) the 
observation probabilities for each state B . The observation matrix represents the 
object observation probabilities for a given activity. Our experimental results show 
that shrinkage over the HMM object emission probabilities helps not only in reducing 
the number of training examples required to achieve a given accuracy, but also in 
providing robustness when objects not present in the activity models are used.  

The ontology used in this experiment was generated from a list of 815 
objects used in performing household activities. The list was obtained from objects 
appearing in the mined activity models, and sensor traces used in [1]. The ontology 
consists of 4188 nodes, 815 leaf nodes, and has a maximum depth of 14. The results 
presented in this section are based on simulated sensor traces (i.e. sampled from a true 
model that we create and not from actual observations from people). However, the 
ontology contains representative information about objects used during performing 
everyday activities. In the next section we will present results on using shrinkage in 
real sensor traces obtained from multiple individuals.  

The experiment proceeds as follows:  We first create a true activity model 
model#0 represented by a 3 state HMM (3 subtasks in activity) with random prior, 
transition, and observation matrices. Next, we generate training data by sampling n  
number of sequences from model#0. We learn the model parameters from the training 
data in two ways: (i) by computing the maximum likelihood estimate of the prior 

)(π , transition )(T , and observation )(B  matrices (model#1) and (ii) by re-estimating 
the observation matrix )(B using shrinkage (model#2) and ll e ⋅−= 5.3λ . We measure the 
closeness of the learned models (model#1, model#2) to the true model model#0 by 
computing the Kullback-Leibler (KL) divergence between the observation matrices of 
model#0, and model#1, and model#2, respectively. The KL divergence q)||D(p is a 
measure of the similarity between two probability distributions p and q . The smaller 
the KL divergence, the more similar the compared distributions are. Finally, we 
compute the log-likelihood for models #1 and #2 on a test dataset sampled from the 
true model #0. 

4.1 Reducing the number of training examples by shrinkage 

The plots in Figure 4 were generated by iteratively increasing n , the number 
of training sequences, to learn parameters for models #1and #2. Figure 4a shows the 
log-likelihood computed over the test sequences (50 of length 13) using the learned 



models. The higher the log-likelihood, the better the model explains the test dataset, 
which in turn leads to higher accuracy. By inspection of Figure 4a, we note that 70 
training examples are required by model#1 to achieve the same log-likelihood that 
model#2 achieves using a single training sequence. This is an important result 
because it shows that shrinkage can dramatically reduced the number of training 
examples required to achieve a specific log-likelihood. When n is greater than 100, 
the log-likelihood of model#1 is higher than model#2 for the specific test dataset. 
However, Figure 4b shows that the KL divergence is lower for model#2 up to 
when 675=n . This signifies that shrinkage model#2 is a closer match to the true 
model#0 and will explain new test data more often, when trained on less than 
675 example sequences. When we have enough representatives training examples the 
maximum likelihood (ML) solution will converge to the true model and shrinkage 
will not improve the parameter estimates anymore. Although, depending on the 
complexity of the model the number of training data required to have a reliable ML 
solution may be huge.  
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Figure 4. (a) Log-likelihood, and (b) KL-Divergence between the baseline HMM 
model, learned model, and learned model using shrinkage over the ontology. 

4.2 Robustness to unseen objects by shrinkage 

Often it might be the case that the initial model specifies the use of an object 
during an activity (e.g. use of teacup while making tea) which is later substituted by a 
functionally similar object (e.g. mug). If the activity model does not incorporate the 
similarity between a teacup and a mug then the model won’t be able to correctly 
identify the activity making tea when a mug is used. In this experiment, we simulate 
the use of objects not present in the activity models by modifying the observations in 
the sequences sampled from model#0 in the previous experiment. The modification 
consists of replacing %m  of observations by observations of one of their randomly 
selected sibling nodes in the ontology.  

This simulates the effect of having observed the sibling nodes (objects) in the 
sequences rather than the original leaf nodes. Once the replacements have been 
performed, we proceed to learn the transition, and observation matrices from the 
training sequences for models #1 and #2. Figure 5 shows the resulting plots for the 



likelihood over the test sequences and the KL divergence when the percentage of 
replaced observations is modified from 0% to 100%. The fact that the likelihood is 
always greater, and the KL divergence smaller for model#2 than for model#1 
corroborates the usefulness of shrinkage when unseen objects in our models are used.  
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Figure 5. (a) Log-likelihood, and (b) KL-Divergence between the baseline 

HMM model, learned model, and learned model using shrinkage over the ontology.  

5   Experimental Results: Performance on Data Collected from 
Multiple Individuals 

In this section, we show the benefit of incorporating high level information 
into activity models using shrinkage over an ontology and measure the performance 
in real sensor traces. To get the initial models, we adopt the procedure followed in [6] 
to mine activity models from the web, compute object observation probabilities, and 
to perform inference using hidden Markov models. We extend the work done in [6] 
by showing how to improve the quality of the mined models without requiring 
additional training data and how to deal with novel unseen objects. 

Data Collection 

The sensor data used in this experiment has already been used in [1, 6], thus,  
allowing us to compare our results against this work. In this data collection, over one 
hundred everyday objects in a real home were instrumented with passive RFID tags. 
Objects tagged include silverware, cooking utensils, hygienic products, and furniture 
among others. Over a period of six weeks, nine non-researcher subjects spent a single 
20-40 min session to collect data by carrying out 14 activities of their choice out of a 
provided list of 65 activities of daily living (ADLs) while wearing a glove equipped 
with an RFID reader. In practice, the subjects selected to perform only the 26 
activities shown in Figure 7. 



5.2 Mining Activity Models from the Web 

Given a set of activities A , the authors of [4] mine the list of objects O used for 
each activity a , and their corresponding usage probabilities )|( AaOoP ∈∈  from the 
web. The primary assumption underlying the mining process is that textual 
description of activities on the web reflects the performance of activities in everyday 
life. The mining process mainly consists in the following steps: (1) First, find 
instructional or “how to” web pages P~ that contain a detailed description on how to 
perform each activity in A . (2) Second, extract the set of objects mentioned in each 
page by identifying nouns phrases (using a part of speech tagger), these nouns will be 
hypernyms or subsets of {object} or {substance} in WordNet. For each extracted 
object, the probability that the extraction denotes a physical object is computed 
as )()|(, nounpnounobjectpw pi = . In this equation, )(nounp  is the probability that the 
last word of the noun phrase is a noun as assigned by the POS tagger, and 

)|( nounobjectp is computed by dividing number of occurrences of noun senses that 
are hypernyms of {object} or {substance} by the total number of occurrences of all 
noun senses. It is possible for a single object to have multiple weights by appearing 
several times in a single page, the final weight used is the average weight piw ,ˆ . 
Finally, the object probabilities )|( aiop are computed as the fraction of pages in 
which the object io  appeared weighted by its average extraction score on each page, 
i.e.:  

∑=
p piw

P
aiop ,ˆ~

1
)|(  

The common sense information mined (activity recipes, and object 
observation probabilities) is compiled into an HMM for the task of activity inference. 
Each activity A is represented as one internal state in the HMM, and the object usage 
probabilities mined are used as the set of observations for each state )|( jiji aoPB = . 
For the transition matrixT , an expected activity duration 5=γ is assumed, thus, all 
self-transition probabilities are set to γ11−=jjT . The remaining probability mass is 
uniformly distributed over the transitions to all other states. Finally, the prior state 
probabilities π are set to the uniform distribution over all activities. Using this 
representation, the classification task simply consists of inferring the most likely 
sequence of internal states by running the Viterbi algorithm over the sequences of 
observations. For more details about mining models from the web please see [4]. 

5.3   Improving Object Probabilities by Shrinkage 

This experiment demonstrates the usefulness of shrinkage in improving the 
classification accuracy. First, we proceeded to generate the ontology from the list of 
68 objects in the mined models and the sensor traces in [6]. Then, we construct two 
HMM models, model#1 as described in Section 5.2, and model#2 by performing 
shrinkage over the observation matrix of model#1. Finally, we search over the values 



of c  to find the optimal value for the two heuristic functions (H1) levelclevel e ⋅−=λ , and 
(H2) levellevel c/1=λ .   

The plots in Figure 6a show the results for various values of c . In these 
plots, we observe that the maximum accuracy obtained is 48.35%, located at 

[ ]18,16=c for heuristics (H2). This accuracy represents an improvement of 15.11% 
over the accuracy obtained using model#1 (42%). This is an important result, because 
in [6] the authors also describe a procedure to learn from the sensor traces. Based on 
the segmentation obtained using mined models, new model parameters are learned 
using 126 sensor traces, which improve the accuracy of model#1 by 19.2%. Here we 
have shown that just performing shrinkage and without using sensor data whatsoever, 
we achieve an improved accuracy of 15.11%.  Consequently, we believe learning for 
sensor traces will further improve the accuracy. Figure 7 presents the accuracy per 
class results before and after performing shrinkage. Table 1 presents the confusion 
matrix as computed over the 65 segmented examples of the 26 ADLs. 
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Figure 6. (a) Accuracy results after performing shrinkage using different 
constant values c in the heuristics, (H1) levelclevel e ⋅−=λ , and (H2) levellevel c/1=λ  and 
(b) Accuracy vs. percentage of replaced observations using model#1 and model#2. 
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A
B
C
D
E 
F 
G
H
I 
J 
K
L 
M

adjust thermostat 
boil water in microwave 
brew a pot of tea 
brush your hair 
brush your teeth 
change a baby’s diaper 
clean a toilet 
clean the bathroom 
clean the kitchen 
do laundry 
dress a baby 
drink water 
load and run a 
dishwasher 

N
O
P 
Q
R 
S 
T 
U
V
W
X
Y
Z 

make peanutbutter jelly 
sandwich 
make a snack 
play solitaire 
put on make up 
read a magazine 
shave your face 
take vitamins 
use microwave 
use the telephone 
use toilet 
vacuum carpets and floors 
wash your hands 
watch tv 

Figure 7. List of the 26 ADLs activities collected and accuracy per activity results 
before and after performing shrinkage using the best heuristic and c  value found. 

 



 
 

 

 
 

Table 1. Confusion matrix for the classification of the 26 ADLs using the  
shrinkage model (model#2). The letters are the same as the ones used in Figure 7. 

Rows indicate the hand-labeled class and columns indicate the predicted class 
label. 

 

5.4  Robustness to Unseen Observations by Shrinkage 

In this section, we provide experimental results showing that shrinkage 
improves model robustness when objects not found in the activity models are present 
in the sensor traces.  

The experiment is performed as follows: first, the ontology generated in the 
previous experiment was expanded to MaxParentLevel=1, and MaxChildLevel =1 as 
described in Section 2.1. This guarantees that sibling nodes will exist for each leaf 
node in the ontology tree. Secondly, the observation matrix is extended to include all 
the new leaf nodes in the ontology that were not originally present. Thirdly, two 
HMM models were generated, model#1 as described in Section 5.2, and model#2 by 
performing shrinkage over the observation matrix of model#1. Then we proceed to 
replace m% of the observations in each sensor trace for a randomly selected sibling of 
the original observation in the ontology. Figure 8 shows three examples of the 
original, and modified ADLs sensor traces. The modified sequences are then 
concatenated into a single sequence, and the hidden sequence of states is computed 
running the Viterbi algorithm using models #1, and #2. The overall accuracy is 
computed as the number of observations whose inferred label matched ground truth 
divided by the total number of observations. Similarly the accuracy per activity is 
calculated by dividing the number of observations inferred correctly for each activity 
divided by the total number of observations for each activity. 

 



 
 
 

 
Activity Original and Replaced Traces 

Brushing teeth Original:  light  toothpaste floss light 
Replaced: light tooth_powder floss lamp 

Watching TV Original:  remote  magazine remote magazine 
Replaced: remote  newspaper remote newspaper 

Watching TV 
BAD EXAMPLE 

Original:  television couch remote couch 
Replaced: television sofa water_cooler lawn_chair 

Figure 8. Example sequences where 50% of the observations were replaced 
 

Figure 6b shows a plot comparing the overall accuracy versus the percentage 
of replaced observations for the two models. From this plot we can observe that (1) 
the accuracy of model#2 is always greater than that of model#1, and (2) when 100% 
of the observations are replaced, the accuracy of model#2 drops only 33% (from 48% 
to 32%) when the accuracy for model#1 drops 91.66% (from 42% to 3.8%, which is 
equivalent to random guessing).     

6   Conclusions 

In this paper, we have presented a completely unsupervised approach to 
activity recognition that uses activity models automatically mined from the web in 
combination with shrinkage over an object ontology extracted from WordNet. The 
novelty of this approach relies on the fact that high level information is incorporated 
using shrinkage which provides the following benefits: (1) an improved accuracy by 
re-estimating the object observation probabilities of the mined models. We achieve an 
improvement of 15.11% in the overall accuracy in Section 5.3. (2) An approach to 
activity classification that requires no real sensor traces or training data, however, if 
training sequences are available, shrinkage can further improve accuracy. This is 
shown in Section 4.1 by simulation, where shrinkage reduces the number of training 
examples required to achieve a particular log-likelihood value from 70 to 1. Model 
parameters learned using shrinkage are closer to the true model as measured by the 
KL divergence between the true model, and the learned model. (3) And finally, the 
ability to reason about objects that are not present in the mined activity models but 
are used while performing an activity. This is achieved by estimating observation 
probability for the objects not present in the models by shrinking them towards the 
objects found in the models using the ontology. This is exemplified by showing that 
when 100% of the observations in real sensor traces are replaced, accuracy drops 
91.66% for a model not using shrinkage, and only 33%, when shrinkage is used.  
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