
Building Reliable Activity Models Using Hierarchical
Shrinkage and Mined Ontology

Emmanuel Munguia Tapia1, Tanzeem Choudhury2 and Matthai Philipose2

1 Massachusetts Institute of Technology
1 Cambridge Center 4FL

Cambridge, MA, 02142, USA
emunguia@mit.edu

2Intel Research Seattle

1100 NE 45th St., 6th Floor
Seattle, WA, 98105, USA

{tanzeem.choudhury, matthai.philipose}@intel.com

Abstract. Activity inference based on object use has received considerable
recent attention. Such inference requires statistical models that map activities to
the objects used in performing them. Proposed techniques for constructing
these models (hand definition, learning from data, and web extraction) all share
the problem of model incompleteness: it is difficult to either manually or
automatically identify all the possible objects that may be used to perform an
activity, or to accurately calculate the probability with which they will be used.
In this paper, we show how to use auxiliary information, called an ontology,
about the functional similarities between objects to mitigate the problem of
model incompleteness. We show how to extract a large, relevant ontology
automatically from WordNet, an online lexical reference system for the English
language. We adapt a statistical smoothing technique, called shrinkage, to
apply this similarity information to counter the incompleteness of our models.
Our results highlight two advantages of performing shrinkage. First, overall
activity recognition accuracy improves by 15.11% by including the ontology to
re-estimate the parameters of models that are automatically mined from the
web. Shrinkage can therefore serve as a technique for making web-mined
activity models more attractive. Second, smoothing yields an increased
recognition accuracy when objects not present in the incomplete models are
used while performing an activity. When we replace 100% of the objects with
other objects that are functionally similar, we get an accuracy drop of only 33%
when using shrinkage as opposed to 91.66% (equivalent to random guessing)
without shrinkage. If training data is available, shrinkage further improves
classification accuracy.

1 Introduction

Automated reasoning about human activity is central to a variety of pervasive
computing usage models and applications. Usage models include activity-aware

actuation, proactive reminding, automated activities-of-daily-living (ADL)
monitoring and prompting, embedded health assessment, computer supported
coordinated care giving, and task monitoring and prompting in the workplace.
Specific applications that have been proposed include the automated control of
HVAC and home entertainment systems based on current user activity, automated
filling of medical forms about activities of elderly users, delivery of information
about care recipients’ behavior via shared scheduling tools, and the semi-automated
evaluation of student performances of standard medical procedures. For these
applications to be practical, the underlying activity recognition module often needs to
detect a wide variety of activities (people may routinely perform dozens to hundreds
of relevant activities a day, for instance) performed in many different ways, under
many different environmental conditions; the particular aspects of the activity that are
of interest (e.g. user motion, task progress, object usage or space usage) also vary
widely across applications. Such robust recognition across a variety of activities and
their variations has proved to be difficult to engineer.

A central challenge underlying activity recognition is that of bridging the gap
between conventional sensors and informative high-level features such as objects
used, body motion and words spoken. The most common approach is to use a few
(typically one per room or user) very rich sensors such as cameras and microphones
which can record very large quantities of data about the user and their environment.
Although in principle the data captured by these sensors should be as useful as that
captured by the key human senses of sight and hearing, in practice the task of
extracting features from rich low-level representations such as images has proved to
be challenging in unstructured environments. A popular alternate approach is to use
specialized sensors (of the order of one per user) such as accelerometers and location
beacons to get precise information about a particular small set of features related to
the user, such as limb-movement and user location. The simplicity, however, comes
at a price: by ignoring the environment of the user, these sensors limit the number of
activities they can discriminate between. The inability to distinguish between opening
a dishwasher and opening a washing machine can be a deciding factor in
discriminating between the corresponding activities.

Recent years have seen the emergence of a third approach to sensing that may be
termed dense sensing. Exploiting advances in miniaturization and wireless
communication, this approach attaches sensors directly to many objects of interest.
The sensors are either battery-free wireless stickers called Radio Frequency
Identification (RFID) tags[1-3] or small wireless sensor nodes powered by
batteries[4, 5]. The sensors transmit to ambient readers the usage of the objects they
are attached to by detecting either motion or hand-proximity to the object. Further,
since each sensor has a unique identifier, information about the object that does not
change (such as its color, weight or even ownership), which would conventionally
have to be discerned by sensors, can be associated in a directly machine readable way
with the object. The reliable sensing of detailed object use enabled by dense sensing
has a few advantages. First, for very many day-to-day activities, the objects used
serve as a good indicator as to which activity is being performed. Second, the objects
used remain fairly invariant across different ways of performing these activities.
Third, since the sensors detect the features quite well regardless of most

environmental conditions, activity recognition can be robust to changes in these
conditions. Finally, objects used can serve as a powerful cue as to other aspects of
interest: if a hammer or a knife is known to be in use, the space of possible user
motions is highly constrained.

Systems based on dense sensors model activities in terms of the sequence of
objects used, typically using generative Bayesian representations such as Hidden
Markov Models (HMM’s)[6-8] or Naïve Bayesian models[9]. Models for individual
activities in these representations are generated in one of three ways. The simplest,
and least scalable, approach is to construct the model by hand: an application
designer can simply list the objects expected to be used in an activity of interest,
along with the probability of use. A conventional alternative is to learn the model by
performing the activity in a variety of exemplary ways, labeling traces of objects used
during the performances with the corresponding activities, and using supervised
machine learning techniques to learn the corresponding model. A final approach is to
note that the model is essentially a probabilistic translation between the activity name
and the names of objects used, and to mine large text corpora such as the web to
obtain these translations. The approaches are not mutually exclusive. For instance,
both hand-made and web-mined models can be used as priors which are further
customized using observed data.

All three approaches to constructing models suffer from what may be termed the
model incompleteness problem: the models they produce have objects that are either
missing or that have inappropriate probabilities. Incomplete models can, of course,
result in faulty inference. Humans who hand-write models typically do not have the
patience (and often the judgment) to list all objects that may be used in an activity,
especially when alternate or obscure objects need to be considered: the model for
“making tea” may mention neither “coffee cup” nor “honey”. Further, the probability
of use ascribed to unfamiliar objects may be quite skewed. Similarly, given the
inconvenience of generating labeled examples of all (or most) possible ways to
execute an activity, it is likely that uncommon objects will be missing or under-
represented. Finally, when models are mined from the web, the vagaries of the web
may result in certain objects (e.g. “cup”) being ascribed vastly higher probabilities
than others (e.g. “teacup”).

The use of objects as the underlying features being modeled suggests a simple
approach to countering incompleteness. Intuitively, we can exploit common sense
information on which objects are functionally similar. If the model ascribes very
different probabilities to two very similar objects, we can “smooth” these
probabilities into more similar values. As a degenerate case, if the model omits an
object while incorporating very similar ones, we can postulate that the omitted object
is likely to be observed in the model. We show below how to realize this idea in a
completely unsupervised way and provide evidence that the idea is quite effective.
Earlier work [7, 10] has used manually extracted hierarchy to incorporate the notion
of object similarity into activity models. In this paper, we show how to extract
relevant information on the functional similarity of objects automatically from
WordNet, an online lexical reference system for the English language. The similarity
information is represented in a hierarchical form known as an ontology. Given the
similarity measure provided by the ontology, we formalize the above intuitive notion

of smoothing by adapting from statistics a technique called shrinkage. Shrinkage is a
well established technique for estimating parameters in the presence of limited or
missing training data and has been successfully used in classifying text documents
[11, 12], in modeling the behavior of web site users [13], and in service-oriented
context-aware middleware applications [14]. We use a mixture of real-world data and
synthetic data to evaluate our system. Our results show that our techniques have three
benefits. First, mined models that are smoothed recognize activities with significantly
higher accuracy than those that are not. Second, models that are learned from data can
make do with significantly less training data when smoothing is applied versus when
it is not. Third, when faced with test data that contains objects not seen in training
data, but that are similar to those in the model, smoothing yields substantially better
recognition rates.

This paper begins by describing the procedure for automatically extracting
the ontology of objects from WordNet in Section 2. Then, Section 3 covers the
algorithm used for performing shrinkage over the ontology of objects. Section 4
shows the results of running simulated experiments over a large ontology of objects,
and Section 5 of experiments ran over real sensor data. Finally, Section 6 summarizes
the main results and conclusions drawn from this work.

2 Automatic Ontology Extraction from WordNet

WordNet [15] is a hierarchically organized lexical system motivated by current
psycholinguistic theories of human lexical memory. WordNet resembles a thesaurus
more than a dictionary since it organizes lexical information in terms of word
meanings (or senses), rather than word forms. In WordNet, nouns, verbs, adjectives
and adverbs are organized into synonym sets called synsets, each representing one
underlying lexical concept. For example the noun couch in WordNet has three senses
or word meanings, and the synset corresponding to the first sense {couch#1} defined
as ‘an upholstered seat for more than one person’ is {sofa, couch, lounge}. The
sense number in WordNet indicates the frequency of use, where 1 corresponds to the
most commonly used.
 The real power and value of WordNet relies on the way different semantic
relations link the synonym sets (or word senses). Currently, WordNet comprises the
following kinds of semantic relations between word meanings: (1) hypernyms, (2)
hyponyms, (3) meronyms, and (4) holonyms. Two of these semantic relations are
especially important for their usefulness in extracting a semantic hierarchy or an
ontology of objects: hyponyms, and hypernyms. Hypernyms are is-a relationships
were the meaning of a word is a superset of another. For example, {cooking
utensil#1} is a superset or hypernym of {pan#1}. On the contrary, hyponyms are
inverse-is-a relationships were the meaning of a word is a subset of the meaning of
another. Figure 1 shows examples of the hypernyms tree for three everyday objects.

WordNet organizes nouns into a set of 25 semantic primes or unique
beginners of separate hierarchies. Five of these unique beginners are particularly
important because they encompass all possible natural and man made objects {non-
living things, objects}, and living organisms commonly used in meal preparation

{living thing, organism}. These five semantic primes are: {natural object}, {artifact},
{substance}, {food}, and {plant, flora}. All these unique beginners are hyponyms or
subsets of the more abstract concept {entity}.

Figure 1. Hypernyms tree for three objects: Coffeepot, eyeliner, and cheese.

Since all the physical objects of interest found in everyday environments are

subsets or hyponyms of {entity}, a tree-like ontology of objects can be automatically
extracted. This follows from the lexical tree (free of circular loops) design imposed
over the nouns by the creators of WordNet.

As of September 2005, WordNet 2.1 contains approximately 117,097 noun
word forms organized into approximately 81,426 word meanings (synsets) that make
WordNet a unique and rich semantic database for recovering complete ontology of
objects automatically.

2.1 Ontology Extraction Algorithm

The generation of the ontology or hierarchy of objects can be divided in two
steps (1) the generation of the ontology skeleton, and (2) the expansion of the
ontology. In order to generate the ontology skeleton, an initial list of objects of
interest is required. In the context of our work, this initial list of objects is the list of
all objects that appear in the mined activity models (or activity recipes) plus all the
objects (RFIDs object labels) found in the sensor traces. The ontology skeleton
generation algorithm proceeds as follows: (i) since everyday tangible objects
correspond to nouns in natural language, we proceed to search the objects or words of
interest in the noun files of WordNet, and (ii) once the noun has been found, we
proceed to automatically select the sense of the word by looping through all the
senses of the word until finding the first sense that is a hypernym or subset of
{entity}. As discussed in the previous section, the node {entity} includes as subsets all
possible natural and man made objects and living organisms commonly used in meal
preparation. This guarantees that the selected sense will be the most commonly used
sense that is also a physical object.

After the appropriate word sense has been selected, we proceed to find the
hypernym tree or superset (parent) nodes of the selected sense of the word (or object).
It is important to notice that some words may have multiple parents (who are
descendants of entity) at the same level of the hypernyms tree, since in the previous
step, we only ensured that the leaf node has a unique sense that is a descendant of the
{entity} node. Figure 1 shows an example of such case for the object cheese. In
situations when multiple parents are found at the same level in the hypernyms tree,

only the first one is considered for being the most common, and the other ones are
discarded. In practice we have found that this does not represent a major problem in
extracting the hierarchy of objects. When the ontology is generated, a synonyms file
is also generated so that any synonym of a word can be used while performing search
operations in the ontology. For example, the synset for the object cleaner is
{cleansing_agent, cleanser, cleaner}.

It is important to note that in order to perform shrinkage, the ontology must
not have any loops. Our algorithm generates a tree structured ontology by only
selecting word senses that are hyponyms or subsets of the concept node {entity} and
by ensuring each node has a unique parent. Thus, the node {entity} having the single
sense: ‘that which is perceived or known or inferred to have its own distinct existence
(living or nonliving)’ correspond to the root node, and the highest abstraction level of
the ontology. Also note that the leaf nodes or most specific terms in the ontology will
correspond to the objects provided in the original list.

Once the ontology skeleton has been generated, it is useful to expand the
ontology to accommodate for possible objects that might be used while performing an
activity, but were not provided in the original list of objects. The expansion of the
ontology consists of finding all the ancestor (parents) nodes for all the ontology leaf
nodes up to a specified level MaxParentLevel. Then, we proceed to find all the
hyponyms (children nodes) of those ancestor nodes up to a maximum depth level
MaxChildLevel. By performing this procedure, we create sibling nodes for the leaf
nodes of our original ontology that might appear in sensor traces in the future. Figure
2 shows a simplified version of the pseudo-code for extracting the ontology from
WordNet.

 //GENERATION OF ONTOLOGY SKELETON
 For i:=1 to objectList.length(){
 object = objectList(i);
 word = find_word_in_wordnet_noun_file(object);
 If(!empty(word)){
 For j:=1 to word.getSenses.length(){
 wordsense = word.getSense(j);
 If(wordsense.ishypernym(“entity”)) break;
 }
 hypernyms = getHypernymsTree(wordsense);
 ontologytree.addNodes(hypernyms);
 }

 //ONTOLOGY EXPANSION
 For i:=1 to ontologytree.getLeafNodes().length(){
 Node = ontologytree.getLeafNode(i);
 ancestors = getHypernymsTree(Node, MaxParentLevel);
 For j:=1 to ancestors.length{
 Hyponyms = getHyponymsTree(ancestors(j), MaxChildLevel);
 ontologytree.addNodes(hyponyms);
 }
 }

Figure 2. Simplified version of the pseudo-code for automatically extracting
the ontology of objects from WordNet.

3 Shrinkage over the Hierarchy of Objects

Shrinkage [16] is a well established statistical technique for improving
parameters values estimated for a given model, when they can not be computed
reliably from training data alone. By exploiting the similarity between nodes in a
hierarchy, shrinkage estimates new parameter values for child nodes by linearly
interpolating the values from the child node to the root node [11]. This represents a
trade-off between specificity and reliability. The child node estimate is the most
specific (low bias), but high variance (less reliable), and the root node is the most
reliable (low variance), but general (high bias). By combining these estimates we can
end up with a better and more reliable model.

In this work, we use shrinkage to create improved probability estimates of
the leaf nodes of the ontology. Our assumption is that the leaf nodes in our ontology
represent)|(ji aoP , the probability estimates of observing an object Ooi ∈ during the
performance of an activity Aa∈ , and that the hierarchy structure characterizes the
functional similarity between objects. We denote)|(~

ji aoP the new probability
estimates of observing an object given an activity class, and we compute them as
follows:

(1))|()|(...)|()|(~
0

00 ∑
=

=++=
k

l
j

ll
j

kk
jiji aoPcoPaoPaoP

it
λλλ

)|(ji
l aoP denotes the maximum likelihood (ML) probability estimate of a node at

level l in the leaf (0=l) to root (kl =) path. The interpolation coefficients
(weights) are denoted { }kλλλ ,..., 21 where ∑ =

=

k

l

l

0
1λ . j denotes the activity class

number, and i the object used. The ML probability estimates at each node are
computed using the following equation:

(2)
),(

),()|(

1
∑
=

= O

s
s

i
ji

aoN

aoNaoP

where),(aoN i is the number of times object io occurs in activity a , and O denotes
the set of all possible objects.

3.1 Determining Mixture weights

The weights { }kλλλ ,..., 21 used during shrinkage balances the influence of the
nodes containing specific information but little training data, with those nodes
containing more generic information but larger amounts of training data. The mixture
of weights can be computed in one of the following ways: (1) uniformly where all the
weights are equal (2) by applying the Expectation-Maximization algorithm (EM) as
in [11] to find the weights that maximize the likelihood of the data or (3) using
heuristics schemes that are a function of the rank (level) of the node in the ontology
[13].

 Since the goal of this work is to have a completely unsupervised approach to
activity recognition where no sensor traces are available, we decided to estimate the
weights using the following heuristics: (1) levellevel c/1=λ , and (2) levelclevel e ⋅−=λ , where

c is a constant. These heuristics correspond to exponentially decaying functions that
will assign large weights to nodes in the neighborhood of the leaf node, and low
weights to the generic nodes found in the upper levels of the ontology.

//ASSIGNING COUNTS TO LEAF NODE IN ONTOLOGY
ontology.setLeafNodeCounts(modelsObjectProbs*Factor);
//COMPUTE MAXIMUM LIKELIHOOD COUNTS FOR INTERNAL NODES
 internalNodes = ontology.getInternalNodes();
 For node:=1 to internalNodes.length(){
 inode = internalNodes(node);
 childrenLeaves = getChildrenLeafNodes(inode);
 inode.setMLCount(getCountsSum(childrenLeaves));
 }

 //OBTAIN LEAF NODES SMOOTHED COUNTS BY SHRINKAGE
 leaves = ontology.getLeafNodes();
 For leaf:=1 to leaves.length(){
 lnode = leaves(leaf);
 nodes = getNodes2RootNode(lnode);
 For l:=0 to nodesPath.length()-1{
 lambda = ComputeHeuristics(level);
 If(level==0) //if leaf node
 SmoothCount = lambda*lnode.getCounts();
 Else{ //if internal node
 //substract node counts to reduce dependency
 counts = nodes(l).getCounts()-nodes(l-1).getCounts();
 smoothCount = smoothCount + lambda*counts;
 }
 }
 lnode.setCounts(smoothCounts);
 }

Figure 3. Pseudo-code for performing shrinkage over the ontology of objects.

The use of shrinkage over the ontology of objects in our unsupervised
approach provides two main benefits: (1) it improves the probability estimates in the
leaf nodes by taking advantage of the functional relationship of objects represented
by the ontology. The effect of this improvement is a reduction in the number of
training examples required to achieve a desired accuracy. If the number of training
examples is kept constant, an increased accuracy will be observed by performing
shrinkage; (2) shrinkage provides robustness when objects not present in the activity
models are used while performing an activity. This effect is achieved by creating
object observation probability estimates for those objects not present in the models by
shrinking them towards the objects present in the models using the ontology. This
means that we are able to compute educated probability estimates for unseen objects
when it was not previously possible.

The pseudo-code for performing shrinkage over the ontology of objects is
shown in Figure 3, and consists on the following steps: (1) set the object observations
(counts) for each leaf node by converting object probabilities to counts by
multiplying them by a factor (2) compute the maximum likelihood counts for all the
internal (non-leaf) nodes and (3) compute the smoothed count (shrinkage) for all the
leaf nodes using equation 1. The counts are converted back to probabilities by
normalizing them.

4 Experimental Results: Effect of Limited or Missing Data

In this experiment, we test the effectiveness of shrinkage over a large
ontology of objects when we have limited training data or missing objects. We use
Hidden Markov Models (HMMs) to parameterize the activities and assume that the
objects used during an activity appear on the leaf nodes of the ontology. This
assumption is plausible since usually one interacts with a specific instance of an
object during an activity and not the broader abstract category. HMMs are a particular
type of dynamic Bayesian Networks (DBNs) consisting of three parameters: (1) prior
probabilities for each stateπ , (2) a state transition probability matrix T , and (3) the
observation probabilities for each state B . The observation matrix represents the
object observation probabilities for a given activity. Our experimental results show
that shrinkage over the HMM object emission probabilities helps not only in reducing
the number of training examples required to achieve a given accuracy, but also in
providing robustness when objects not present in the activity models are used.

The ontology used in this experiment was generated from a list of 815
objects used in performing household activities. The list was obtained from objects
appearing in the mined activity models, and sensor traces used in [1]. The ontology
consists of 4188 nodes, 815 leaf nodes, and has a maximum depth of 14. The results
presented in this section are based on simulated sensor traces (i.e. sampled from a true
model that we create and not from actual observations from people). However, the
ontology contains representative information about objects used during performing
everyday activities. In the next section we will present results on using shrinkage in
real sensor traces obtained from multiple individuals.

The experiment proceeds as follows: We first create a true activity model
model#0 represented by a 3 state HMM (3 subtasks in activity) with random prior,
transition, and observation matrices. Next, we generate training data by sampling n
number of sequences from model#0. We learn the model parameters from the training
data in two ways: (i) by computing the maximum likelihood estimate of the prior

)(π , transition)(T , and observation)(B matrices (model#1) and (ii) by re-estimating
the observation matrix)(B using shrinkage (model#2) and ll e ⋅−= 5.3λ . We measure the
closeness of the learned models (model#1, model#2) to the true model model#0 by
computing the Kullback-Leibler (KL) divergence between the observation matrices of
model#0, and model#1, and model#2, respectively. The KL divergence q)||D(p is a
measure of the similarity between two probability distributions p and q . The smaller
the KL divergence, the more similar the compared distributions are. Finally, we
compute the log-likelihood for models #1 and #2 on a test dataset sampled from the
true model #0.

4.1 Reducing the number of training examples by shrinkage

The plots in Figure 4 were generated by iteratively increasing n , the number
of training sequences, to learn parameters for models #1and #2. Figure 4a shows the
log-likelihood computed over the test sequences (50 of length 13) using the learned

models. The higher the log-likelihood, the better the model explains the test dataset,
which in turn leads to higher accuracy. By inspection of Figure 4a, we note that 70
training examples are required by model#1 to achieve the same log-likelihood that
model#2 achieves using a single training sequence. This is an important result
because it shows that shrinkage can dramatically reduced the number of training
examples required to achieve a specific log-likelihood. When n is greater than 100,
the log-likelihood of model#1 is higher than model#2 for the specific test dataset.
However, Figure 4b shows that the KL divergence is lower for model#2 up to
when 675=n . This signifies that shrinkage model#2 is a closer match to the true
model#0 and will explain new test data more often, when trained on less than
675 example sequences. When we have enough representatives training examples the
maximum likelihood (ML) solution will converge to the true model and shrinkage
will not improve the parameter estimates anymore. Although, depending on the
complexity of the model the number of training data required to have a reliable ML
solution may be huge.

50 100 150 200 250 300
-1800

-1700

-1600

-1500

-1400

-1300

-1200

-1100

-1000

-900

Number training sequences

lo
g-

lik
el

ih
oo

d

model#1
model#2 using shrinkage

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Number training sequences

K
L-

D
iv

er
ge

nc
e

model#1
model#2 using shrinkage

(b)

Figure 4. (a) Log-likelihood, and (b) KL-Divergence between the baseline HMM
model, learned model, and learned model using shrinkage over the ontology.

4.2 Robustness to unseen objects by shrinkage

Often it might be the case that the initial model specifies the use of an object
during an activity (e.g. use of teacup while making tea) which is later substituted by a
functionally similar object (e.g. mug). If the activity model does not incorporate the
similarity between a teacup and a mug then the model won’t be able to correctly
identify the activity making tea when a mug is used. In this experiment, we simulate
the use of objects not present in the activity models by modifying the observations in
the sequences sampled from model#0 in the previous experiment. The modification
consists of replacing %m of observations by observations of one of their randomly
selected sibling nodes in the ontology.

This simulates the effect of having observed the sibling nodes (objects) in the
sequences rather than the original leaf nodes. Once the replacements have been
performed, we proceed to learn the transition, and observation matrices from the
training sequences for models #1 and #2. Figure 5 shows the resulting plots for the

likelihood over the test sequences and the KL divergence when the percentage of
replaced observations is modified from 0% to 100%. The fact that the likelihood is
always greater, and the KL divergence smaller for model#2 than for model#1
corroborates the usefulness of shrinkage when unseen objects in our models are used.

10 20 30 40 50 60 70 80 90 100

-7000

-6500

-6000

-5500

-5000

Percentage of replacements

lo
g-

lik
el

ih
oo

d

model#1
model#2 using shrinkage

(a)

0 10 20 30 40 50 60 70 80 90

6

8

10

12

14

16

18

20

Percentage of replacements

K
L-

D
iv

er
ge

nc
e

model#1
model#2 using shrinkage

(b)
Figure 5. (a) Log-likelihood, and (b) KL-Divergence between the baseline

HMM model, learned model, and learned model using shrinkage over the ontology.

5 Experimental Results: Performance on Data Collected from
Multiple Individuals

In this section, we show the benefit of incorporating high level information
into activity models using shrinkage over an ontology and measure the performance
in real sensor traces. To get the initial models, we adopt the procedure followed in [6]
to mine activity models from the web, compute object observation probabilities, and
to perform inference using hidden Markov models. We extend the work done in [6]
by showing how to improve the quality of the mined models without requiring
additional training data and how to deal with novel unseen objects.

Data Collection

The sensor data used in this experiment has already been used in [1, 6], thus,
allowing us to compare our results against this work. In this data collection, over one
hundred everyday objects in a real home were instrumented with passive RFID tags.
Objects tagged include silverware, cooking utensils, hygienic products, and furniture
among others. Over a period of six weeks, nine non-researcher subjects spent a single
20-40 min session to collect data by carrying out 14 activities of their choice out of a
provided list of 65 activities of daily living (ADLs) while wearing a glove equipped
with an RFID reader. In practice, the subjects selected to perform only the 26
activities shown in Figure 7.

5.2 Mining Activity Models from the Web

Given a set of activities A , the authors of [4] mine the list of objects O used for
each activity a , and their corresponding usage probabilities)|(AaOoP ∈∈ from the
web. The primary assumption underlying the mining process is that textual
description of activities on the web reflects the performance of activities in everyday
life. The mining process mainly consists in the following steps: (1) First, find
instructional or “how to” web pages P~ that contain a detailed description on how to
perform each activity in A . (2) Second, extract the set of objects mentioned in each
page by identifying nouns phrases (using a part of speech tagger), these nouns will be
hypernyms or subsets of {object} or {substance} in WordNet. For each extracted
object, the probability that the extraction denotes a physical object is computed
as)()|(, nounpnounobjectpw pi = . In this equation,)(nounp is the probability that the
last word of the noun phrase is a noun as assigned by the POS tagger, and

)|(nounobjectp is computed by dividing number of occurrences of noun senses that
are hypernyms of {object} or {substance} by the total number of occurrences of all
noun senses. It is possible for a single object to have multiple weights by appearing
several times in a single page, the final weight used is the average weight piw ,ˆ .
Finally, the object probabilities)|(aiop are computed as the fraction of pages in
which the object io appeared weighted by its average extraction score on each page,
i.e.:

∑=
p piw

P
aiop ,ˆ~

1
)|(

The common sense information mined (activity recipes, and object
observation probabilities) is compiled into an HMM for the task of activity inference.
Each activity A is represented as one internal state in the HMM, and the object usage
probabilities mined are used as the set of observations for each state)|(jiji aoPB = .
For the transition matrixT , an expected activity duration 5=γ is assumed, thus, all
self-transition probabilities are set to γ11−=jjT . The remaining probability mass is
uniformly distributed over the transitions to all other states. Finally, the prior state
probabilities π are set to the uniform distribution over all activities. Using this
representation, the classification task simply consists of inferring the most likely
sequence of internal states by running the Viterbi algorithm over the sequences of
observations. For more details about mining models from the web please see [4].

5.3 Improving Object Probabilities by Shrinkage

This experiment demonstrates the usefulness of shrinkage in improving the
classification accuracy. First, we proceeded to generate the ontology from the list of
68 objects in the mined models and the sensor traces in [6]. Then, we construct two
HMM models, model#1 as described in Section 5.2, and model#2 by performing
shrinkage over the observation matrix of model#1. Finally, we search over the values

of c to find the optimal value for the two heuristic functions (H1) levelclevel e ⋅−=λ , and
(H2) levellevel c/1=λ .

The plots in Figure 6a show the results for various values of c . In these
plots, we observe that the maximum accuracy obtained is 48.35%, located at

[]18,16=c for heuristics (H2). This accuracy represents an improvement of 15.11%
over the accuracy obtained using model#1 (42%). This is an important result, because
in [6] the authors also describe a procedure to learn from the sensor traces. Based on
the segmentation obtained using mined models, new model parameters are learned
using 126 sensor traces, which improve the accuracy of model#1 by 19.2%. Here we
have shown that just performing shrinkage and without using sensor data whatsoever,
we achieve an improved accuracy of 15.11%. Consequently, we believe learning for
sensor traces will further improve the accuracy. Figure 7 presents the accuracy per
class results before and after performing shrinkage. Table 1 presents the confusion
matrix as computed over the 65 segmented examples of the 26 ADLs.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

50

H1 Heuristic constant c

A
cc

ur
ac

y

model#2 H1

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

H2 Heuristic constant c

model#2 H2
model#1

(a)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50
Accuracy vs percentage of replaced observations

Percentage of replaced observations

A
cc

ur
ac

y

model#1
model#2 using shrinkage

(b)

Figure 6. (a) Accuracy results after performing shrinkage using different
constant values c in the heuristics, (H1) levelclevel e ⋅−=λ , and (H2) levellevel c/1=λ and
(b) Accuracy vs. percentage of replaced observations using model#1 and model#2.

a b c d e f g h i j k l m n o p q r s t u v w x y z
0

10

20

30

40

50

60

70

80

90

100
Accuracies per class

model#1
model#2

A
B
C
D
E
F
G
H
I
J
K
L
M

adjust thermostat
boil water in microwave
brew a pot of tea
brush your hair
brush your teeth
change a baby’s diaper
clean a toilet
clean the bathroom
clean the kitchen
do laundry
dress a baby
drink water
load and run a
dishwasher

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

make peanutbutter jelly
sandwich
make a snack
play solitaire
put on make up
read a magazine
shave your face
take vitamins
use microwave
use the telephone
use toilet
vacuum carpets and floors
wash your hands
watch tv

Figure 7. List of the 26 ADLs activities collected and accuracy per activity results
before and after performing shrinkage using the best heuristic and c value found.

Table 1. Confusion matrix for the classification of the 26 ADLs using the
shrinkage model (model#2). The letters are the same as the ones used in Figure 7.

Rows indicate the hand-labeled class and columns indicate the predicted class
label.

5.4 Robustness to Unseen Observations by Shrinkage

In this section, we provide experimental results showing that shrinkage
improves model robustness when objects not found in the activity models are present
in the sensor traces.

The experiment is performed as follows: first, the ontology generated in the
previous experiment was expanded to MaxParentLevel=1, and MaxChildLevel =1 as
described in Section 2.1. This guarantees that sibling nodes will exist for each leaf
node in the ontology tree. Secondly, the observation matrix is extended to include all
the new leaf nodes in the ontology that were not originally present. Thirdly, two
HMM models were generated, model#1 as described in Section 5.2, and model#2 by
performing shrinkage over the observation matrix of model#1. Then we proceed to
replace m% of the observations in each sensor trace for a randomly selected sibling of
the original observation in the ontology. Figure 8 shows three examples of the
original, and modified ADLs sensor traces. The modified sequences are then
concatenated into a single sequence, and the hidden sequence of states is computed
running the Viterbi algorithm using models #1, and #2. The overall accuracy is
computed as the number of observations whose inferred label matched ground truth
divided by the total number of observations. Similarly the accuracy per activity is
calculated by dividing the number of observations inferred correctly for each activity
divided by the total number of observations for each activity.

Activity Original and Replaced Traces

Brushing teeth Original: light toothpaste floss light
Replaced: light tooth_powder floss lamp

Watching TV Original: remote magazine remote magazine
Replaced: remote newspaper remote newspaper

Watching TV
BAD EXAMPLE

Original: television couch remote couch
Replaced: television sofa water_cooler lawn_chair

Figure 8. Example sequences where 50% of the observations were replaced

Figure 6b shows a plot comparing the overall accuracy versus the percentage
of replaced observations for the two models. From this plot we can observe that (1)
the accuracy of model#2 is always greater than that of model#1, and (2) when 100%
of the observations are replaced, the accuracy of model#2 drops only 33% (from 48%
to 32%) when the accuracy for model#1 drops 91.66% (from 42% to 3.8%, which is
equivalent to random guessing).

6 Conclusions

In this paper, we have presented a completely unsupervised approach to
activity recognition that uses activity models automatically mined from the web in
combination with shrinkage over an object ontology extracted from WordNet. The
novelty of this approach relies on the fact that high level information is incorporated
using shrinkage which provides the following benefits: (1) an improved accuracy by
re-estimating the object observation probabilities of the mined models. We achieve an
improvement of 15.11% in the overall accuracy in Section 5.3. (2) An approach to
activity classification that requires no real sensor traces or training data, however, if
training sequences are available, shrinkage can further improve accuracy. This is
shown in Section 4.1 by simulation, where shrinkage reduces the number of training
examples required to achieve a particular log-likelihood value from 70 to 1. Model
parameters learned using shrinkage are closer to the true model as measured by the
KL divergence between the true model, and the learned model. (3) And finally, the
ability to reason about objects that are not present in the mined activity models but
are used while performing an activity. This is achieved by estimating observation
probability for the objects not present in the models by shrinking them towards the
objects found in the models using the ontology. This is exemplified by showing that
when 100% of the observations in real sensor traces are replaced, accuracy drops
91.66% for a model not using shrinkage, and only 33%, when shrinkage is used.

References

[1] M. Perkowitz, M. Philipose, D. J. Patterson, and K. Fishkin,
"Mining Models of Human Activities from the Web," in
Proceedings of The Thirteenth International World Wide Web
Conference (WWW '04). New York, USA, 2004.

[2] K. Fishkin, M. Philipose, and A. Rea, "Hands-On RFID: Wireless
Wearables for Detecting use of Objects," in Proceedings of the
Ninth Annual IEEE International Symposium on Wearable
Computers (ISWC '05). Osaka, Japan.

[3] A. Feldman, E. Munguia-Tapia, S. Sadi, P. Maes, and C.
Schmandt, "ReachMedia: On-the-move Interaction with
Everyday Objects," in Proceedings of the Ninth Annual IEEE
International Simposium on Wereable Computers (ISWC '05).
Osaka, Japan, 2005.

[4] E. Munguia-Tapia, S. S. Intille, L. Lopez, and K. Larson, "The
Design of a Portable Kit of Wireless Sensors for Naturalistic
Data Collection," in Proceedings of the 4th International
Conference on Pervasive Computing (PERVASIVE '06).,
Dublin, Ireland: Springer-Verlag, 2006., to appear

[5] E. Munguia-Tapia, N. Marmasse, S. S. Intille, and K. Larson,
"MITes: Wireless Portable Sensors for Studying Behavior," in
Proceedings of Extended Abstracts Ubicomp 2004: Ubiquitous
Computing. Vienna, Austria, 2004.

[6] D. Wyatt, M. Philipose, and T. Choudhury, "Unsupervised
Activity Recognition Using Automatically Mined Common
Sense," in The Twentieth National Conference on Artificial
Intelligence (AAAI 05'). Pittsburgh, Pennsylvania, 2005.

[7] E. Munguia-Tapia, T. Choudhury, M. Philipose, and D. Wyatt,
Using Automatically Mined Object Relationships and Common
Sense for Unsupervised Activity Recognition, Technical Report
IRS-TR-05-014, Intel Research Seattle, Seattle, WA, May 2005.

[8] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford,
"A Hybrid Discriminative/Generative Approach for Modeling
Human Activities," in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI '05), 2005.

[9] E. Munguia-Tapia, S. S. Intille, and K. Larson, "Activity
Recognition in the Home Setting Using Simple and Ubiquitous
Sensors," in Proceedings of PERVASIVE 2004, vol. LNCS 300,
B. Heidelberg, Ed.: Springer-Verlag, 2004, pp. 158-175.

[10] D. Patterson, D. Fox, H. Kautz, and M. Philipose, "Fine-Grained
Activity Recognition by Aggregating Abstract Object Usage,"
in Proceedings of The Ninth Annual IEEE International
Symposium on Wearable Computers (ISWC '05). Osaka, Japan,
2005.

[11] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng, "Improving
Text Classification by Shrinkage in a Hierarchy of Classes," in
Proceedings of the 15th International Conference on Machine
Learning (ICML-98), J. W. Shavlik, Ed.: Morgan Kaufmann
Publishers, San Francisco, US, 1998, pp. 359-367.

[12] D. Freitag and A. K. McCallum, "Information Extraction with
HMMs and Shrinkage," in Proceedings of the AAAI '99
Workshop on Machine Learning for Information Extraction,
1999.

[13] C. R. Anderson, P. Domingos, and D. Weld, "Relational Markov
Models and their Application to Adaptive Web Navigation," in
In Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2002,
pp. 143-152.

[14] T. Gu, H. K. Pung, and D. Q. Zhang, "A Service-oriented
Middleware for Building Context-aware Services," Journal of
Network and Computer Applications (JNCA '05), vol. 28, pp. 1-
18, 2005.

[15] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller,
Introduction to WordNet: An On-line Lexical Database, 1993.

[16] C. Stein, "Inadmissibility of the Usual Estimator for the Mean of a
Multivariate Normal Distribution.," in Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and
Probability.: University of California Press, 1955, pp. 197-206.

