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ABSTRACT

We explore a dense sensing approach that uses RFID sensor
network technology to recognize human activities. In our
setting, everyday objects are instrumented with UHF RFID
tags called WISPs that are equipped with accelerometers.
RFID readers detect when the objects are used by examining
this sensor data, and daily activities are then inferred from
the traces of object use via a Hidden Markov Model. In a
study of 10 participants performing 14 activities in a model
apartment, our approach yielded recognition rates with pre-
cision and recall both in the 90% range. This compares
well to recognition with a more intrusive short-range RFID
bracelet that detects objects in the proximity of the user; this
approach saw roughly 95% precision and 60% recall in the
same study. We conclude that RFID sensor networks are a
promising approach for indoor activity monitoring.
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INTRODUCTION

The ability to recognize the indoor activities of people has
long been seen as an essential capability for ubiquitous com-
puting [26]. It has applications to elder care [12], smart
hospitals [2], medication adherence [15], language learning
[3], smart kindergartens [20], smart homes [5], and more
[25]. However, general purpose activity recognition has
proved elusive, with the development of the activity recogni-
tion component being one of the most specialized and time-
consuming aspects of developing these applications. Frame-
works for activity recognition that can be easily retargeted
across a variety of daily activities are therefore of great in-
terest.
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Figure 1. A standard UHF Class 1 Gen 2 RFID tag, Intel WISP, and

Telos Mote (left to right).

One promising retargetable approach is the use of dense
sensing, where wireless sensors are attached to everyday
objects to monitor their use. This is valuable because the
knowledge of what objects are used is sufficient to identify
many daily activities [16]. Two kinds of sensors have seen
some level of validation in the past few years. Most common
[21, 27, 1] are battery-powered matchbox-sized wireless ac-
celerometers costing tens of dollars each. These are attached
to large, relatively permanent objects such as cupboard, mi-
crowave and refrigerator doors. They have the advantage
that they do not require the person being monitored to wear
or carry any new technology.

The alternate approach is to attach postage-stamp sized Ra-
dio Frequency Identification (RFID) tags to the objects and
have subjects wear a bracelet [11] that has an integrated
short-range RFID reader. The tags are inexpensive (roughly
40 cents each) and maintenance free given that they do not
contain batteries. They allow objects that are smaller and
have shorter lifetimes (e.g., toothbrushes) to be monitored.
However, they require users to remember to wear a bracelet
and may fail to detect the handling of objects with small
grasping surfaces (e.g., books) due to the 20-30 cm range
of the bracelet. Existing solutions are therefore either rel-
atively large, expensive and require regular battery replace-
ment or they require user involvement via a wearable and
objects with grasping surfaces.

In this paper, we explore a third class of sensors that
aims to provide the best of both worlds: RFID sensor net-



works based on Wireless Identification and Sensing Plat-
forms (WISPs) [6]. WISPs [18] combine passive UHF RFID
technology with traditional sensors. A current WISP is
shown alongside a commercial UHF RFID tag and a com-
mon wireless sensor node (mote) in Figure 1. The WISP has
an antenna, power-harvesting circuitry, and can be read by
standard long-range RFID readers. It uses the signal from
the reader both for communication and to obtain the entirety
of its operating energy. In addition, WISPs contain an ultra-
low power processor, memory and low power sensors such
as an accelerometer that give them capabilities similar to tra-
ditional sensor network devices.

From their inception, WISPs have been targeted at uses
that include indoor activity recognition via dense object-use
monitoring [17]. WhileWISPs are currently assembled from
discrete components that have a cost of roughly $25, they are
intended to be mass manufactured like RFID tags at price
points closer to $1. Further, integrated “reader-on-a-chip”
components that cost around $40 are now on the market re-
sulting in long-range RFID readers the size of a PCMCIA
card[23]. We expect that devices based on this technology
will cost on the order of a few hundred dollars. These ad-
vances suggest that RFID sensor networks will become a
cost effective technology for dense sensing in the near fu-
ture.

To date, however, performance limitations have made
WISPs unsuitable for activity recognition. The primary lim-
itations have been low power harvesting efficiency and high
energy usage. This resulted inWISPs that operate only when
very near the reader. Consequently, every WISP-based sys-
tem presented in the literature to date has involved a sin-
gle tag with a proximal (typically 1-2 meters away) reader,
e.g., [19, 14]. Fortunately, steady hardware and software im-
provements (e.g., a lower power microprocessor and more
efficient duty cycling) have resulted in WISPs that provide
sensor reads at moderate range (up to 3 meters) with rea-
sonable levels of reliability. This in turn holds the poten-
tial for activity recognition that has performance compara-
ble to the existing systems based on wearables or that use
battery-powered sensors, but without the drawbacks of user-
involvement, expense, or maintenance.

To evaluate RFID sensor networks for activity recognition,
we prototyped a system that gathers object-use data in an
apartment fromWISPs and then infers daily activities with a
simple HiddenMarkovModel (HMM). We do this through a
deployment of 25 WISPs and three RFID readers in a model
studio apartment. We recruited 10 users to perform 14 daily
activities in our model apartment and we compared our ac-
tivity recognition with a bracelet approach.

We make two main contributions. First, we characterize the
behavior and performance of an ensemble of WISPs when
deployed in a realistic scenario. We find that WISP behav-
ior is well within the regime where practical dense sensor
deployments are feasible. Most importantly, the measured,
consistent 3-4 meter read range implies that spaces to be
monitored can be covered with a small number of readers.

Our second contribution is the experimental study using our
deployment for activity detection. Over the ten users and 14
tasks, recognition rates are in the 90% range for precision
and recall. This indicates that RFID sensor networks are
promising for activity recognition. In comparison, a parallel
bracelet-based system using the same user activity achieves
higher precision but lower recall; we provide a more detailed
performance breakdown and comparison later in the paper.

The rest of this paper is organized as follows. We describe
our activity recognition system in the next section, followed
by the details of our deployment in Section 3. Then we eval-
uate the read range and reliability of the WISP deployment
in Section 4, followed by the overall activity recognition per-
formance in Section 5. We discuss future directions and re-
lated work, then conclude.

ACTIVITY DETECTION SYSTEM DESIGN

Our behavioral monitoring system comprises two parts, an
RFID sensor network (RSN) that gathers sensor data from
the environment and an inference engine that classifies activ-
ities based on this sensor data. The RSN consists of WISPs
and RFID readers. Below, we provide more specifics on the
components of our system.

Wireless Identification and Sensing Platform (WISP)

Prototype WISPs have been developed by Intel Research
Seattle, and we expect to see sensing and general purpose
computation in commercial tags in the future. The most
recent Intel WISP, shown in Figure 1, is a battery-free,
wirelessly powered platform for sensing and computation.
WISPs are powered by and communicate with EPC “Gen 2”
RFID readers, and so leverage a widely adopted infrastruc-
ture.

Computation is provided by a fully programmable ultra-low-
power 16-bit flash micro-controller with an analog to digital
converter. This WISP includes 32K of flash program space,
a 3D accelerometer, temperature sensor, and 8K serial flash.
Small header pins expose micro-controller ports for expan-
sion daughter boards, external sensors and peripherals. Ap-
plication software is written in C. For our behavioral moni-
toring system, WISPs transmit unique identifiers along with
their most recent accelerometer reading.

RFID Infrastructure

RFID readers provide power to the WISPs and query them
for sensor data. “Gen 2” RFID readers operate in the 900
MHz ISM band and are designed to power and communicate
with RFID tags at up to 10 meters. Because of this long
range, they can be located out of the way along walls or in
the ceiling.

For gathering sensor data, we developed a Low-Level
Reader Protocol (LLRP)[10] based application that har-
nesses multiple readers and integrates the results of their
queries. LLRP is a vendor agnostic standard for commu-
nicating with RFID readers, so our application can be used
with any LLRP compliant reader.



Figure 2. Apartment layout with antennas

The application continuously gathers accelerometer data
from the WISPs and filters the data to detect objects that
are moving. This is done by detecting significant changes
between subsequent accelerometer readings. The output is a
sequence of IDs indicating the objects that moved.

Inference Engine

Given the sequence of objects ot that have been moved,
we infer the sequence of activities At being performed at
the corresponding timesteps using a Hidden Markov Model
(HMM). We use the GMTK package [4] to estimate param-
eters of the model using fully labeled data and a Dirichlet
prior (with αi = 5) via the EM algorithm. Inference is exact
and performed offline. The reasoning infrastructure is thus
quite simple. We consider this simplicity a strength of the
object-use based activity recognition approach enabled by
dense sensing infrastructure such as RSNs.

SYSTEM DEPLOYMENT

Throughout this study we make use of a model studio apart-
ment. We have taken care to make the apartment as realistic
as possible, and it includes a kitchenette area, a living area,
a bathroom including a shower and sink and a bed.

We use three Impinj Speedway RFID readers with 4 anten-
nas per reader to cover the apartment with RFID signal. We
place the readers and antennas in the ceiling of the apart-
ment with antennas facing directly downward. The reasons
for this configuration will be presented in a later section.

The apartment layout and antenna placements are shown in
Figure 2. Although requiring roughly one RFID reader per
living area may seem expensive (given that our readers cost
roughly $1500 each; antennas cost $100 each), two factors
mitigate the cost. First, the cost of RFID readers is rapidly
decreasing, with readers now available for less than $1000
[22]. Second, once the readers are in place, they can be used
to monitor large numbers (e.g., hundreds) of WISPs, so that
reader cost may be amortized across many applications.

Figure 3. Instrumented objects on kitchen table

The apartment contains objects commonly found in a house-
hold. We attachedWISPs to 25 of these objects, listed in Ta-
ble 1, that are used for everyday activities such as preparing
food, taking part in leisure activities, and performing self-
care. Figure 3 shows the kitchen table in the apartment along
with a few instrumented objects. The WISPs can be seen
clearly on the butter dish and the bowl. The white squares
on the cereal and milk jug are short-range RFID tags, which
we use for our baseline experiments with the iBracelet. All
objects were instrumented with both WISPs and short range
tags.

Although the WISPs used in our study have rigid PCB an-
tennas, WISPs are available with flexible wire antennas.
This would make instrumenting objects with curved surfaces
(e.g., bowls) less awkward. While flexible antennas may
perform more poorly than rigid antennas, particularly when
bent, commercially available RFID tags generally use flexi-
ble antennas. We expect commercially manufacturedWISPs
to have the same sticker-like form factor as standard “Gen 2”
tags.

We use this deployment both to evaluate the effectiveness of
our activity detection system and to characterize the perfor-
mance ofWISPs and RSNs in a realistic home environment.

RFID SENSOR NETWORK CHARACTERIZATION

The use of WISPs in dense deployments (such as for indoor
activity recognition) raises a number of questions about their
performance characteristics. The questions derive from two
sources. First, because WISPs consume substantially more

Area Objects
Counter Coffee, Mug, Cream, Sugar, Jug, Glass, Koolaid
Kitchen Table Breadbox, Plate, Butter, Cereal, Milk, Bowl
Coffee Table Book, TV Remote
Desk Windex, Towels, Plant Food, Water can, Phone
Cabinet Vitamins, Antacids, Toothpaste
Misc. Elliptical, Bed spread

Table 1. Tagged Objects



power than stock RFID tags, some of their key performance
characteristics such as range, spatial density of deployment
and orientation sensitivity have traditionally lagged behind
commercial RFID tags. Second, sensing applications in the
home impose different (and sometimes more challenging)
requirements than traditional RFID applications such as in-
ventory management. In particular, since we seek to track
the use of objects handled by people, occlusion by the hu-
man body is a persistent issue. Further, in cases where we
are interested in kinematics (where we would like to under-
stand how the object moves in addition to whether it does), it
is essential to read sensor data at high rates off the tag (e.g.,
accelerometers may yield 16 bits at 10-100Hz as opposed to
the single bit once a second that is required for pure object
use detection).

Given the above concerns about the suitability of WISPs for
activity recognition, we performed a series of experiments
on RSNs to answer the following questions:

• Range Can WISPs be read from sufficiently far away that
a “reasonable” number of readers will provide good cov-
erage of the whole home?

• Spatial Density Can a reader maintain reasonable WISP
motion detection rates even when a relatively large (one
to two dozen) number of WISPs is active in front of it?

• Orientation Sensitivity Given that day-to-day objects
will be positioned haphazardly with respect to the WISP
reader while at rest and while in use, and RFID technol-
ogy is famously sensitive to tag orientation, can we expect
readers to provide adequate read rates when monitoring
activity?

• Occlusion To what extent is the ability to read tags com-
promised in practice due to proximity of humans handling
tagged objects? Shielding by, and close proximity to, liq-
uids are both known to dramatically reduce RFID tag vis-
ibility to readers.

• Noise How noisy is the accelerometer signal from aWISP
sitting “at rest”?

Read Range and Reader Density

We first examine how the read rates from WISPs vary with
range from reader. While less noisy metrics for character-
izing RFID deployments have been proposed[13], we focus
on read rate as it directly captures the sensing rates of the
WISPs. After characterizing the performance of WISPs in
isolation, we then examine the performance of a particular
RSN deployment with one four-antenna reader per living
area of our model apartment, which we believe is a “rea-
sonable” reader density.

How WISP Read Rate Varies With Range

We placed three WISPs 15 cm apart from each other at an
increasing distance from the reader. All WISPs had their
antennas oriented parallel with the reader antenna (this is
the ideal orientation). Figure 4 shows the read rate for each
of the three tags. The first thing we notice is that the rates
vary widely for the differentWISPs. At 60 cmWISP 1 has a
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Figure 4. Read rates for WISPs 15 cm apart
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Figure 5. Maximum stored voltage for WISPs 15 cm apart

rate of nearly 20 reads per second while WISP 2 has a rate of
only four reads per second. However, at 1.2 meters this trend
is reversed and WISP 2 is read nearly 16 times per second
with WISP 1 being read only 3 times per second. This level
of variation is fundamental to RFID technology, and must be
considered when deploying any RFID system.

The position dependent variation in read rates is due to small
scale fading in the RF environment. To clearly see this effect
we placed three WISPs 15 cm apart and measured the maxi-
mum voltage rectified by each device at increasing distances.
The maximum voltage indicates the amount of energy avail-
able to the WISP for computation and communication. Fig-
ure 5 shows that WISPs harvest different amounts of energy
depending on their position. The amount of energy a WISP
can harvest greatly affects its read rate.

Although such dramatic performance variation across small
distances may trigger concerns of many tags being left un-
observed, the small-scale variation works in our favor for
this application. The coherence distance, the distance be-
tween areas of high amplitude and low amplitude “nulls”
in the RF environment [24], is on the order of a quarter
wavelength; approximately 8 cm for 915 MHz. Changes in
position greater than the coherence distance will often trig-
ger drastic changes in performance, even for standard tags.
Given that we expect objects used during daily activities to
move more than 8 cm, we expect WISPs to move through a
high amplitude area while in use, or at least out of a “null”.



Figure 6. Apartment coverage in reads per second at each location.

Apartment layout is shown in Figure 2.
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Figure 7. Average WISP read rates when disabling reader antennas

Read Performance for a Reasonable Deployment

Given robust read performance at over 3 meters, we instru-
mented the apartment shown in Figure 2. Reader antennas
were placed in the 3 meter “false” ceiling facing downwards.

To determine how well our RFID readers cover the model
apartment we performed an experiment moving a single
WISP across the room in 60 cm increments. The WISP was
held 1 meter above the ground on a wooden dowel to best
avoid occlusion, and the read rate was measured over 30 sec-
onds. Figure 6 shows a heat-map of the WISP read rate at
each location, with the inset showing a cumulative distribu-
tion function (CDF) of the read rates. The WISP could be
read at nearly every point in the room excepting one point
directly behind a metal door. The median and mean read
rates are 1.6 and 2.8 reads per second, and the maximum
was greater than 20 reads per second.

We also looked at how reducing the number of antennas at
each reader affects performance. We performed three sets
of experiments, with each set having one fewer antenna on
each reader. Each set had three trials with the objects being
moved slightly between trials to smooth out effects due to
small scale fading. We did not attempt to keep the “best” an-
tennas enabled, but instead disabled antennas in descending
order as pictured in Figure 2. Figure 7 shows the CDF for
read rates for a decreasing number of antennas.
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Figure 8. Distribution of read rate for an increasing number of WISPs

As the number of antennas is reduced the number of WISPs
with high read rates goes down as one would expect; the
median read rate is monotonically decreasing. However, the
maximum read rate increases as the number of antennas is
decreased. This is because the reader does not transmit on
all antennas simultaneously. Instead, it transmits on one an-
tenna at a time in a round robin schedule. If a WISP is only
in range of one antenna it is read less frequently as more time
is spent on other antennas. Surprisingly, even with only one
antenna per reader more than 88% of the WISPs were read
at least once.

These results suggest that a more intelligent use of multiple
antennas could be used to ”zero in” on WISPs of interest,
while still providing good coverage. Overall, we find that
our deployment provides useful functionality (read rates at
least every few seconds) with a reasonable infrastructure de-
ployment (3 readers with 4 antennas each).

Spatial Density

We first look at WISP performance as an increasing number
of devices are added to the environment. We deployed a
single reader antenna in the ceiling and WISPs on a table
directly below. We added WISPs to the table one by one,
spacing them approximately 15 cm apart in a 60 cm by 90
cm grid. Figure 8 shows the distribution in read rates as we
add up to 20 tags to the table.

While per-WISP read rates tend to decrease as more WISPs
are added, we found that the dominant factor in the read rate
was physical position. For instance, there are a number of
outliers added, namely the 7th, 15th, 17th, and 20th WISPs.
These WISPs saw very high read rates but their introduction
had a minimal effect on the read rates of other tags. In fact,
the net read rate was seen to increase up to 20 tags and we
were unable to saturate the channel.

It seems that RSNs should comfortably be able to support
the roughly one hundredWISPs per home (or tens per living
area) that we believe will make for useful deployments.

Orientation Sensitivity

Figure 9 shows the effect of WISP orientation on read rate.
The WISPs we are using have rigid PCB dipole antennas.
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Figure 9. Effect of WISP orientation (WISP antenna axis relative to the

plane of the reader antenna)
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Figure 10. Occlusion due to the body at 2 meters

Such antennas are inefficient when oriented perpendicular
to the plane of the reader antenna. The figure shows read
rate over distance of a WISP oriented with different angles
relative to the reader antenna.

The read rate decreases as the angle moves from 0
◦ (par-

allel) towards 90
◦ (perpendicular); even at one meter the

WISP was never read when oriented at 90
◦. This has im-

plications for how WISPs should be affixed to objects. For
example, if the reader antennas are in the ceiling, and you
have a tall thin object, attaching a WISP will be difficult as
the orientation that matches the shape of the object will re-
sult in the WISP being badly aligned. On the other hand,
we expect objects that are in use to experience substantial
changes in orientation (45

◦ seems quite plausible for many
objects). Thus as long as there isn’t a very large dead spot
around the perpendicular orientation, WISPs should be ade-
quate.

Omni-directional antennas for RFID tags exist and have
been prototyped for future WISPS. These antennas make
tags largely orientation insensitive, but come at the cost of
reduced gain in any one direction.

Occlusion During Normal Use

A common occurrence when deployingWISPs is occlusions
due to people and objects. The most likely source of occlu-
sion is the subject themselves. To show this effect we had a
subject hold a cup with a WISP attached and we measured
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Figure 11. Maximum change along any axis for two WISPs

the read rate as the subject rotated their body. The reader an-
tenna was on a vertical stand 1.2 meters off the ground and
located 2 meters away. The WISP was oriented vertically so
it was always ideally oriented towards the reader antenna.

Figure 10 shows that as the body begins to occlude theWISP
the read rate drops to zero; as the subject completes the rota-
tion the WISP is again read. Another point of interest is that
at 0

◦ the hand is partially occluding the WISP, which only
has a clear line of sight at 90

◦.

Based on these results, we opted to place our readers in the
ceiling. This deployment provides good RF coverage that
reduces occlusions and, because the reader antennas are hid-
den in the ceiling, is completely inconspicuous. For most
object manipulation this will provide a clear line of sight un-
less the object is below the hand. As the read rates of WISPs
tend to drop off much beyond 3 meters, and ceilings are gen-
erally about that height, we do not lose significant range by
placing antennas in the ceiling.

Sensor Noise

To detect moving objects based on accelerometer data we
need to determine the amount of noise in the sensor. The
WISP accelerometer samples the orientation along all three
axes, and movement detection in our system is done by com-
paring subsequent sensor readings, and looking for signifi-
cant changes along any one axis. The key parameter for this
is the threshold for considering a change as “significant”.
The parameter must be well above the noise of the sensor
but low enough to avoid false negatives.

Figure 11 shows the maximum change along any axis for
two WISPs over time. The change is measured in degrees
around the axis. We found persistent noise from all WISPs
with a magnitude generally no greater than 8

◦. The two
groups of spikes are when the instrumented objects are inter-
acted with. The group to the left is from a WISP attached to
the arm of an elliptical machine, and the group on the right
is from a WISP attached to a container of antacid tablets.
While the antacids are moved more subtly, the movement is
still clearly detectable.

While we currently use the accelerometer data only to detect
movement, the data is surely rich enough to be used more



Figure 12. The iBracelet wrist-worn RFID reader. To facilitate com-

parison with WISPs (which do not require any wearables), we tagged
our objects with both stock RFID tags and WISPs. We required all

subjects to wear an iBracelet on their dominant hand. Subject activ-

ity resulted in synchronized streams of object-use data from iBracelets

and WISPs.

effectively. However, for our purposes, we simply consider
changes of greater than 8

◦ as movement.

ACTIVITY DETECTION EVALUATION

The goal of our activity detection system is to accurately de-
tect what activity a subject performed using our RFID sen-
sor network as a data source for our inference engine. Be-
yond simply stating the performance of our system, we do a
direct comparison between our system and an existing solu-
tion for object based activity detection. Specifically, we con-
currently deploy an RSN and an iBracelet (Figure 12) short
range RFID system. As the technologies operate on differ-
ent frequencies (900 MHz for the RSN and 13.56 MHz and
2.4 GHz for the iBracelet) we are able to gather data from
both technologies during each user trial. The same inference
engine is then used to detect activity for both data streams.

As will be shown in the following sections, activity detection
using the RSN compares favorably to using the iBracelet.
For nearly all activities the RSN saw better recall and the
precision is on par with the iBracelet. This is a clear win as
the RSN does not require the subject to wear any equipment,
and precision may be enhanced at a higher layer, i.e. using
other knowledge such as context.

Experimental Setup

Our user study consists of 10 subjects with each subject per-
forming 14 specified activities. Twenty five objects were in-
strumented with WISPs and short range RFID tags.

The iBracelet queried for short range tags every second and
transmitted tag IDs to the host computer, and the ceiling
mounted RFID readers continuously read the WISPs and
logged the accelerometer readings. The accelerometer read-
ings were then filtered and a sequence of moved objects was
generated. All object events were time stamped and logged
at the host computer.

The host computer also presented a randomly ordered list of
the 14 activities to the subjects. After completing each ac-
tivity the subject indicated which activity they had just com-
pleted. This gave us a time stamped “ground truth” account

of which activities were performed and at what times. This
allowed us to automatically label our data indicating which
objects were interacted with during each activity.

Data Analysis

Figure 13. HMMmapping objects ot to activities At

The Graphical Models Toolkit HMM, shown in Figure 13, is
trained on a set of subject traces, each of which is a sequence
of recorded object events. An iBracelet object event is an in-
stance of an object being read, and for the RSN an event is an
instance of detected movement. Each object event is labeled
with the activity that was being performed when the event
was recorded. The model is then tested on an unlabeled se-
quence, with the output being that same sequence annotated
with the inferred activity for each object.

As the sampling rate is different for the two technologies,
to compare between them we preprocessed the data traces
by compacting repetition subsequences into “episodes”. For
example, if the subject handles an object for 45 seconds the
iBracelet may report 45 events while the RSN may record
only ten. After testing, each event will be labeled with an
inferred activity, and we generally see long sequences with
the same annotation. If we calculate per event false posi-
tives and negatives, and both technologies infer incorrectly,
the technology with the higher sampling rate will be unduly
penalized.

To avoid this, we consider these sequences as a single
“episode”, with each episode having a starting and ending
time. In other words, an episode is the time during which our
inference engine thinks a particular activity was occurring.
If, based on the labeled data, the episode spanned two ac-
tivities, we consider the episode to have taken place in both,
i.e., it would be counted as both a true and a false positive.

To calculate Precision we compare the number of episodes
that were correctly inferredwith the total number of episodes
(True Positives / (True Positives + False Positives)). Recall
is calculated by determining how many of the 14 activities
saw at least one correctly inferred episode (True Positives /
Total number of Activities); multiple correct episodes during



Activity RSN iBracelet
Precision(%) Recall(%) Precision(%) Recall(%)

Make Cereal 92 100 100 50
Make Sandwich 72 80 90 90
Make Coffee 92 100 100 90
Make Kool-aid 100 100 100 90
Read Book 85 100 88 90
Watch TV 83 40 100 90
Clean Windows 100 100 60 30
Tend to Plants 100 100 100 70
Use Telephone 100 100 100 20
Use Elliptical 100 100 100 30
Take Vitamins 73 80 100 30
Take Antacids 91 100 100 40
Brush Teeth 91 100 100 100
Go to Sleep 88 70 100 20
Totals 90 91 95 60

Table 2. Activity detection success

the same activity were counted only once. We performed a
10 fold cross validation on our 10 subject traces.

Results

Aggregate results for all subjects are shown in Table 2 for
each of the 14 activities. As an example, consider the RSN
results for making cereal. During the times when the sub-
jects were making cereal, 92% of the episodes were labelled
correctly and at least one episode was correctly inferred for
each subject.

The RSN achieved 90% precision and 91% recall. The
iBracelet, on the other hand, saw very high precision but
low recall. The poor recall is largely because many objects
do not have obvious grasping surfaces so tag placement is
difficult. The iBracelet needs to be within 10 cm of a tag,
and with a clear line of sight, in order to reliably read the
tag.

For example, the only surface on the telephone handset
where a tag could be placed was hidden from the iBracelet
by the hand. In other cases, such as the cereal box, the sub-
jects had many options for grasping and were likely to hold
the box on an edge away from the tag. However, when a
tag was in range of the iBracelet there was little chance of it
being the wrong object. This results in high precision.

Table 3 shows the confusion matrix for the RSN results,
calculated based on episodes. For example, while making
cereal 11 episodes were correctly labeled while one was
inferred as cleaning windows. Eleven correctly identified
episodes with only ten subjects is caused by one subject see-
ing three episodes during the activity, with the first being
correctly labeled, the second being “Windows”, and the third
again being correctly labeled.

Activities that were performed in the same area are often
confused with each other, e.g. during the “Vitamins” activity
two episodes were labeled “Antacids” and one was inferred
as brushing teeth. In this case, the objects for the three ac-

tivities are all located in the same cabinet and were likely
shuffled unintentionally, or moved by the subject. In other
cases, the root cause of mislabeling is unclear, such as label-
ing an episode as brushing teeth when the subject was make
a sandwich.

To better understand the results using the RSN we looked at
what objects were seen during each activity; this is shown
in Table 4. The percentage of subjects that used the object
is listed in parentheses and the average number of events
during the activity is also shown.

The table shows what are likely spurious events, e.g. the
plant food being used when making a bowl of cereal or using
sugar when brushing teeth. These events are seen for only
a single subject (10% of the subjects) and only one event is
recorded in each case. Spurious reads of the plant food are
seen quite frequently, suggesting that the noise in the sensor
may be greater than 8

◦, and more sophisticated techniques
should be used for detecting movement. However, it is inter-
esting to note that there were no false positives for “Tending
Plants” suggesting that our inference engine considered oc-
currences of the plant food as noise.

The most difficult activity to classify, watching TV, was due
to the remote control being read during only six of the ten
subject trials, and even then with a relatively low read rate.
This could only be remedied by having better reader cover-
age.

Overall, we are pleased with the performance of our RSN
based activity detection system and find the results promis-
ing. A system with better than 90% precision and recall is
well above the bar for usefulness, particularly as it does not
require instrumenting the subject. With that said, a far more
extensive user study must be conducted, particularly in an
actual home environment, before the real world viability of
our system can be established.
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Cereal 11 1 0 0 1 0 0 0 0 0 0 0 0 0
Sandwich 0 8 0 0 0 0 0 0 0 0 0 0 0 0
Coffee 0 0 11 0 0 0 0 0 0 0 0 0 0 0
Koolaid 0 0 1 11 0 0 0 0 0 0 0 0 0 0
Book 0 0 0 0 11 1 0 0 0 0 0 0 0 0
TV 0 1 0 0 1 5 0 0 0 0 0 0 0 0
Windows 1 0 0 0 0 0 10 0 0 0 0 0 0 0
Plants 0 0 0 0 0 0 0 10 0 0 0 0 0 0
Telephone 0 0 0 0 0 0 0 0 10 0 0 0 0 0
Elliptical 0 0 0 0 0 0 0 0 0 10 0 0 0 0
Vitamins 0 0 0 0 0 0 0 0 0 0 8 0 0 0
Antacids 0 0 0 0 0 0 0 0 0 0 2 10 0 0
Teeth 0 1 0 0 0 0 0 0 0 0 1 1 10 1
Sleep 0 0 0 0 0 0 0 0 0 0 0 0 1 7

Table 3. Confusion Matrix for RSN

Activity Objects
(% Subjects): Average Number of Events

Make Cereal Milk(100): 5 Bowl(50): 2 Cereal(30): 2 BreadBox(10): 1 Towels(10): 2 Glass(10): 1
Make Sandwich BreadBox(90): 2 Butterdish(40): 2 Milk(30): 2 Bowl(10): 1 Plate(10): 1
Make Coffee Coffee(100): 8 Cream(90): 6 Mug(30): 1 Sugar(30): 2 Jug(20): 5 Glass(10): 1
Make Koolaid Jug(100): 18 Koolaid(100): 10 Glass(80): 3 Plant food(10): 1
Read Book Book(100): 12 Plant food(20): 1 BreadBox(10): 2 Remote(10): 2
Watch TV Remote(60): 4 BreadBox(10): 1 Plant food(10): 1 Towels(10): 1 Jug(10): 1 Koolaid(10): 1
Clean Windows Windex(100): 10 Towels(80): 7 Plant food(30):1 Water Can(10): 2
Tend Plants Water Can(100): 7 Plant food(100): 10
Use Telephone Phone(100): 4
Use Elliptical Elliptical(100): 64 Plant food(10): 1
Take Vitamins Vitamins(90): 4 Antacids(20): 5 Toothpaste(10): 3 Plant food(10): 1
Take Antacids Antacids(100): 13 Toothpaste(10): 2 Vitamins(10): 1
Brush Teeth Toothpaste(100):9 Plant food(20):1 BreadBox(10):1 Antacids(10): 2 Bed spread(10): 4 Sugar(10): 1
Go to Sleep Bed spread(80): 6 Plant food(10): 1 Towels(10): 1 Antacids(10): 1

Table 4. Object Usage

DISCUSSION

Our behavioral monitoring system demonstrates that simple
RFID-based sensors are useful for indoor activity recogni-
tion. Improvements in WISP technology will improve these
systems through better coverage and more reliable sensor
reads. Beyond this, however, we believe that the capabilities
of RFID sensor networks can be leveraged for more effective
activity recognition in at least two ways.

We currently threshold accelerometer data to detect move-
ment. This throws away most of the data in the process.
Instead, we could use the raw accelerometer data to extract
details about object motion and classify gestures, e.g., the
use of tools for their primary versus other purposes [9]. The
3D accelerometer data is particularly useful because it pro-
vides the orientation of the object with respect to gravity.
TheWISP also has other sensors, e.g., temperature and light,
that could be leveraged in some settings, as well as the abil-
ity to be fitted with custom sensors, e.g., a capacitive sensor
to measure the fill level of a container[28] or a neural sensor
for recording the firing patterns of neurons[14].

We can use computation at the WISP to our advantage as
well. Our system filters accelerometer data at the host to de-
tect movement, but this functionality could instead be done
at the WISP; only movement events (or even larger recog-

nized gestures per the above) would then need to be commu-
nicated to the reader. This is advantageous because commu-
nication uses more energy on the WISP than computation,
and it is likely that more sophisticated filtering can be sup-
ported with WISP rather than host computation. This would
additionally reduce wireless traffic and enable higher rate
sensing on the shared communication channel for selected
objects.

Lastly, the read rates of the WISP tags in the system are cou-
pled and there is the potential to improve the system as a
whole. For example, in our study we found that reducing the
number of antennas caused more energy to be directed to-
wards a particular area. This caused some WISPs to experi-
ence increased read rates. Thus, the ability to control reader
behavior, e.g., via LLRP applications, can be used to direct
more energy to objects of interest. Ultimately, the emer-
gence of flexible ”Gen 2” platforms, e.g., [7], will enable
new protocols that are tailored to RFID sensor networks.

RELATED WORK

While prior work related to activity recognition and dense
sensing technologies was covered in the introduction, there
has also been work using theWISP platform. The advantage
of sensor extensibility was shown in [14], where a WISP
was fitted with a sensor capable of detecting the firing pat-



terns of neurons, and [28] where a capacitive sensor was
used to measure the fill level of liquid filled containers. Ad-
ditionally, [8] demonstrated the computational capabilities
of the WISP by implementing the first strong encryption
(RC5) on a passive RFID device, and [9] showed that with
high enough read rates gesture recognition could be per-
formed on the WISP. The concept of RFID sensor networks,
where large collections of WISPs are applied to traditional
“smart-dust” applications, was introduced in [6]. This paper
presents the first realization of this vision.

CONCLUSION

The ability to recognize indoor activities in a retargetable,
inexpensive, and unobtrusive manner is a key capability that
will support many ubiquitous computing systems. In this
paper, we have presented the first study of dense sensing
based on RFID sensor networks. Here, everyday objects are
tagged with WISPs to detect when they are in use, and a
simple HMM is used to convert object traces into high-level
daily activities. We deployed 25 WISPs and three readers
in a model apartment, then recruited ten users to perform 14
activities. Our recognition system based on an RFID sen-
sor network was able to recognize tasks with roughly 90%
precision and 91% recall. To put these numbers in con-
text, we also ran a recognition system with a short-range
RFID bracelet based on previous work. This system deliv-
ered 95% precision but only roughly 60% recall due to miss-
ing instances of object-use. We conclude that RFID sensor
networks are already promising for indoor activity recogni-
tion. Moreover, we only expect their abilities to improve
with time. This will come not only from better coverage and
reliability, but also frommaking better use of the capabilities
of WISPs.
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