
River: An Infrastructure for Context Dependent, Reactive
Communication Primitives

Jong Hee Kang1, Matthai Philipose2, Gaetano Borriello1,2
Department of Computer Science and Engineering1

University of Washington, Seattle, WA

{jhkang,gaetano}@cs.washington.edu
Intel Research Seattle2

matthai@intel-research.net

ABSTRACT

Applications and services in ubiquitous computing systems
often interact in a context-dependent, reactive manner.
How information flows, and what services communicate
when, is determined by the context of the physical space,
the context of users, and the services that are available.
Existing discovery systems provide basic facilities for
finding services based on their static descriptions in the
form of attributes. Context-dependent attributes are not
included in the service advertisements as they may in turn
be computed and stored in other services. We propose an
infrastructure, called River, that provides various context-
dependent, reactive communication primitives. These
primitives are implemented using a single underlying
technique called Relational Query Based Dispatching
(RQD), which views the set of services in the system as a
federation of databases, the discovery service as a
distributed query processor for these databases, and
communication as a combination of query processing and
dispatching. In this paper, we describe the design and
implementation of the River infrastructure. We also show
that the context-dependent query processing within the
discovery service can actually reduce the lookup latency
with little effect on overall throughput.

1. INTRODUCTION
A programming model that has received much recent
attention is dynamic service composition [1][2][3] [11][12].
In this model, a network environment is populated by a
number of independent processes (called services). Each
service typically depends on, and communicates with,
others for its functionality. Dynamic composition burdens
programmers with two key issues:

• Context sensitivity. Services tend to be
specialized to be applicable in specific situations,
or contexts. The set of services communicated with
is therefore context dependent: it may depend in
complex ways on data produced and stored
throughout the system. The logic for specifying the

appropriate services to link with is therefore
substantially more complex than in traditional
programs.

• Reactivity. Services representing devices,
especially sensors and actuators, are common.
Sensors add sensed data to the system constantly,
leading to rapidly changing context. As the context
changes, a service may need to use different
actuators or services than before. Each service
therefore needs logic that frequently rediscovers
and rebinds to appropriate and available services.

Writing services that address these issues robustly and with
high performance can be quite challenging, even for
sophisticated programmers. In this paper, we describe the
River system, which provides context dependent, reactive
versions of four common communication primitives, using
a common underlying technique called Relational Query
Based Dispatching (RQD).

RQD incorporates two key ideas. First, in addition to
offering traditional communication interfaces such as those
using calls and events, every service is also allowed to
advertise a set of schemas and relational operations such
that they support the advertised operators over (a subset of)
the relations specified by the schemas. The set of all
services can then be viewed as a federated relational
database, and complex relations within the data can be
expressed as queries in standard relational languages such
as SQL. In effect, a relational query processor replaces the
traditional discovery service. Second, programmers may
define the addresses of endpoints of communication
primitives (specifically function calls, events, connections
and relational queries) declaratively using relational queries
over the federation. The system assumes responsibility for
binding the endpoint to the most appropriate address at any
given time, and for dispatching data to this address.

A few recent systems [1][2][3][5][8][10] have addressed
the problem of context dependent reactive communication
primitives. In most cases, the underlying solution is similar

to that provided by River. Each system provides a
declarative language or notation to specify a
communication end-point, and dynamically rebinds the
endpoint to the appropriate concrete address when the
specification evaluates to a new value. River’s novelty is in
the scope and expressiveness of its query language (in
particular, most other systems only allow queries to match
against advertisements, not arbitrary data contained within
services; most proposed query languages are not as
expressive as SQL), the variety of communication
primitives it supports (other systems typically each support
one or two primitives), and its demonstration that a single
underlying framework can support all the primitives.

The rest of the paper is structured as follows. Section 2
presents motivating examples. Section 3 describes the
design of River. Section 4 describes our implementation
and preliminary evaluation. Section 5 compares the River
approach to related ones. Section 6 concludes with an
extensive discussion of future work.

2. MOTIVATING EXAMPLES
We describe, for each of the primitives we support, a
scenario in which it would be used, how the scenario could
be handled using a conventional discovery-service based
approach, how the scenario is handled in River, and the
possible benefits of the River approach.

We assume that in the conventional approach [4][9][11] the
only support provided by the system (via the discovery
service) is to map an attribute-based description of a service
onto a reference to the service (which we call a service ID
below). Once services discover target services, they manage
for themselves all communication with the target services.

2.1 Function calls
Consider writing a function, that when invoked, turns on a
lamp close to Alice. We assume that the location of both
Alice and the lamps in the space is variable. We assume
further that each lamp has a unique device ID, and is
represented by a proxy service. We also assume several
location services exist to provide location of an object
given its ID. In principle, the code should check, for each
lamp in the system, whether a location service maps its ID
to Alice’s location, and if so, ensure that lamp does turn on.

Figure 1(a) shows, in practice, how the body of such a
function would be written in the conventional approach.
The code must explicitly discover services (in this case
lamp proxy and location services) of potential interest via
lookups on the discovery service, flow information between
services in the appropriate manner (in this case, use the
lamp id to get its location, and then compare the location to
Alice’s), and iterate until it finds a service that is accessible
and relevant (in this case, we need to find a location service
that has information on the lamp, and a lamp that
successfully turns on).

Set lamps= Discovery.lookup(“device_type=lamp”);
Set locs = Discovery.lookup(“service=location”);
foreach LocSvc loc in locs {
 if(alice_loc = loc.getLocation(“Alice”)){break;}}
foreach Lamp lamp in lamps {

foreach LocSvc loc in locs {
 Loc lamp_loc = loc.getLocation(lamp.id);
 if (lamp_loc == alice_loc) {
 if (lamp.turnOn()){break; //early exit}}

}}
 (a) Conventional approach

String query =
 “SELECT D.service_id
 FROM dev_svcid_tbl D, loc_tbl L1, loc_tbl L2
 WHERE D.device_type = ‘lamp’ AND
 D.device_id = L1.device_id AND
 L1.location = L2.location AND
 L2.id = ‘Alice’”;
LampCommand cmd = new LampCommand(“turnOn”);
…
RiverDiscovery.call(query, cmd);
 (b) The River approach

Figure 1. Reactive, context-dependent function calls

Figure 1(b) shows how the same effect is achieved in River.
Most of the work is in the definition of the SQL query
named query. In defining this query, the programmer is
able to view the discovery service as containing table
dev_svcid_tbl with schema dev_svcid_tbl
(service_id, device_id, device_type), and
all the location services in the system as a single table
loc_tbl(object_id, location). Given this view,
the programmer defines the services of interest in terms of
relational operators on these tables. He then packs the name
and arguments of the function to be invoked into a
command. Finally, he uses the RiverDiscovery.call
function to associate the call and its arguments with the
query, and to request execution of the call on one service
that satisfies the query.

Two points are worth noting. First, the programming
burden on the programmer of explicitly discovering,
flowing information between, and iterating to find relevant
services is substantially relieved. Second, by using the
RiverDiscovery.call whenever he would use a
statically bound remote procedure call, the programmer can
ensure that the calls are reactive, in the sense that they will
bind to the most appropriate target each time.

2.2 Events
Services, especially those representing sensors, often
publish streams of data objects or events. Services
interested in being notified of these events express their
interest by subscribing to the subset they are interested in.
In all cases we are aware of, a service specifies this subset
as dispatch constraints on the value of the incoming event.

Discovery.subscribe(“type=motion”, new Handler());
…
class Handler{
void handle(MotionSensorEvent e){
 Set tmps = Discovery.lookup(“service=temp_s”);
 Set locs = Discovery.lookup(“service=location”);
 foreach TempSvc tmp in tmps {

foreach LocSvc loc in locs {
 Loc l = loc.getLocation(e.device_id);
 if(tmp.getTempAtLocation(l) < 60){

L: … //process the event
 return; //early exit from loop}
 }}
…}
 (a) Conventional approach

String query =

“SELECT T.location
 FROM temp_tbl T, loc_tbl L, event
 WHERE event.type = ‘motion’ AND
 T.temperature < ‘60’ AND
 T.location = L.location
 L.id = event.device_id)”;

RiverDiscovery.subscribeEvent(query,
 new Handler());
class Handler{
void handle(MotionSensorEvent e){
… //same code as at L above
}

 (b) The River approach

Figure 2. Reactive, context-dependent events

In many emerging applications [7], however, the relevance
of an event is determined not just by the value of the event
itself, but also by context data stored in other services in the
system.

Consider a building automation application that
automatically controls temperature. Suppose it needs to be
notified of motion in parts of the house where the
temperature is below some threshold, say 60ΟF, so that it
can selectively turn up the temperature. Say motion sensors
all over the house constantly publish packets of data that
contain their device ID and a boolean indicating the
presence of motion, that temperature is provided by a
number of services that map between location and
temperature, and that location is provided by services
mapping between object ID and location.

Figure 2(a) shows how the application would be written
using a conventional event dispatch system. The application
registers interest in all events from motion sensors, and
registers a handler for these events. A crucial point is that
because the dispatch constraint (here ”type=motion”) is
restricted to information contained in the incoming event, it
is impossible for the programmer to be more specific about
which motion sensors he is interested in. On receiving an
event the handler uses the motion sensor device ID in the
event to locate it, and uses the location to look up its
ambient temperature in a temperature service. In addition to
the burden of writing the code that robustly implements the
logic as before, this approach has the intrinsic performance
problem that it requires the application to handle (and filter)

all motion sensor events under the possibility that they may
be relevant.

Figure 2(b) shows how the application would be written in
River. The dispatch constraint on the incoming packet is
specified declaratively using a relational query; and the
constraint may reference any database in the current
federation. The River event dispatcher can therefore be
more selective in the events forwarded to the application
than the conventional dispatcher. A minor wrinkle is that
the query refers to the special table named event. River
binds this table name to the incoming event, so that we can
access fields of the event using standard SQL notation.

2.3 Connections
Services processing streaming media often use persistent
connections (such as sockets) to communicate large,
continuous streams of data to other services. Traditionally,
the endpoints of the connection remain fixed for the
duration of its flow. In emerging applications, however, the
endpoints may change during the flow.

Consider a baby monitoring application that uses cameras
distributed around a house to deliver a video stream of a
baby’s current antics to the display closest to its mother.
Because both baby and mother move around the house, the
nearest display and camera respectively may change every
few seconds, so that the application needs to reset the
connection fairly often.

Figure 3(a) shows how such an application would be
implemented using traditional means. The fragment of code
is designed to execute in a separate thread from the main
application. It essentially loops until the application exits,
springing into action every SAMPLING_INTERVAL
microseconds. On each iteration it discovers appropriate
location, camera and display services, and if the required
camera or display has changed, requests the camera service
(as originator of the connection) to terminate its connection
to the old display, create one to the new one, and start
streaming data through the new display (all in the line
labeled M). We have simplified the application for clarity:
in practice the programmer would need to make provisions
to minimize hysterisis, check for device failure.

In spite of the simplifications, the code is still quite
complicated: both discovering appropriate services
robustly, and achieving the connection reset are non-trivial.
Also, the performance of this synchronous, polling based
approach can be bad. A sophisticated programmer would
want to consider the trade-off between polling at long-
enough intervals and adding machinery for event-based
updates (assuming the location service supported the
required notifications).

Svc curCam = curDsp = null;
while(!exitApplication){
 Set cams = Discovery.lookup(“service=camera”);
 Set dsps = Discovery.lookup(“service=display”);
 LocSvc l = Discovery.lookup1(“service=location”);
 foreach CamSvc cam in cams {
 Loc camloc = l.getLocation(cam.id));
 foreach DspSvc dsp in dsps {
 Loc dsploc = l.getLocation(dsp.id);
 if(camloc == l.getLocation(“baby”) &&
 dsploc == l.getLocation(“mom”)){
 if(curCam == cam && curDsp == dsp){goto L;}
M: cam.off(curDsp);cam.connect(dsp);cam.on(dsp);
 curCam = cam; curDsp = dsp;
 goto L;}
 }}
L: sleep(SAMPLING_INTERVAL);}
 (a) Conventional approach

String camQuery =
 “SELECT D.service_id
 FROM dev_t D, loc_t L1, L2
 WHERE D.device_type = ‘camera’ AND
 D.device_id = L1.id AND
 L1.location = L2.location AND
 L1.id = ‘baby’”;
String dspQuery =
 “SELECT D.service_id
 FROM dev_t D, loc_t L1, L2
 WHERE D.device_type = ‘display’ AND
 D.device_id = L1.id AND
 L1.location = L2.location AND
 L1.id = ‘mom’”;
Connection c = RiverDiscovery.connect(camQuery,
 dspQuery, new ConnectionStatusHandler());
 (b) The River approach

Figure 3. Reactive, context-dependent connections

Figure 3(b) shows how the same application would be
implemented in River. As usual, endpoints of the primitive
are specified in a clean, declarative manner. The machinery
for resetting connections is handled by River, inside the
connect() function call. In addition to the usual two
queries denoting the two endpoints of the connection, note
that the call has a connection status handler argument. The
connection status handler is invoked by River when there is
any change in the connection status.

By providing code for robust and high-performance
implementation of reactive connections, River clearly
reduces the burden on the programmer. Further, since the
one-time cost of adding a sophisticated optimization to this
code is amortized over many users, River can potentially
provide a high-performance implementation.

2.4 Relational Queries
A happy side effect of being able to consider the set of all
services as a federation of databases is that programmers
can issue arbitrary SQL queries over the federated database.
In the previous three sections, these queries were devoted to
deciding the control flow of traditional communication
primitives. However, the RiverDiscover.lookup()
method is essentially evaluates an arbitrary SQL query over
the federated database, and is directly available to the

programmer. In many cases, using such a query directly as
communication primitive may be the most natural option
for a programmer.

3. DESIGN
The River discovery service consists of the query processor
and the dispatcher (Figure 4). The query processor enables
context-dependent naming of services by allowing the client
applications to specify the name of the services with which
they intend to interact using context-dependent information
provided by other services in the system. The dispatcher
integrates the communication primitives with the context-
dependent naming and makes them reactive to context
changes.

Figure 4. The structure of the River discovery service.

River views the set of services in the system as a federation
of databases, and each service serves the information it
maintains in the form of a database relation. The query
processor processes queries written in SQL over these
databases. The query processor consists of a relation map
that maintains the information about which service has
which relation, a relation cache that stores actual data
tuples locally for better performance, and the query engine
that parses and processes the query.

The dispatcher consists of the call dispatcher, the event
dispatcher, and the connection manager. The call
dispatcher receives a late-binding function call request from
an application, determines a destination for the function call
using the query processor, and forwards the call request to
the destination. The event dispatcher receives an event from
an event source, determines the event subscriptions
matching the event, and sends the event to the subscribers.
All the event subscriptions are stored in the event map. The
connection manager manages the connections registered in

the discovery service. It re-evaluates the query for each
end-point of each connection periodically or upon events,
and changes the connection end-points when necessary.

interface RiverDiscovery {
 Handle registerRelations(String[] names);
 Handle registerTuples(String name, Set tuples);
 Handle subscribeEvent(String query,
 EventHandler eh);
 void withdraw(Handle h);

 Set lookup(String query);
 Set call(String query, Message m,
 boolean multicast = false);
 void asyncCall(String query, Message m,
 boolean multicast,
 ContinuationHandler ch);
 void publishEvent(Event e);
 Connection connect(String q1, String q2,
 ConnectionHandler h);
}

Figure 5. Interface of the River discovery service stub

Figure 5 shows the interface of the River discovery service
stub. The first four methods are used for registration and
deregistration, and the last five methods are for
communications.

3.1 Registration
When a service is started, it registers the names of the
database relations it maintains with the discovery service.
For example, a location service that has a mapping between
an ID and the current location of the person or object of the
ID may register the relation name ‘loc_tbl’ whose
schema is ‘(object_id, location)’. We assume
that the name of a table is unique (this can be enforced by
yet another service so that databases can be easily aliases
between environments), and the schema of a table is
available using that name. The relation names and the
services maintaining the relations are stored in the relation
map. The relation map is a table with the service ID (that
includes the address of the service) and the relation name
fields. For a given relation name, the relation map returns
the service IDs of all the services that have the relation.

In addition to the relation names, a service can also register
actual data tuples along with the relation names. Usually,
services register data tuples when the number of data tuples
in the relation is rather small and the contents of the relation
are static and do not change frequently. The data tuples are
stored in the relation cache.

Caching data tuples inside the relation cache emulates
conventional discovery services. In conventional discovery
systems, a service registers its static attributes with the
discovery service. Likewise, in River, a service can register
the attributes composed in a tuple with the River discovery
service. For example, a device proxy service has several
attributes that describe the service and do not change: the
service ID, the device ID of the device it represents, and the
device type. The device proxy service can register the

‘dev_svcid_tbl’ relation whose schema is
(service_id, device_id, device_type) and a
tuple for the ‘dev_svcid_tbl’ relation that has the
attributes for this proxy service.

Applications or services interested in certain events register
their interests with the discovery service. The event
registration has two parameters: the interest for the event
written in SQL and the event handler for the event that is to
be invoked when the event is dispatched. The event
registration is sent to the event map that maintains a table
with the event subscription query, the event handler ID, and
the service ID of the subscriber. When the event map
receives an event registration, it parses the event query
before storing it into the table to reduce the event
dispatching time.

3.2 Query Processing
The query engine receives lookup requests directly from
client applications or from the dispatcher. The query engine
has two lookup methods (Figure 6). The lookup request
from client applications and call dispatcher uses the first
lookup method with a query string as a parameter. Upon
receiving the query, the query engine parses the query and
then makes a query execution plan. When generating query
execution plans, the query engine first checks the relation
cache and then refers to the relation map to figure out the
location of each relation. The query execution plan includes
details such as the sequence of operations, and how the
queried relations are accessed (whether from the relation
cache or from other services). Once the query execution
plan has been generated, the query engine executes the
query and returns the result.

The second lookup method takes a parsed query and an
event as parameters and is used by the event dispatcher and
the connection manager. They have parsed queries stored in
the event map and the connection map, respectively, and
send a parsed query and an event (if the call is triggered by
an incoming event, otherwise null) as parameters to the
query engine for lookup. Because the query involves the
incoming event in this case, as an optimization, the query
engine first evaluates the query with the event to determine
whether the query requires further evaluation. If the query
turns out to return null after evaluating with the event, the
query engine returns null immediately without generating
and executing an execution plan. If the return value is non-
null, then the query engine generates the execution plan and
executes it.

interface QueryEngine {
 Query parse(String query);
 Set lookup(String query);
 Set lookup(Query parsedQuery, Event e);
}

Figure 6. Interface of the query engine.

3.3 Dispatching
3.3.1 Dispatching Function Calls
The River discovery service provides two late-binding
function call methods (Figure 5), and the call dispatcher
processes them both. The first method – call – is a
synchronous function call method. It takes a query string, a
function invocation message, and a multicast option as
parameters. To invoke the call method, the caller composes
a query for finding the services to invoke and the invocation
message that includes the invoked service’s method name
and parameters. When the discovery service stub’s call
method is called, the stub adds the caller’s address into the
invocation message and sends the query string, the modified
invocation message, and the multicast option to the call
dispatcher of the discovery service. The call dispatcher’s
call method takes this request and invokes the lookup
method of the query engine with the query and finds the
services to invoke that match the query. If the multicast
option is set to true, it sends the function invocation
message to all the possible services it finds. If the multicast
option is set to false, it sends the invocation message only
to the first matching service among them. Then, it notifies
the stub of the number of services invoked. The stub waits
for responses from all the services invoked. The invoked
service returns the result back to the caller whose address is
included in the invocation message. When the stub receives
results from all the invoked services, it packs the results
into a set and returns it to the caller.

In addition to the synchronous function call method, River
also provides an asynchronous function call method
asyncCall. It takes a continuation handler as well as a
query string, a function invocation message, and a multicast
option as parameters. When the asyncCall is called, the
discovery service stub adds the caller’s address and the
continuation handler ID to the invocation message and
invokes the call dispatcher’s call method. Then, the stub
returns immediately and the caller can continue its
execution. Every time an invoked service returns its result,
the continuation handler is invoked. Thus, if the multicast
option is set to true, the continuation handler may be
invoked more than once if more than one matching services
are found by the query engine.

int call(String query, Message m, Boolean mc) {
 Set s = QueryEngine.lookup(query);
 int servicesToInvoke = 0;
 foreach ServiceID sid in s {
 send(sid, m);
 servicesToInvoke++;
 if (!mc && servicesToInvoke == 1) {return 1;}
 }
 return servicesToInvoke;
}

Figure 7. The call method of the call dispatcher.

3.3.2 Dispatching Events
A service that wants to publish an event uses the
publishEvent method. The event is passed as a
parameter to the event dispatcher of the discovery service.
When the event dispatcher receives an event, it iterates
through all the registered event subscriptions in the event
map and calls the lookup method of the query engine for
each subscription. If the query engine returns null, it means
that the incoming event does not match with the query. If
the query returns a result that is not null, the event
dispatcher attaches the result to the event and sends the
event to the subscriber with the event handler ID. The
subscriber’s address and the event handler ID are stored in
the event map table with the query. Note that the event
dispatcher attaches the query result to the event when
dispatching it to the matching subscribers. Thus, the
subscribers can receive some additional information in
addition to the event itself. For example, the subscriber may
receive a motion event to which the location of the event is
attached (in the example in section 2.2).

void publishEvent(Event e) {
 foreach Subscription s in EventMap {
 Query q = s.query;
 if((Set r = QueryEngine.lookup(q, e))!=null){
 e.attachData(r);
 e.attachHandlerID(s.handlerID);
 send(s.address, e2);
 }
 }
}

Figure 8. The publishEvent method of the event dispatcher

3.3.3 Managing Dynamic Streaming Connections
A reactive streaming connection can be established with the
connect method. It takes two query strings for two end-
points and a connection handler for getting connection
status information. The discovery service stub sends the
connect request to the connection manager of the discovery
service. The connection manager’s connect method takes
the request and establishes a connection between the two
endpoints. It first parses the two query strings and finds
corresponding services for the two endpoints. If services are
found, it asks the first endpoint to make a connection to the
other endpoint. Then, it stores the connection information
including parsed queries into the connection map. Finally, it
returns the connection handle to be used by the application
to control the connection.

The connections stored in the connection map need to be
reevaluated so that they can react to context changes that
require changing connection. The reevaluate method is
invoked periodically by the connection manager, or invoked
when an event comes to the event dispatcher. This method
reevaluates the queries and changes the connection if either
of the endpoints has changed. Also, it notifies the
application of any change in the connection status.

Connection connect(String q1, String q2,
 ConnectionHandler ch) {
 Query parsedQ1 = QueryEngine.parse(q1);
 Query parsedQ2 = QueryEngine.parse(q2);
 Set s1 = QueryEngine.lookup(parsedQ1, null);
 Set s2 = QueryEngine.lookup(parsedQ2, null);
 if (s1.empty() || s2.empty()) return null;
 ServiceID sid1 = s1.getAt(0);
 ServiceID sid2 = s2.getAt(0);
 ConnectionID h = sid1.connect(sid2);
 Connection c = ConnectionMap.store(ch,
 parsedQ1, parsedQ2, sid1, sid2, h);
 return c;
}

void reevaluate(Event e) {
 foreach Connection c in ConnectionMap {
 Set s1 = QueryEngine.lookup(parsedQ1, e);
 Set s2 = QueryEngine.lookup(parsedQ2, e);
 if(s1.empty() || s2.empty()) {
 c.ch.notify(“lost”); continue; }
 if(s1.has(c.sid1) && s2.has(c.sid2)) continue;
 ServiceID sid1 = c.sid1, sid2 = c.sid2;
 if(!s1.has(c.sid1)) sid1 = s1.getAt(0);
 if(!s2.has(c.sid2)) sid2 = s2.getAt(0);
 sid1.disconnect(c.h);
 ConnectionID h = sid1.connect(sid2);
 c.ch.notify(“rebound”);
 ConnectionMap.update(c, sid1, sid2, h);
 }
}

Figure 9. The connect and reevaluate methods of the
connection manager.

4. IMPLEMENTATION AND
EVALUATION
4.1 Implementation
The River framework is implemented on top of Rain [9], an
asynchronous event-based service/messaging system.
Messages in Rain are in XML and the format of the
message can be easily changed. The only required fields are
sender and recipient tags. The River discovery service and
all the other services are implemented as Rain services.
Rain has been implemented in several different languages,
and we use the Java version of Rain for our implementation.

Most of the major components of the discovery service
have been implemented except for the connection manager
which is still under development and only partially
functional.

4.2 Performance Evaluation
We have measured the performance of the River discovery
service. The experiments were performed on seven lightly
loaded Pentium 4 (3.0 GHz, 1 GB RAM) machines. The
discovery service runs on one machine, all other
participating services run on 5 machines, and the last
machine is used for measuring.

The most important aspect of the River discovery service
that influences its performance is the query processor. In
River, all the query processing operations including
accessing remote services are done inside the discovery

service. In conventional discovery systems, however, the
discovery service only performs queries on data stored
within the discovery service itself and the application needs
to access the remote services explicitly. Thus, the basic
question we set out to answer was how the River-style
context-dependent query processing performance compares
with the application-explicit version of query processing in
conventional discovery systems.

First, we measured the latency of the lookup operation. The
lookup operation is needed for an application to find a
service for a given query. In River, the latency is the time
that transpires while the application is waiting to get this
result. In the conventional case, the latency includes the
time for the application to get partial results from the
discovery service and the time to contact remote services
for further processing of the query. Figure 10 shows the
latencies of the River version and the conventional version.
When there is no remote relation involved in the query, in
other words, the query is focused on the service attributes
already stored in the discovery service, there is no
noticeable difference between the two cases. However, as
the number of remote relations involved in the query
increases, the latency of the conventional case gets longer
than the River case. That is because the conventional case
needs one more round-trip to the discovery service for each
remote relation it has to execute as part of its query. In the
River case, the remote relation access happens in the
discovery service itself, and the address of the service can
be found locally, and thus, more efficiently, within the
discovery service itself.

lookup latency

0

10

20

30

40

50

60

70

0 1 2 3 4 5

num ber of rem ote re lations

m
s

river

conventional

Figure 10. Lookup latency of the River case and the
conventional case.

throughput

0

50

100

150

200

250

0 1 2 3 4 5

num ber of rem ote re lations

lo
o

ku
p

/s
ec

o
n

d

river

conventional

Figure 11. Throughput of the River case and the conventional

case.

Next, we measured the throughput of the River discovery
service. In the River case, all the query processing is
performed by the discovery service, and the discovery
service consumes more computing power than in the
conventional case where much of the query processing is
done at the application. As expected, the throughput of the
conventional discovery service is higher than that of the
River discovery service. However, even though the query

processing is done in the application in the conventional
case, the application still needs to ask the discovery service
of the addresses of the services with remote relations and it
consumes the resources of the discovery service. This
communication cost of the discovery service (receiving
request and sending reply) offsets the computation cost
(processing query). That is why the throughput difference is
negligible.

The measurement shows that the River-style context-
dependent query processing inside the discovery service
can give much better latency with little sacrifice in
throughput.

5. RELATED WORK
There has been a flurry of recent work towards supporting
context dependent and efficient discovery between services,
and (to a lesser extent) on ensuring that communication
between services is reactive. We compare River with these
applications along three dimensions: the operations
supported by the query language used to specify the
attributes required of the target service, the variety of
external attributes (i.e. those not explicitly stored in the
discovery service) that can be reference in the query, and
the variety of reactive control primitives provided.

Table 1 summarizes the comparison. The first column of
the table names the system, the second through fourth
handle each of the above three dimensions, and the last
mentions other important related features of each system.
Below, we discuss each column of the table in turn.

We begin with the query language (column 2 of the table).

Reactive Communication primitives
System Query Language

External
Attributes In

Query
Function

Call
Event Connection

Other Features

Jini [11]
java interface with

attributes-value
pairs

none no no No commercial system

SDS [4] attribute-value pairs none no no No

INS [1] hierarchical
attribute-value pairs

none yes no No highly scalable, allows frequent
update of advertisements

SoNS [10] non-recursive lisp-
like expressions

none no no Yes socket-level support

EventHeap[5]

TSpaces [8]
attribute-value pairs

(templates)
none no yes No

centralized, all communication
modeled as database reads and
writes

Solar [2] path-structured
name

location only no yes No can name and share streams
output from composed services

iQL [3] iQL
values produced by

other services
no yes No fully reactive language

River SQL
values contained in
advertising services

yes yes Yes system from this paper

Table 1. Comparison of the related works.

A common format for specifying matches is as attribute
value pairs. SDS, EventHeap and TSpaces support straight
attribute-value pair matches. Jini, allows specification of the
Java interface of the target services in addition to attributes.
INS allows attributes and values to be placed in hierarchies.
Solar specifies services explicitly by name, and provides a
path-based formalism for naming the result of composing
services. In all these cases, service identification is a matter
of structurally matching queries to values. A smaller set of
systems supports interpretable queries. SoNS allows
queries that are expressions (with relational and arithmetic
operators) over attribute-value pairs. iQL supports
expressions in a general reactive language. Finally, River
supports expressions in SQL.

As our earlier examples show, the more expressive the
query language, the less the user has to do in evaluating the
query. In the extreme case, of course, the queries could be
fully general functions. However, this may result in queries
that do not terminate and are difficult to optimize.

We now move to the scope of the query (column 3 of the
table). As we have argued, an important aspect of the
support for context dependent control in practice is the
ability to consult arbitrary services in the system as part of
the endpoint-binding query. Most systems do not allow
queries to make such references. The exception is iQL and
Solar. iQL allows services to reference values published by
other services (iQL has a pure event-filter-based model).
Solar’s naming conventions location context in the name
space. River, as explained previously, allows queries to
reference and operate on data stored in any service that has
advertised its database schema.

Finally, consider the provision of reactive communication
primitives (column 4). An extreme in this category are the
pure discovery services such as Jini and SDS, which
provide no support at all for communication, beyond
returning relevant target services. INS provides a late-
binding function call that has semantics similar to that of
River function calls. Service-oriented Network Sockets
(SoNS) integrates the discovery lookup into the socket API
with semantics similar to River connections (except that
they support migration of only one endpoint). Finally, a
number of systems support reactive events: in some sense,
since traditional events already work by matching query
patterns from subscriptions to published data, they already
have “most relevant service” semantics. iQL in particular is
noteworthy in that it provides expression level reactivity:
not only does the appropriate event get forwarded, even
expressions get re-evaluated and re-bound, when inputs
change.

River is able to provide all three communication primitives
using a single programming metaphor of query-defined
endpoints, and the implementation technique of relational
query based dispatching. We expect that allowing the

programmer to use their primitive of choice (while not
worrying about low-level details) will improve their
productivity.

A final category of related work not included in the table is
that of distributed relational databases. A very large body of
work exists on this topic. The survey by Kossmann [6] is a
good starting point. Although we intend to use techniques
from the literature to optimize our system as needed, there
are some significant differences between our applications
and distributed databases in general. First, we expect many
of our services to run on resource-impoverished devices.
Second, we expect many services (and therefore databases)
to enter and leave in the order of minutes and hours. Third,
we expect that the pattern of queries seen by the River
query processor will have much higher regularity than
typical database queries (since they will be implementing
the same control primitives repeatedly). Thus, it is an open
question to what extent techniques applied successfully will
transfer over to River.

6. SUMMARY AND FUTURE WORK
We have argued that many emerging applications entail a
combination of “deep context dependence” and reactive
communication primitives, both of which are supported
only in limited ways in recently proposed systems. We have
presented a novel technique, relational query based dispatch
(RQD), that provides a single unifying framework within
which conventional communication primitives such as
function calls, events and connections can be made both
context dependent and reactive. Our preliminary
measurements show that the high level of abstraction we
provide to the programmer can potentially be supported at
little performance cost. In some cases, communication with
RQD can even be faster than without.

Although early results seem promising, we anticipate
substantial further work to validate and improve the basic
RQD model. One of the biggest concerns is that although
we provide an attractive abstraction to the clients of various
services, we impose a fairly heavyweight model (that of a
federated database) on the system as a whole, thus
potentially paying an unacceptable cost in resource usage
and performance. Although the measurements presented
above are encouraging, we fully expect scenarios where the
federated database, if naively implemented, generates large
amounts of extra traffic and computation. Our first order of
business, once we complete the implementation of the
connection manager, will be to do a much more extensive
study of the performance limits and bottlenecks of River.

As mentioned in section 5, much work has already been
done on optimizing query processing in (federated)
databases. We will use the results of our performance study
to select the optimizations that best alleviate our
performance bottlenecks while not imposing unreasonable

requirements on our constituent services. Given our early
understanding of the system, we expect certain techniques
to be quite valuable. Since RQD results in the same query
being re-executed multiple times, we expect caching of
query results to be useful. In order to invalidate cached
data, we expect asynchronous notification of change in
query results to be useful. In order to avoid transferring
large quantities of data across the network, we expect
locality-aware query plans to be useful. In order to support
applications in the absence of powerful centralized servers,
we are considering a distributed peer-to-peer style
implementation of the central dispatcher and query-
processor. In order to support resource limited devices, we
are exploring principled techniques for providing “limited”
relational services.

A final direction we are investigating is tighter integration
with the programming language. River is currently
implemented as a library in Java. Although a library-based
implementation is simpler than augmenting the language, it
increases the possibility of statically undetected errors in
the program, and potentially sacrifices optimization
opportunities. Since all our relational queries are currently
implemented as strings, for instance, it is entirely possible
that the queries may not even parse correctly, let alone
return values of expected type when run.

We currently use River as the infrastructure for
implementing a demonstration application targeted at
home-based eldercare. We are collaborating on porting a
more deployment-ready version of this application on to
River. Once River is stable, and performs reasonably, we
hope to test it on a wider variety of applications that require
dynamic service composition.

7. REFERENCES
[1] William Adjie-Winoto, Elliot Schwartz, Hari

Balakrishnan, and Jeremy Lilley. The design and

implementation of an intentional naming system, Proc.
17th ACM SOSP, Kiawah Island, SC, Dec. 1999.

[2] Guanling Chen and David Kotz. Context Aggregation
and Dissemination in Ubiquitous Computing Systems,
Proc. 4th IEEE WMCSA, 2002.

[3] Norman H. Cohen, Hui Lei, Paul Castro, John S. Davis
II, and Apratim Purakayastha. Composing Pervasive
Data Using iQL, Proc. 4th IEEE WMCSA, 2002.

[4] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes,
Anthony D. Joseph, and Randy H. Katz. An
Architecture for a Secure Service Discovery Service,
Proc. ACM/IEEE MOBICOM, August 1999.

[5] Brad Johnson and Armando Fox. The Event Heap: A
Coordination Infrastructure for Interactive
Workspaces. Proc. 4th IEEE WMCSA, 2002.

[6] Donald Kossmann. The State of the Art in Distributed
Query Processing. ACM Computing Surveys,
32(4):422-469,2000.

[7] Anthony LaMarca, David Koizumi, Matthew Lease,
Stefan Sigurdsson, Gaetano Borriello, Waylon
Brunette, Kevin Sikorski, Dieter Fox. PlantCare: An
Investigation in Practical Ubiquitous Systems. Proc. 4th
UbiComp, 2002.

[8] T. Lehman, S. McLaughry, P. Wyckoff. TSpaces: The
Next Wave. Hawaii Intl. Conf. on System Sciences
(HICSS-32), Jan. 1999

[9] Rain. http://seattleweb.intel-research.net/projects/rain/.

[10] Umar Saif and Justin Mazzola Paluska. Service-
oriented Network Sockets, Proc. MobiSys, May 2003.
http://www.acm.org/sigs/pubs/proceed/template.html.

[11] Sun Microsystems Corporation. The Jini Architecture
Specification, Ver 1.2, Palo Alto, California, December
2001.

[12] Universal Plug and Play. http://www.upnp.org.

