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ABSTRACT 

Applications and services in ubiquitous computing systems 
often interact in a context-dependent, reactive manner. 
How information flows, and what services communicate 
when, is determined by the context of the physical space, 
the context of users, and the services that are available. 
Existing discovery systems provide basic facilities for 
finding services based on their static descriptions in the 
form of attributes.  Context-dependent attributes are not 
included in the service advertisements as they may in turn 
be computed and stored in other services.  We propose an 
infrastructure, called River, that provides various context-
dependent, reactive communication primitives. These 
primitives are implemented using a single underlying 
technique called Relational Query Based Dispatching 
(RQD), which views the set of services in the system as a 
federation of databases, the discovery service as a 
distributed query processor for these databases, and 
communication as a combination of query processing and 
dispatching. In this paper, we describe the design and 
implementation of the River infrastructure. We also show 
that the context-dependent query processing within the 
discovery service can actually reduce the lookup latency 
with little effect on overall throughput. 

1. INTRODUCTION 
A programming model that has received much recent 
attention is dynamic service composition [1][2][3] [11][12]. 
In this model, a network environment is populated by a 
number of independent processes (called services). Each 
service typically depends on, and communicates with, 
others for its functionality. Dynamic composition burdens 
programmers with two key issues: 

•  Context sensitivity. Services tend to be 
specialized to be applicable in specific situations, 
or contexts. The set of services communicated with 
is therefore context dependent: it may depend in 
complex ways on data produced and stored 
throughout the system. The logic for specifying the 

appropriate services to link with is therefore 
substantially more complex than in traditional 
programs. 

•  Reactivity. Services representing devices, 
especially sensors and actuators, are common. 
Sensors add sensed data to the system constantly, 
leading to rapidly changing context. As the context 
changes, a service may need to use different 
actuators or services than before. Each service 
therefore needs logic that frequently rediscovers 
and rebinds to appropriate and available services. 

Writing services that address these issues robustly and with 
high performance can be quite challenging, even for 
sophisticated programmers. In this paper, we describe the 
River system, which provides context dependent, reactive 
versions of four common communication primitives, using 
a common underlying technique called Relational Query 
Based Dispatching (RQD). 

RQD incorporates two key ideas. First, in addition to 
offering traditional communication interfaces such as those 
using calls and events, every service is also allowed to 
advertise a set of schemas and relational operations such 
that they support the advertised operators over (a subset of) 
the relations specified by the schemas. The set of all 
services can then be viewed as a federated relational 
database, and complex relations within the data can be 
expressed as queries in standard relational languages such 
as SQL. In effect, a relational query processor replaces the 
traditional discovery service. Second, programmers may 
define the addresses of endpoints of communication 
primitives (specifically function calls, events, connections 
and relational queries) declaratively using relational queries 
over the federation. The system assumes responsibility for 
binding the endpoint to the most appropriate address at any 
given time, and for dispatching data to this address. 

A few recent systems [1][2][3][5][8][10] have addressed 
the problem of context dependent reactive communication 
primitives. In most cases, the underlying solution is similar 



to that provided by River. Each system provides a 
declarative language or notation to specify a 
communication end-point, and dynamically rebinds the 
endpoint to the appropriate concrete address when the 
specification evaluates to a new value. River’s novelty is in 
the scope and expressiveness of its query language (in 
particular, most other systems only allow queries to match 
against advertisements, not arbitrary data contained within 
services; most proposed query languages are not as 
expressive as SQL), the variety of communication 
primitives it supports (other systems typically each support 
one or two primitives), and its demonstration that a single 
underlying framework can support all the primitives.  

The rest of the paper is structured as follows. Section 2 
presents motivating examples. Section 3 describes the 
design of River. Section 4 describes our implementation 
and preliminary evaluation. Section 5 compares the River 
approach to related ones. Section 6 concludes with an 
extensive discussion of future work. 

2. MOTIVATING EXAMPLES 
We describe, for each of the primitives we support, a 
scenario in which it would be used, how the scenario could 
be handled using a conventional discovery-service based 
approach, how the scenario is handled in River, and the 
possible benefits of the River approach.  

We assume that in the conventional approach [4][9][11] the 
only support provided by the system (via the discovery 
service) is to map an attribute-based description of a service 
onto a reference to the service (which we call a service ID 
below). Once services discover target services, they manage 
for themselves all communication with the target services. 

2.1 Function calls 
Consider writing a function, that when invoked, turns on a 
lamp close to Alice. We assume that the location of both 
Alice and the lamps in the space is variable. We assume 
further that each lamp has a unique device ID, and is 
represented by a proxy service. We also assume several 
location services exist to provide location of an object 
given its ID. In principle, the code should check, for each 
lamp in the system, whether a location service maps its ID 
to Alice’s location, and if so, ensure that lamp does turn on. 

Figure 1(a) shows, in practice, how the body of such a 
function would be written in the conventional approach.   
The code must explicitly discover services (in this case 
lamp proxy and location services) of potential interest via 
lookups on the discovery service, flow information between 
services in the appropriate manner (in this case, use the 
lamp id to get its location, and then compare the location to 
Alice’s), and iterate until it finds a service that is accessible 
and relevant (in this case, we need to find a location service 
that has information on the lamp, and a lamp that 
successfully turns on). 

  
Set lamps= Discovery.lookup(“device_type=lamp”); 
Set locs = Discovery.lookup(“service=location”); 
foreach LocSvc loc in locs { 
 if(alice_loc = loc.getLocation(“Alice”)){break;}} 
foreach Lamp lamp in lamps { 

foreach LocSvc loc in locs { 
  Loc lamp_loc = loc.getLocation(lamp.id); 
  if (lamp_loc == alice_loc) { 
    if (lamp.turnOn()){break; //early exit}} 

}} 
  (a) Conventional approach  
 
String query =  
 “SELECT D.service_id  
  FROM dev_svcid_tbl D, loc_tbl L1, loc_tbl L2 
  WHERE D.device_type = ‘lamp’ AND  
        D.device_id = L1.device_id AND 
        L1.location = L2.location AND  
        L2.id = ‘Alice’”; 
LampCommand cmd = new LampCommand(“turnOn”); 
… 
RiverDiscovery.call(query, cmd);  
  (b) The River approach 
 

Figure 1.  Reactive, context-dependent function calls 

Figure 1(b) shows how the same effect is achieved in River. 
Most of the work is in the definition of the SQL query 
named query. In defining this query, the programmer is 
able to view the discovery service as containing table 
dev_svcid_tbl with schema dev_svcid_tbl 
(service_id, device_id, device_type), and 
all the location services in the system as a single table 
loc_tbl(object_id, location). Given this view, 
the programmer defines the services of interest in terms of 
relational operators on these tables. He then packs the name 
and arguments of the function to be invoked into a 
command. Finally, he uses the RiverDiscovery.call 
function to associate the call and its arguments with the 
query, and to request execution of the call on one service 
that satisfies the query. 

Two points are worth noting. First, the programming 
burden on the programmer of explicitly discovering, 
flowing information between, and iterating to find relevant 
services is substantially relieved. Second, by using the 
RiverDiscovery.call whenever he would use a 
statically bound remote procedure call, the programmer can 
ensure that the calls are reactive, in the sense that they will 
bind to the most appropriate target each time. 

2.2 Events 
Services, especially those representing sensors, often 
publish streams of data objects or events. Services 
interested in being notified of these events express their 
interest by subscribing to the subset they are interested in. 
In all cases we are aware of, a service specifies this subset 
as dispatch constraints on the value of the incoming event.  

 

 



Discovery.subscribe(“type=motion”, new Handler()); 
… 
class Handler{ 
void handle(MotionSensorEvent e){ 
 Set tmps = Discovery.lookup(“service=temp_s”); 
 Set locs = Discovery.lookup(“service=location”); 
 foreach TempSvc tmp in tmps { 

foreach LocSvc loc in locs { 
 Loc l = loc.getLocation(e.device_id);  
 if(tmp.getTempAtLocation(l) < 60){ 

L:  …   //process the event  
    return; //early exit from loop}  
 }} 
…} 
  (a) Conventional approach  
 
String query =  

“SELECT T.location  
 FROM temp_tbl T, loc_tbl L, event 
 WHERE event.type = ‘motion’ AND 
       T.temperature < ‘60’ AND 
       T.location = L.location 
       L.id = event.device_id)”; 

RiverDiscovery.subscribeEvent(query,  
                              new Handler()); 
class Handler{ 
void handle(MotionSensorEvent e){ 
… //same code as at L above 
} 
 
  (b) The River approach 
 

Figure 2. Reactive, context-dependent events 

In many emerging applications [7], however, the relevance 
of an event is determined not just by the value of the event 
itself, but also by context data stored in other services in the 
system. 

Consider a building automation application that 
automatically controls temperature. Suppose it needs to be 
notified of motion in parts of the house where the 
temperature is below some threshold, say 60ΟF, so that it 
can selectively turn up the temperature. Say motion sensors 
all over the house constantly publish packets of data that 
contain their device ID and a boolean indicating the 
presence of motion, that temperature is provided by a 
number of services that map between location and 
temperature, and that location is provided by services 
mapping between object ID and location.  

Figure 2(a) shows how the application would be written 
using a conventional event dispatch system. The application 
registers interest in all events from motion sensors, and 
registers a handler for these events. A crucial point is that 
because the dispatch constraint (here ”type=motion”) is 
restricted to information contained in the incoming event, it 
is impossible for the programmer to be more specific about 
which motion sensors he is interested in. On receiving an 
event the handler uses the motion sensor device ID in the 
event to locate it, and uses the location to look up its 
ambient temperature in a temperature service. In addition to 
the burden of writing the code that robustly implements the 
logic as before, this approach has the intrinsic performance 
problem that it requires the application to handle (and filter) 

all motion sensor events under the possibility that they may 
be relevant. 

Figure 2(b) shows how the application would be written in 
River. The dispatch constraint on the incoming packet is 
specified declaratively using a relational query; and the 
constraint may reference any database in the current 
federation. The River event dispatcher can therefore be 
more selective in the events forwarded to the application 
than the conventional dispatcher. A minor wrinkle is that 
the query refers to the special table named event. River 
binds this table name to the incoming event, so that we can 
access fields of the event using standard SQL notation. 

2.3 Connections 
Services processing streaming media often use persistent 
connections (such as sockets) to communicate large, 
continuous streams of data to other services. Traditionally, 
the endpoints of the connection remain fixed for the 
duration of its flow. In emerging applications, however, the 
endpoints may change during the flow. 

Consider a baby monitoring application that uses cameras 
distributed around a house to deliver a video stream of a 
baby’s current antics to the display closest to its mother. 
Because both baby and mother move around the house, the 
nearest display and camera respectively may change every 
few seconds, so that the application needs to reset the 
connection fairly often. 

Figure 3(a) shows how such an application would be 
implemented using traditional means. The fragment of code 
is designed to execute in a separate thread from the main 
application. It essentially loops until the application exits, 
springing into action every SAMPLING_INTERVAL 
microseconds. On each iteration it discovers appropriate 
location, camera and display services, and if the required 
camera or display has changed, requests the camera service 
(as originator of the connection) to terminate its connection 
to the old display, create one to the new one, and start 
streaming data through the new display (all in the line 
labeled M). We have simplified the application for clarity: 
in practice the programmer would need to make provisions 
to minimize hysterisis, check for device failure.  

In spite of the simplifications, the code is still quite 
complicated: both discovering appropriate services 
robustly, and achieving the connection reset are non-trivial. 
Also, the performance of this synchronous, polling based 
approach can be bad. A sophisticated programmer would 
want to consider the trade-off between polling at long-
enough intervals and adding machinery for event-based 
updates (assuming the location service supported the 
required notifications). 

 

 



 
Svc curCam = curDsp = null; 
while(!exitApplication){ 
 Set cams = Discovery.lookup(“service=camera”); 
 Set dsps = Discovery.lookup(“service=display”); 
 LocSvc l = Discovery.lookup1(“service=location”); 
 foreach CamSvc cam in cams { 
  Loc camloc = l.getLocation(cam.id)); 
  foreach DspSvc dsp in dsps { 
   Loc dsploc = l.getLocation(dsp.id); 
   if(camloc == l.getLocation(“baby”) && 
      dsploc == l.getLocation(“mom”)){ 
    if(curCam == cam && curDsp == dsp){goto L;} 
M:  cam.off(curDsp);cam.connect(dsp);cam.on(dsp); 
    curCam = cam; curDsp = dsp;   
    goto L;}  
 }} 
L: sleep(SAMPLING_INTERVAL);}   
  (a) Conventional approach  
 
String camQuery =  
  “SELECT D.service_id  
   FROM dev_t D, loc_t L1, L2 
   WHERE D.device_type = ‘camera’ AND  
         D.device_id = L1.id AND 
         L1.location = L2.location AND  
         L1.id = ‘baby’”; 
String dspQuery =  
  “SELECT D.service_id  
   FROM dev_t D, loc_t L1, L2 
   WHERE D.device_type = ‘display’ AND  
         D.device_id = L1.id AND 
         L1.location = L2.location AND  
         L1.id = ‘mom’”; 
Connection c = RiverDiscovery.connect(camQuery, 
        dspQuery, new ConnectionStatusHandler()); 
  (b) The River approach 
 

Figure 3. Reactive, context-dependent connections 

Figure 3(b) shows how the same application would be 
implemented in River. As usual, endpoints of the primitive 
are specified in a clean, declarative manner. The machinery 
for resetting connections is handled by River, inside the 
connect() function call. In addition to the usual two 
queries denoting the two endpoints of the connection, note 
that the call has a connection status handler argument. The 
connection status handler is invoked by River when there is 
any change in the connection status.  

By providing code for robust and high-performance 
implementation of reactive connections, River clearly 
reduces the burden on the programmer. Further, since the 
one-time cost of adding a sophisticated optimization to this 
code is amortized over many users, River can potentially 
provide a high-performance implementation. 

2.4 Relational Queries 
A happy side effect of being able to consider the set of all 
services as a federation of databases is that programmers 
can issue arbitrary SQL queries over the federated database. 
In the previous three sections, these queries were devoted to 
deciding the control flow of traditional communication 
primitives. However, the RiverDiscover.lookup()  
method is essentially evaluates an arbitrary SQL query over 
the federated database, and is directly available to the 

programmer. In many cases, using such a query directly as 
communication primitive may be the most natural option 
for a programmer. 

3. DESIGN  
The River discovery service consists of the query processor 
and the dispatcher (Figure 4). The query processor enables 
context-dependent naming of services by allowing the client 
applications to specify the name of the services with which 
they intend to interact using context-dependent information 
provided by other services in the system. The dispatcher 
integrates the communication primitives with the context-
dependent naming and makes them reactive to context 
changes. 

 

Figure 4. The structure of the River discovery service. 

River views the set of services in the system as a federation 
of databases, and each service serves the information it 
maintains in the form of a database relation. The query 
processor processes queries written in SQL over these 
databases. The query processor consists of a relation map 
that maintains the information about which service has 
which relation, a relation cache that stores actual data 
tuples locally for better performance, and the query engine 
that parses and processes the query. 

The dispatcher consists of the call dispatcher, the event 
dispatcher, and the connection manager. The call 
dispatcher receives a late-binding function call request from 
an application, determines a destination for the function call 
using the query processor, and forwards the call request to 
the destination. The event dispatcher receives an event from 
an event source, determines the event subscriptions 
matching the event, and sends the event to the subscribers. 
All the event subscriptions are stored in the event map. The 
connection manager manages the connections registered in 



the discovery service. It re-evaluates the query for each 
end-point of each connection periodically or upon events, 
and changes the connection end-points when necessary. 

interface RiverDiscovery { 
  Handle registerRelations(String[] names); 
  Handle registerTuples(String name, Set tuples); 
  Handle subscribeEvent(String query,  
                        EventHandler eh); 
  void withdraw(Handle h); 
 
  Set lookup(String query); 
  Set call(String query, Message m,  
           boolean multicast = false); 
  void asyncCall(String query, Message m, 
                 boolean multicast, 
                 ContinuationHandler ch);  
  void publishEvent(Event e); 
  Connection connect(String q1, String q2, 
                     ConnectionHandler h); 
} 
 

Figure 5. Interface of the River discovery service stub 

Figure 5 shows the interface of the River discovery service 
stub. The first four methods are used for registration and 
deregistration, and the last five methods are for 
communications.  

3.1 Registration 
When a service is started, it registers the names of the 
database relations it maintains with the discovery service. 
For example, a location service that has a mapping between 
an ID and the current location of the person or object of the 
ID may register the relation name ‘loc_tbl’ whose 
schema is ‘(object_id, location)’. We assume 
that the name of a table is unique (this can be enforced by 
yet another service so that databases can be easily aliases 
between environments), and the schema of a table is 
available using that name. The relation names and the 
services maintaining the relations are stored in the relation 
map. The relation map is a table with the service ID (that 
includes the address of the service) and the relation name 
fields. For a given relation name, the relation map returns 
the service IDs of all the services that have the relation. 

In addition to the relation names, a service can also register 
actual data tuples along with the relation names. Usually, 
services register data tuples when the number of data tuples 
in the relation is rather small and the contents of the relation 
are static and do not change frequently. The data tuples are 
stored in the relation cache.  

Caching data tuples inside the relation cache emulates 
conventional discovery services. In conventional discovery 
systems, a service registers its static attributes with the 
discovery service. Likewise, in River, a service can register 
the attributes composed in a tuple with the River discovery 
service. For example, a device proxy service has several 
attributes that describe the service and do not change: the 
service ID, the device ID of the device it represents, and the 
device type. The device proxy service can register the 

‘dev_svcid_tbl’ relation whose schema is 
(service_id, device_id, device_type) and a 
tuple for the ‘dev_svcid_tbl’ relation that has the 
attributes for this proxy service. 

Applications or services interested in certain events register 
their interests with the discovery service. The event 
registration has two parameters: the interest for the event 
written in SQL and the event handler for the event that is to 
be invoked when the event is dispatched. The event 
registration is sent to the event map that maintains a table 
with the event subscription query, the event handler ID, and 
the service ID of the subscriber. When the event map 
receives an event registration, it parses the event query 
before storing it into the table to reduce the event 
dispatching time. 

3.2 Query Processing 
The query engine receives lookup requests directly from 
client applications or from the dispatcher. The query engine 
has two lookup methods (Figure 6). The lookup request 
from client applications and call dispatcher uses the first 
lookup method with a query string as a parameter. Upon 
receiving the query, the query engine parses the query and 
then makes a query execution plan. When generating query 
execution plans, the query engine first checks the relation 
cache and then refers to the relation map to figure out the 
location of each relation. The query execution plan includes 
details such as the sequence of operations, and how the 
queried relations are accessed (whether from the relation 
cache or from other services). Once the query execution 
plan has been generated, the query engine executes the 
query and returns the result.  

The second lookup method takes a parsed query and an 
event as parameters and is used by the event dispatcher and 
the connection manager. They have parsed queries stored in 
the event map and the connection map, respectively, and 
send a parsed query and an event (if the call is triggered by 
an incoming event, otherwise null) as parameters to the 
query engine for lookup. Because the query involves the 
incoming event in this case, as an optimization, the query 
engine first evaluates the query with the event to determine 
whether the query requires further evaluation. If the query 
turns out to return null after evaluating with the event, the 
query engine returns null immediately without generating 
and executing an execution plan. If the return value is non-
null, then the query engine generates the execution plan and 
executes it.  

interface QueryEngine { 
  Query parse(String query); 
  Set lookup(String query); 
  Set lookup(Query parsedQuery, Event e); 
} 

Figure 6. Interface of the query engine. 



3.3 Dispatching 
3.3.1 Dispatching Function Calls 
The River discovery service provides two late-binding 
function call methods (Figure 5), and the call dispatcher 
processes them both. The first method – call – is a 
synchronous function call method. It takes a query string, a 
function invocation message, and a multicast option as 
parameters. To invoke the call method, the caller composes 
a query for finding the services to invoke and the invocation 
message that includes the invoked service’s method name 
and parameters. When the discovery service stub’s call 
method is called, the stub adds the caller’s address into the 
invocation message and sends the query string, the modified 
invocation message, and the multicast option to the call 
dispatcher of the discovery service. The call dispatcher’s 
call method takes this request and invokes the lookup 
method of the query engine with the query and finds the 
services to invoke that match the query. If the multicast 
option is set to true, it sends the function invocation 
message to all the possible services it finds. If the multicast 
option is set to false, it sends the invocation message only 
to the first matching service among them. Then, it notifies 
the stub of the number of services invoked. The stub waits 
for responses from all the services invoked. The invoked  
service returns the result back to the caller whose address is 
included in the invocation message. When the stub receives 
results from all the invoked services, it packs the results 
into a set and returns it to the caller.  

In addition to the synchronous function call method, River 
also provides an asynchronous function call method 
asyncCall. It takes a continuation handler as well as a 
query string, a function invocation message, and a multicast 
option as parameters. When the asyncCall is called, the 
discovery service stub adds the caller’s address and the 
continuation handler ID to the invocation message and 
invokes the call dispatcher’s call method. Then, the stub 
returns immediately and the caller can continue its 
execution. Every time an invoked service returns its result, 
the continuation handler is invoked. Thus, if the multicast 
option is set to true, the continuation handler may be 
invoked more than once if more than one matching services 
are found by the query engine. 

 
int call(String query, Message m, Boolean mc) { 
  Set s = QueryEngine.lookup(query); 
  int servicesToInvoke = 0; 
  foreach ServiceID sid in s { 
    send(sid, m); 
    servicesToInvoke++; 
    if (!mc && servicesToInvoke == 1) {return 1;} 
  } 
  return servicesToInvoke; 
} 
 

Figure 7. The call method of the call dispatcher. 

3.3.2 Dispatching Events 
A service that wants to publish an event uses the 
publishEvent method. The event is passed as a 
parameter to the event dispatcher of the discovery service. 
When the event dispatcher receives an event, it iterates 
through all the registered event subscriptions in the event 
map and calls the lookup method of the query engine for 
each subscription. If the query engine returns null, it means 
that the incoming event does not match with the query. If 
the query returns a result that is not null, the event 
dispatcher attaches the result to the event and sends the 
event to the subscriber with the event handler ID. The 
subscriber’s address and the event handler ID are stored in 
the event map table with the query. Note that the event 
dispatcher attaches the query result to the event when 
dispatching it to the matching subscribers. Thus, the 
subscribers can receive some additional information in 
addition to the event itself. For example, the subscriber may 
receive a motion event to which the location of the event is 
attached (in the example in section 2.2). 

 
void publishEvent(Event e) { 
  foreach Subscription s in EventMap { 
    Query q = s.query; 
    if((Set r = QueryEngine.lookup(q, e))!=null){ 
      e.attachData(r); 
      e.attachHandlerID(s.handlerID); 
      send(s.address, e2); 
    } 
  } 
} 
 

Figure 8. The publishEvent method of the event dispatcher 

3.3.3 Managing Dynamic Streaming Connections 
A reactive streaming connection can be established with the 
connect method. It takes two query strings for two end-
points and a connection handler for getting connection 
status information. The discovery service stub sends the 
connect request to the connection manager of the discovery 
service. The connection manager’s connect method takes 
the request and establishes a connection between the two 
endpoints. It first parses the two query strings and finds 
corresponding services for the two endpoints. If services are 
found, it asks the first endpoint to make a connection to the 
other endpoint. Then, it stores the connection information 
including parsed queries into the connection map. Finally, it 
returns the connection handle to be used by the application 
to control the connection.  

The connections stored in the connection map need to be 
reevaluated so that they can react to context changes that 
require changing connection. The reevaluate method is 
invoked periodically by the connection manager, or invoked 
when an event comes to the event dispatcher. This method 
reevaluates the queries and changes the connection if either 
of the endpoints has changed. Also, it notifies the 
application of any change in the connection status. 



 

Connection connect(String q1, String q2,  
                   ConnectionHandler ch) { 
  Query parsedQ1 = QueryEngine.parse(q1); 
  Query parsedQ2 = QueryEngine.parse(q2); 
  Set s1 = QueryEngine.lookup(parsedQ1, null); 
  Set s2 = QueryEngine.lookup(parsedQ2, null); 
  if (s1.empty() || s2.empty()) return null; 
  ServiceID sid1 = s1.getAt(0); 
  ServiceID sid2 = s2.getAt(0); 
  ConnectionID h = sid1.connect(sid2); 
  Connection c = ConnectionMap.store(ch,  
           parsedQ1, parsedQ2, sid1, sid2, h); 
  return c; 
} 
 
void reevaluate(Event e) { 
  foreach Connection c in ConnectionMap { 
    Set s1 = QueryEngine.lookup(parsedQ1, e); 
    Set s2 = QueryEngine.lookup(parsedQ2, e); 
    if(s1.empty() || s2.empty()) { 
      c.ch.notify(“lost”); continue; } 
    if(s1.has(c.sid1) && s2.has(c.sid2)) continue; 
    ServiceID sid1 = c.sid1, sid2 = c.sid2; 
    if(!s1.has(c.sid1)) sid1 = s1.getAt(0); 
    if(!s2.has(c.sid2)) sid2 = s2.getAt(0); 
    sid1.disconnect(c.h); 
    ConnectionID h = sid1.connect(sid2); 
    c.ch.notify(“rebound”); 
    ConnectionMap.update(c, sid1, sid2, h); 
  } 
} 

Figure 9. The connect and reevaluate methods of the 
connection manager. 

4. IMPLEMENTATION AND 
EVALUATION 
4.1 Implementation 
The River framework is implemented on top of Rain [9], an 
asynchronous event-based service/messaging system. 
Messages in Rain are in XML and the format of the 
message can be easily changed. The only required fields are 
sender and recipient tags. The River discovery service and 
all the other services are implemented as Rain services. 
Rain has been implemented in several different languages, 
and we use the Java version of Rain for our implementation.  

Most of the major components of the discovery service 
have been implemented except for the connection manager 
which is still under development and only partially 
functional. 

4.2 Performance Evaluation 
We have measured the performance of the River discovery 
service. The experiments were performed on seven lightly 
loaded Pentium 4 (3.0 GHz, 1 GB RAM) machines. The 
discovery service runs on one machine, all other 
participating services run on 5 machines, and the last 
machine is used for measuring. 

The most important aspect of the River discovery service 
that influences its performance is the query processor. In 
River, all the query processing operations including 
accessing remote services are done inside the discovery 

service. In conventional discovery systems, however, the 
discovery service only performs queries on data stored 
within the discovery service itself and the application needs 
to access the remote services explicitly. Thus, the basic 
question we set out to answer was how the River-style 
context-dependent query processing performance compares 
with the application-explicit version of query processing in 
conventional discovery systems. 

First, we measured the latency of the lookup operation. The 
lookup operation is needed for an application to find a 
service for a given query. In River, the latency is the time 
that transpires while the application is waiting to get this 
result. In the conventional case, the latency includes the 
time for the application to get partial results from the 
discovery service and the time to contact remote services 
for further processing of the query. Figure 10 shows the 
latencies of the River version and the conventional version. 
When there is no remote relation involved in the query, in 
other words, the query is focused on the service attributes 
already stored in the discovery service, there is no 
noticeable difference between the two cases. However, as 
the number of remote relations involved in the query 
increases, the latency of the conventional case gets longer 
than the River case. That is because the conventional case 
needs one more round-trip to the discovery service for each 
remote relation it has to execute as part of its query. In the 
River case, the remote relation access happens in the 
discovery service itself, and the address of the service can 
be found locally, and thus, more efficiently, within the 
discovery service itself. 
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Figure 10. Lookup latency of the River case and the 
conventional case. 
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Figure 11. Throughput of the River case and the conventional 

case. 

 

Next, we measured the throughput of the River discovery 
service. In the River case, all the query processing is 
performed by the discovery service, and the discovery 
service consumes more computing power than in the 
conventional case where much of the query processing is 
done at the application. As expected, the throughput of the 
conventional discovery service is higher than that of the 
River discovery service. However, even though the query 

processing is done in the application in the conventional 
case, the application still needs to ask the discovery service 
of the addresses of the services with remote relations and it 
consumes the resources of the discovery service. This 
communication cost of the discovery service (receiving 
request and sending reply) offsets the computation cost 
(processing query). That is why the throughput difference is 
negligible. 

The measurement shows that the River-style context-
dependent query processing inside the discovery service 
can give much better latency with little sacrifice in 
throughput. 

5. RELATED WORK 
There has been a flurry of recent work towards supporting 
context dependent and efficient discovery between services, 
and (to a lesser extent) on ensuring that communication 
between services is reactive. We compare River with these 
applications along three dimensions: the operations 
supported by the query language used to specify the 
attributes required of the target service, the variety of 
external attributes (i.e. those not explicitly stored in the 
discovery service) that can be reference in the query, and 
the variety of reactive control primitives provided. 

Table 1 summarizes the comparison. The first column of 
the table names the system, the second through fourth 
handle each of the above three dimensions, and the last 
mentions other important related features of each system. 
Below, we discuss each column of the table in turn. 

We begin with the query language (column 2 of the table). 

Reactive Communication primitives 
System Query Language 

External 
Attributes In 

Query 
Function 

Call 
Event Connection 

Other Features 

Jini [11] 
java interface with 

attributes-value 
pairs 

none no no No commercial system 

SDS [4] attribute-value pairs none no no No  

INS [1] hierarchical 
attribute-value pairs 

none yes no No highly scalable, allows frequent 
update of advertisements  

SoNS [10] non-recursive lisp-
like expressions 

none no no Yes socket-level support 

EventHeap[5] 

TSpaces [8] 
attribute-value pairs 

(templates) 
none no yes No 

centralized, all communication 
modeled as database reads and 
writes 

Solar [2] path-structured 
name 

location only no yes No can name and share streams 
output from composed services 

iQL [3] iQL 
values produced by 

other services 
no yes No fully reactive language 

River  SQL 
values contained in 
advertising services 

yes yes Yes system from this paper 

Table 1. Comparison of the related works. 



A common format for specifying matches is as attribute 
value pairs. SDS, EventHeap and TSpaces support straight 
attribute-value pair matches. Jini, allows specification of the 
Java interface of the target services in addition to attributes. 
INS allows attributes and values to be placed in hierarchies. 
Solar specifies services explicitly by name, and provides a 
path-based formalism for naming the result of composing 
services.  In all these cases, service identification is a matter 
of structurally matching queries to values. A smaller set of 
systems supports interpretable queries. SoNS allows 
queries that are expressions (with relational and arithmetic 
operators) over attribute-value pairs. iQL supports 
expressions in a general reactive language. Finally, River 
supports expressions in SQL. 

As our earlier examples show, the more expressive the 
query language, the less the user has to do in evaluating the 
query. In the extreme case, of course, the queries could be 
fully general functions. However, this may result in queries 
that do not terminate and are difficult to optimize. 

We now move to the scope of the query (column 3 of the 
table). As we have argued, an important aspect of the 
support for context dependent control in practice is the 
ability to consult arbitrary services in the system as part of 
the endpoint-binding query. Most systems do not allow 
queries to make such references. The exception is iQL and 
Solar. iQL allows services to reference values published by 
other services (iQL has a pure event-filter-based model).  
Solar’s naming conventions location context in the name 
space. River, as explained previously, allows queries to 
reference and operate on data stored in any service that has 
advertised its database schema. 

Finally, consider the provision of reactive communication 
primitives (column 4). An extreme in this category are the 
pure discovery services such as Jini and SDS, which 
provide no support at all for communication, beyond 
returning relevant target services. INS provides a late-
binding function call that has semantics similar to that of 
River function calls. Service-oriented Network Sockets 
(SoNS) integrates the discovery lookup into the socket API 
with semantics similar to River connections (except that 
they support migration of only one endpoint). Finally, a 
number of systems support reactive events: in some sense, 
since traditional events already work by matching query 
patterns from subscriptions to published data, they already 
have “most relevant service” semantics. iQL in particular is 
noteworthy in that it provides expression level reactivity: 
not only does the appropriate event get forwarded, even 
expressions get re-evaluated and re-bound, when inputs 
change. 

River is able to provide all three communication primitives 
using a single programming metaphor of query-defined 
endpoints, and the implementation technique of relational 
query based dispatching. We expect that allowing the 

programmer to use their primitive of choice (while not 
worrying about low-level details) will improve their 
productivity. 

A final category of related work not included in the table is 
that of distributed relational databases. A very large body of 
work exists on this topic. The survey by Kossmann [6] is a 
good starting point. Although we intend to use techniques 
from the literature to optimize our system as needed, there 
are some significant differences between our applications 
and distributed databases in general. First, we expect many 
of our services to run on resource-impoverished devices. 
Second, we expect many services (and therefore databases) 
to enter and leave in the order of minutes and hours. Third, 
we expect that the pattern of queries seen by the River 
query processor will have much higher regularity than 
typical database queries (since they will be implementing 
the same control primitives repeatedly).  Thus, it is an open 
question to what extent techniques applied successfully will 
transfer over to River. 

6. SUMMARY AND FUTURE WORK 
We have argued that many emerging applications entail a 
combination of “deep context dependence” and reactive 
communication primitives, both of which are supported 
only in limited ways in recently proposed systems. We have 
presented a novel technique, relational query based dispatch 
(RQD), that provides a single unifying framework within 
which conventional communication primitives such as 
function calls, events and connections can be made both 
context dependent and reactive. Our preliminary 
measurements show that the high level of abstraction we 
provide to the programmer can potentially be supported at 
little performance cost. In some cases, communication with 
RQD can even be faster than without. 

Although early results seem promising, we anticipate 
substantial further work to validate and improve the basic 
RQD model. One of the biggest concerns is that although 
we provide an attractive abstraction to the clients of various 
services, we impose a fairly heavyweight model (that of a 
federated database) on the system as a whole, thus 
potentially paying an unacceptable cost in resource usage 
and performance. Although the measurements presented 
above are encouraging, we fully expect scenarios where the 
federated database, if naively implemented, generates large 
amounts of extra traffic and computation. Our first order of 
business, once we complete the implementation of the 
connection manager, will be to do a much more extensive 
study of the performance limits and bottlenecks of River. 

As mentioned in section 5, much work has already been 
done on optimizing query processing in (federated) 
databases. We will use the results of our performance study 
to select the optimizations that best alleviate our 
performance bottlenecks while not imposing unreasonable 



requirements on our constituent services. Given our early 
understanding of the system, we expect certain techniques 
to be quite valuable. Since RQD results in the same query 
being re-executed multiple times, we expect caching of 
query results to be useful. In order to invalidate cached 
data, we expect asynchronous notification of change in 
query results to be useful. In order to avoid transferring 
large quantities of data across the network, we expect 
locality-aware query plans to be useful.  In order to support 
applications in the absence of powerful centralized servers, 
we are considering a distributed peer-to-peer style 
implementation of the central dispatcher and query-
processor. In order to support resource limited devices, we 
are exploring principled techniques for providing “limited” 
relational services. 

A final direction we are investigating is tighter integration 
with the programming language. River is currently 
implemented as a library in Java. Although a library-based 
implementation is simpler than augmenting the language, it 
increases the possibility of statically undetected errors in 
the program, and potentially sacrifices optimization 
opportunities. Since all our relational queries are currently 
implemented as strings, for instance, it is entirely possible 
that the queries may not even parse correctly, let alone 
return values of expected type when run.  

We currently use River as the infrastructure for 
implementing a demonstration application targeted at 
home-based eldercare. We are collaborating on porting a 
more deployment-ready version of this application on to 
River. Once River is stable, and performs reasonably, we 
hope to test it on a wider variety of applications that require 
dynamic service composition. 
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