
Lahar Demonstration:
Warehousing Markovian Streams

Julie Letchner
University of Washington

letchner@cs.washington.edu

Christopher Ré
University of Washington

chrisre@cs.washington.edu
Magdalena Balazinska
University of Washington

magda@cs.washington.edu

Matthai Philipose
Intel Research Seattle

matthai.philipose@intel.com

ABSTRACT
Lahar is a warehousing system for Markovian streams—a common
class of uncertain data streams produced via inference on proba-
bilistic models. Example Markovian streams include text inferred
from speech, location streams inferred from GPS or RFID readings,
and human activity streams inferred from sensor data. Lahar sup-
ports OLAP-style queries on Markovian stream archives by lever-
aging novel approximation and indexing techniques that efficiently
manipulate stream probabilities.

This demonstration allows users to interactively query a ware-
house of imprecise text streams inferred automatically from audio
podcasts. Through this interaction, the demonstration introduces
users to the challenges of Markovian stream processing as well as
technical contributions developed to address these challenges.

1. INTRODUCTION
People and computers worldwide generate exabytes of audio,

video, text, GPS, RFID, and many other types of sensor/monitoring
data daily—and because disk storage is cheap, most of this data is
warehoused for future use [1]. Much of this archived data shares
two properties: first, it is sequential, either because it is audio-
visual or because it is temporal; and second, it is only indirectly
useful to applications. For example, raw audio files can be searched
and indexed by web crawlers only after they have been parsed into
text. Similarly, smart-home sensor streams can be used to infer
a resident’s daily activities, but only the activity sequences them-
selves are used by applications to provide residents with alerts, re-
minders or daily activity logs. In order to be useful, warehouses
for these huge archives must therefore expose views that allow
queries to directly reference the high-level information of interest
(e.g. words, activities) while hiding the details of the raw, low-level
data (e.g. raw audio streams, RFID readings, etc.).

The process of computing high-level attributes from uncertain,
low-level data is called inference. A data warehouse can expose in-
ferred, high-level attributes to queries through views. Importantly,
because of noise in the raw data sequences or ambiguity in the in-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Tom has eight lunches

todaylaunchers

ready

--- Thomas ate
lunch

yesterday
once

0.4

0.6

1.0

1.0

1.0

1.0

0.25

0.75

0.5

0.5

1.0

1.0

0.3

0.6

0.7
0.4

Figure 1: Visualization of a Markovian stream inferred from
a podcast snippet. Boxes show the likelihoods of each word at
each instant. Arrows show the conditional probabilities of each
word given the previous word. Transitions with zero probabil-
ity are omitted.
ference process (or both), the resulting view-level sequences are
uncertain. Speech recognition systems, for example, often can-
not exactly translate a particular phrase; instead they return a set
of several guesses, each with a different probability. Such uncer-
tain sequences are commonly represented as Markovian streams. A
sample Markovian stream inferred from a news podcast is shown
in Figure 1; its relational schema is shown in Figure 5. A Marko-
vian stream is a compact representation of a probability distribu-
tion over an exponential number of possible sequences. These se-
quences represent spoken phrases, location trajectories, activity se-
quences, etc. depending on the domain. We refer readers to a recent
overview of Markovian streams for additional details [2].

In this demonstration we present Lahar, a Markovian stream
warehousing system that allows users to interactively query large
Markovian stream archives. Queries are expressed to a front-end
application: for example, “Find all occurrences of the phrase ‘pres-
ident Barack Obama’ in January 2008 podcasts.” Lahar computes
the query in real time and returns results to the front-end for dis-
play. The results of the above query are a list of timestamps at
which Lahar detects the phrase “president Barack Obama”, as well
as the probability of the detection (because Markovian streams are
imprecise). The application interface links each timestamp in the
result set to the corresponding audio snippet in the raw data for
immediate playback, allowing users to explore the quality of La-
har’s results. A mock-up of the demonstration setup is shown in
Figure 2. In addition to occurrence-seeking queries, Lahar also
supports aggregate queries (e.g. “How many times did the word
‘economy’ appear across all podcasts from January 2008?”); we
discuss Lahar queries in more detail in Section 2.3.

The purpose of the Lahar demonstration is to introduce users to
Markovian streams, to the importance and challenges of query pro-
cessing on these streams, and to an array of techniques that make
this processing feasible. We have curated a warehouse of of Marko-
vian streams derived from audio data, on which users can pose

Lahar returns query results and detailed timing/error information
to the front-end display interface.

Step 3:

Chronological B+ Tree

Probability-Ordered B+ Tree

Stream Scan

Markov Chain Index

Indexing

0.4

Independence

MAP

None

Thresholding

Compression
Q1 (view query)

Write my own!

Query

Q2 (view query)

Q3 (view query)

User writes a query and
specifies the desired physical
optimizations to be applied
during processing.

Step 1:

User runs the query
on the warehouse.

Step 2:

Indexing CompressionQuery Results
Q1

(view query)
Chron. B+

Tree Thresholding (0.4) 4 Results
(see results)

Q1
(view query) None Independence 4 Results

(see results)

...Markovian
Stream

Warehouse
(Podcasts)

Figure 2: Mock-up of the demonstration setup.

arbitrary SQL-like Lahar queries. We also provide a set of pre-
written example queries that highlight the expressive power of La-
har’s event and OLAP queries, as well as some of the performance
challenges posed by these queries. The demonstration is thus a
showcase for the first Markovian stream warehousing system (La-
har). The demonstration allows users to explore and evaluate the
effects of various physical query optimizations by interactively ac-
tivating and de-activating these optimizations and observing the ef-
fect on both performance and, when approximations are leveraged,
query accuracy.

Challenges
The primary challenge of Lahar is to process uncertain Markovian
streams efficiently. This is difficult for three reasons: First, Marko-
vian streams are large, because of both uncertainty and temporal in-
terpolation. The size and rich semantics of Markovian streams dra-
matically slows processing time. Second, precise manipulation of
Markovian stream correlations requires that streams be processed
sequentially and from the beginning. This reduces the applicabil-
ity of standard speedup techniques like B+ trees that extract small,
disconnected stream intervals. Third, Markovian streams are non-
summarizable (i.e. aggregate query values cannot be correctly com-
puted from lower-level aggregate queries, but must be computed
directly on the base Markovian streams). This invalidates the stan-
dard cube-based warehousing model for this data.

The Lahar system overcomes these challenges using physical op-
timizations described in detail in Section 2.3. These optimizations
represent Lahar’s technical contributions. More generally, the con-
tributions of the demonstration are as follow:

1. We present a system for processing OLAP queries on
Markovian stream warehouses. A front-end application in-
terface receives user queries and displays query results (au-
dio snippets) and meta-information (timing, approximation
error, etc.).

2. The novel contribution of this demonstration is the full inte-
gration into a single system of the techniques introduced in
prior work [5, 3, 4]. In particular, this demonstration repre-
sents the first time that Markovian stream indexing and com-
pression techniques are leveraged simultaneously.

2. SYSTEM OVERVIEW
Lahar is a system that efficiently answers event and OLAP

queries on Markovian stream warehouses. Its architecture is shown

in Figure 4 and mirrors that of a traditional DBMS. Markovian
streams are generated outside of the system (Section 2.1) and
loaded into Lahar via a bulk loader (Section 2.2) which performs
several indexing and compression tasks on each stream before writ-
ing the stream to disk. These loaded streams, together with dimen-
sion tables on both their certain and uncertain attributes, comprise a
Markovian stream warehouse. At query time (Section 2.3), a parser
and optimizer transform a SQL-like Lahar query into a plan which
is executed by the execution engine. Results are returned to the ap-
propriate application—in this case, the front-end display interface.

Lahar efficiently manages the uncertainty of Markovian stream
warehouses using indexing [3] and approximation [4]; both tech-
niques are introduced in prior work. Indexes allow the processing
engine to skip irrelevant portions of each Markovian stream, even
though event query processing requires sequential stream access.
Approximation techniques allow the processing engine to trade ac-
curacy for efficiency, depending on the requirements of a given
query. Both of these technical components are described in further
detail in Sections 2.2 and 2.3.

2.1 Data Preprocessing
The preprocessing (called inference) that transforms a raw se-

quence into a Markovian stream is not technically part of the La-
har system but is instead applied to data externally. The result-
ing output, a Markovian stream, is then loaded into Lahar. This
allows Lahar to manage all Markovian streams, independently of
their derivation. Such flexibility is important because different data
domains require different modeling techniques and inference pro-
cesses.

Query Parser
& Optimizer

Storage

Processing
Engine

Storage
Manager

Stream
Loader

Markovian
streams

Application Interface

Queries
Query

Results

(a) (b)

Lahar
Ex

Reg

Ex

Reg

Agg

Ex

Reg

Storage

…
…

Figure 4: System architecture (a) and sample query plan (b).

1. SELECT <EXISTS | INSTANTS | COUNT> // Temporal aggregation semantics
2. FROM Podcasts P // Identify the stream schema
3. WITHKEY P.topic = ‘News’ // Stream ID predicates
4. WINDOW P.seqID=00:00 TO P.seqID=01:00 // Temporal predicates
5. EVENT E1 NEXT E2 // Event pattern structure
6. WHERE E1.word = ‘economic’ // Event predicates
7. AND E2.word = ‘downturn’ ...
8. GROUP BY P.SourceNetwork USING <STREAMEXISTS | STREAMCOUNT> // Stream aggregation predicates/semantics

Figure 3: Query syntax. Lines 1-4 specify the relevant streams (podcasts), temporal interval (first minute), and temporal aggregation
semantics (EXISTS, INSTANTS, COUNT). Line 5 specifies the event pattern (here, a two-word phrase). Lines 6-7 specify the pattern
predicates (here, ‘economic’ then ‘downturn’). Line 8 specifies the stream aggregation semantics (STREAMEXISTS, STREAMCOUNT)
and grouping criteria (here, by podcast source).

The audio-based Markovian streams used in this demonstration
warehouse are generated using the HTK speech recognition toolkit.
We refer readers to a recent overview article [2] for a more broad
discussion of Markovian stream generation.

2.2 Data Loading
Lahar leverages two key physical optimizations—indexing and

approximation—to efficiently answer event and OLAP queries on
Markovian streams. When a Markovian stream is loaded into the
warehouse, Lahar computes and stores the information necessary
to allow it to leverage these physical optimizations at query time.

2.2.1 Index Construction
Lahar constructs several different index structures on each

Markovian stream. These structures index uncertain stream at-
tributes (those that are associated with probabilities, as opposed to
certain attributes like the stream ID). These indexes include [3]:

• Chronological B+ Tree (BTC): This is a standard B+ Tree
on search key 〈U0, ...,Un, t〉, where Ui is the ith uncertain at-
tribute and t is the stream’s sequence ID (e.g. timestamp).
On the Podcast schema, the BTC search key is 〈word, t〉.

• Probability-Ordered B+ Tree (BTP): This is another stan-
dard B+ Tree. Its search key is 〈U0, ...,Un, p, t〉 where the
new identifier p represents the marginal probability of the
specified uncertain state U0, ...,Un at time t. On the Podcast
schema, the BTP search key is 〈word, p, t〉.

• Markov Chain Index (MC): This is a hierarchical in-
dex structure that “summarizes” correlations between distant
stream time steps. An example entry of the MC index on
the Podcast schema might, for example, give the probabil-
ity that the hundredth word in the podcast is ‘finance’ given
that the tenth word is ‘economy’.

At query time, Lahar’s optimizer chooses an access method that
leverages zero or more of these index structures.

2.2.2 Precomputing Approximations (Compression)
Lahar uses approximation (lossy compression) in addition to in-

dexes to improve performance. Lossy compression is used instead
of standard lossless techniques (i.e. run-length or dictionary encod-
ing) for two reasons: First, lossless techniques achieve poor com-
pression on the probability-heavy data of Markovian streams. Sec-
ond and more importantly, Lahar’s approximations alter the struc-
ture of the uncertainty represented by each stream. In many cases
the simpler, approximate structure can be processed orders of mag-
nitude more quickly than the original stream. Of course, these sim-
plified structures lose some expressive power relative to the original

stream. Thus, in general, each approximation technique represents
a different point in the trade-off space between accuracy and effi-
ciency. Experimental results on real-world data have shown that
these techniques often achieve performance speedups of several or-
ders of magnitude with minimal error [4].

When a new Markovian stream is loaded into the warehouse, La-
har materializes many copies of the stream. Each copy is approx-
imated using a different lossy compression technique. At query
time, Lahar’s optimizer chooses the materialization that provides
the optimal accuracy/efficiency trade-off for the given query (and
accuracy requirements). Below we describe several of the approxi-
mation techniques employed by Lahar; for a full list we refer read-
ers to our recent technical report [4].

• Non-compression does not alter a Markovian stream in any
way; in otherwords, Lahar always retains a copy of the orig-
inal stream.

• Independence compression simply drops (does not store)
temporal correlations. Uncertainty about the state within
each stream element, however, is retained. This reduces
query processing time by roughly an order of magnitude.
The effect on result quality depends on the strength of cor-
relations in the data as well as on the event pattern length.

• MAP compression determinizes a Markovian stream into the
single most likely (maximum a posteriori) sequence. This
reduces processing time by several orders of magnitude but
also dramatically reduces result quality in some cases. MAP
compression can work well, however, for aggregate queries
or on data containing only small amounts of uncertainty.

• Thresholding drops all correlations with probability below a
threshold T—thus the parameter T offers direct control over
the accuracy/efficiency tradeoff. While the optimal threshold
depends on both the stream and query, relatively low values
(e.g. T = 0.1) tend to greatly speed processing with minimal
impact on result quality [4]. Thresholding can be used in
combination with independence compression.

Because all of Lahar’s compression techniques apply to individ-
ual stream elements, these compressed representations are easily
indexed by the structures described in Section 2.2.1.

2.3 Runtime
At runtime, Lahar accepts a query in the SQL-like syntax shown

in Figure 3. This syntax provides mechanisms for specifying
stream selection predicates (line 3), temporal selection predicates
(line 4), event sequences (line 5) and associated predicates (lines
6-7), temporal aggregation semantics (Line 1), and cross-stream
aggregation semantics (line 8).

Word Part of Speech Location

lunches plural noun --

the article --

Iran proper noun Middle East

c) Uncertain attributes dimension tableb) StreamID dimension table

StreamID SeqID Word p

...

NPR 3 eight 0.4

NPR 3 ate 0.6

NPR 4 launchers 0.1

NPR 4 lunches 0.3

NPR 4 lunch 0.3

NPR 4 once 0.3

...

CNN 0 Iran

...

NBC 0 the

...

a) Markovian stream Podcast in relational format

StreamID SeqID WordPREV WordNEXT p

...

NPR 3 eight launchers 0.25

NPR 3 eight lunches 0.75

NPR 3 ate lunch 0.5

NPR 3 ate once 0.5

NPR 4 launchers ready 0.7

NPR 4 launchers today 0.3

NPR 4 lunches ready 0.6

NPR 4 lunches today 0.4

NPR 4 lunch yesterday 1.0

NPR 4 once yesterday 1.0

...

Marginal distributions Conditional distributions (correlations)

StreamID Media Topic Length

CNN TV World 10 min

NBC TV U.S. 5 min

NPR Radio Technology 5 min

Figure 5: Markovian stream schema (a) and dimension ta-
bles (b)-(c). The stream snippet represented here is the stream
shown in Figure 1.

All Lahar queries contain an event query at their core (lines 5-
7). This event query specifies a pattern that will be detected in all
streams included in the query. Like the stream selection predicates
(line 3), the pattern predicates (lines 6-7) can reference the ware-
house’s dimension tables.

The results of this event query can be aggregated temporally
within a single stream using one of three semantics: EXISTS (“Did
my phrase occur?”), INSTANTS (“Find all times when my phrase
occurred.”), or COUNT (“How many times did my phrase occur?”).
Temporally-aggregated results from each stream can be further ag-
gregated across streams using either a STREAMEXISTS semantics
(“Did my phrase occur in any stream?”) or a STREAMCOUNT
semantics (“How many times did my phrase occur across these
streams?”). Our technical report contains additional details about
Lahar’s query semantics and syntax [4].

The optimizer converts a parsed query into a query plan (Fig-
ure 4(b)). Lahar query plans always comprise trees of three opera-
tors in sequence: Extract, Reg, and Agg. The Extract operator
(one per stream) retrieves stream elements from disk; this is where
indexing and compression optimizations are leveraged. The Reg
operator (one per stream) computes the core event query on the
resulting extracted time steps, and also performs temporal aggrega-
tion. Finally, the single Agg operator aggregates per-stream results
into a single result set.

3. DEMONSTRATION CONTENT
This demonstration allows users to interact with the Lahar

Markovian stream warehouse by writing their own queries or sub-
mitting one of several pre-written examples. In response, Lahar
returns not only result tuples, but also information about the query
plan (including any indexes and compressed stream materializa-
tions that were leveraged), timing results, and accuracy results
when appropriate. This information is displayed in a front-end
interface similar to the mock-up shown in Figure 2. For queries
whose results include timestamps, the front-end allows immediate
playback of the audio snippets identified by these timestamps. This

feedback allows users to more intuitively understand result quality.
The warehouse is loaded with a Markovian stream warehouse

inferred from audio streams derived from various sources. All of
the Markovian streams in the warehouse adhere to the Podcast
schema in Figure 5.

In order to encourage users to explore the tradeoffs of various
access methods, we have constructed this demonstration in the con-
text of a simple game. In this game the user plays the role of the
Lahar query optimizer. His or her goal is to find the optimal ac-
cess method for a particular query and a particular weighting of
time-vs.-accuracy. In this format, the demonstration walks users
through the following steps:

1. Query submission is done by selecting one of several pre-
written examples or by writing a query from scratch.

2. Time/accuracy valuation is chosen by the user from one of
several pre-selected values. These values represent various scenar-
ios including interactive data exploration (time is highly valued),
model learning (accuracy is highly valued), etc.

3. Compressed stream view selection is expressed by radio-
button selection of one of the lossily-compressed stream material-
izations described in Section 2.2.2.

4. Access method selection is also done via radio-button se-
lection, but in this case the selection is of one of the four indexes
described in Section 2.2.1.

5. Query execution is user-triggered after steps 1-4.
6. Result playback allows users to evaluate the success of their

chosen query plan. The demonstration provides a single quality
score based on the time/accuracy valuation chosen by the user. This
score is the quantitative expression of the quality of a particular ac-
cess method on a particular query. Users are encouraged to explore
(via audio playback) the results of their queries to better understand
the performance/quality tradeoffs.

4. CONCLUSION
This demonstration presents Lahar, a fully-functional system for

querying Markovian stream warehouses. The demonstration is sup-
ported by a front-end game application in which users play the role
of the query optimizer, and a Markovian stream back-end data store
derived from audio streams. Through this demonstration we hope
to familiarize users with the challenges involved in probabilistic
stream processing as well as some of the interesting open chal-
lenges in this area.

Acknowledgements
This work was partially supported by NSF Grants IIS-0713123,
CNS-0454425, IIS-0513877, IIS-0627585, and CRI-0454394; by
gifts from Intel Research; and by M. Balazinska’s Microsoft Re-
search New Faculty Fellowship. J. Letchner is supported by an
NSF graduate fellowship.

5. REFERENCES
[1] IDC. The expanding digital universe: A forecast of worldwide information

growth through 2010. An IDC White Paper sponsored by EMC., March 2007.
[2] J. Letchner, C. Re, M. Balazinska, and M. Philipose. Challenges for event

queries over markovian streams. IEEE Internet Computing, 12(6):30–36, 2008.
[3] J. Letchner, C. Re, M. Balazinska, and M. Philipose. Access methods for

markovian streams. In 25th International Conference on Data Engineering,
2009.

[4] J. Letchner, C. Re, M. Balazinska, and M. Philipose. Supporting olap queries on
markovian streams. In Technial Report. University of Washington, 2009.

[5] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries on correlated
probabilistic streams. In SIGMOD Conference, pages 715–728, 2008.

