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Abstract

Typically, Markov decision problems (MDPs) assume a single action is
executed per decision epoch, but in the real world one may frequently exe-
cute certain actions in parallel. This paper exploresconcurrent MDPs, MDPs
which allow multiple non-conflicting actions to be executed simultaneously,
and presents two new algorithms. Our first approach exploits two prov-
ably sound pruning rules, and thus guarantees solution optimality. Our sec-
ond technique is a fast, sampling-based algorithm, which produces close-to-
optimal solutions extremely quickly. Experiments show that our approaches
outperform the existing algorithms producing up to two orders of magnitude
speedup.

1 Introduction

Recent progress achieved by planning researchers has yielded new algorithms that
relax, individually, many of the classical assumptions. However, in order to apply
automated planning to many real-world domains we must eliminate larger groups
of the assumptions in concert. For example, Bresinaet al. [6] note that optimal
control for a NASA Mars rover requires reasoning about uncertain, concurrent,
durative actions and a mixture of discrete and metric fluents. While today’s plan-
ners can handle large problems withdeterministicconcurrent durative actions, and
semi-MDPs provide a clear framework for durative actions in the face of uncer-
tainty, few researchers have considered concurrent, uncertain actions — the focus
of this paper.
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For example, a Mars rover has the goal of gathering data from different lo-
cations with various instruments (color and infrared cameras, microscopic imager,
Mossbauer spectrometersetc.) and transmitting this data back to Earth. Concurrent
actions are essential since instruments can be turned on, warmed up and calibrated
while the rover is moving, using other instruments or transmitting data. Similarly,
uncertainty must be explicitly confronted as the rover’s movement, arm control and
other actions cannot be accurately predicted.

We adopt the framework ofMarkov decision processes(MDPs) and extend it
to allow multiple actions per decision epoch. In the traditional case of a single
action per decision epoch, state-space heuristic search and dynamic programming
have proven quite effective. However, allowing multiple concurrent actions at a
time point will inflict an exponential blowup on all of these techniques.

In this paper we investigate techniques to counter this combinatorial explo-
sion. Specifically, we extend the technique ofreal-time dynamic programming
(RTDP) [1, 4] to handle concurrency, making the following contributions:

• We empirically illustrate the exponential blowup suffered by the existing
MDP algorithms.

• We describe two pruning strategies (combo-eliminationandcombo-skipping),
prove that they preserve completeness, and evaluate their performance.

• We describe a novel technique,combo-sampling, that produces a speedup of
an order of magnitude. Although this technique sacrifices solution optimal-
ity, we show that for a wide range of problems, combo-sampling produces
solutions that are quite close to optimal.

2 Background

Planning problems under probabilistic uncertainty are often modeled using Markov
Decision Processes (MDPs). Different research communities have looked at slightly
different formulations of MDPs. These versions typically differ in objective func-
tions (maximising rewardvs.minimising cost), horizons (finite, infinite, indefinite)
and action representations (DBNvs. parametrised action schemata). All these
formulations are very similar in nature, and so are the algorithms to solve them.
Though, the methods proposed in the paper are applicable to all the variants of
these models, for clarity of explanation we assume a particular formulation of an
MDP as follows.

Following Bonet and Geffner [4], we define aMarkov decision processas a
tuple〈S,A,Pr, C,G, s0, γ〉 in which
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• S is a finite set of discrete states.

• A is a finite set of actions. An applicability function,Ap : S → P(A),
denotes the set of actions that can be applied in a given state (P represents
the power set).

• Pr : S × A × S → [0, 1] is the transition function. We writePr(s′|s, a) to
denote the probability of arriving at states′ after executing actiona in state
s.

• C : A → <+ is the cost model1.

• G ⊆ S is a set of absorbing goal states.

• s0 is a start state.

• γ ∈ [0, 1] is the discount factor. Ifγ = 1 our problem is known as the
stochastic shortest path problem[2].

We assume full observability, and we seek to find an optimal, stationary policy
— i.e., a functionπ: S → A that minimises the expected discounted cost (over an
infinite horizon) incurred to reach a goal state. Note that anyvalue function, J : S
→ <, mapping states to the expected cost of reaching a goal state defines a policy
as follows:

πJ(s) = argmin
a∈Ap(s)

C(a) + γ
∑
s′∈S
Pr(s′|s, a)J(s′)


Theoptimalpolicy derives from a value function,J∗, which satisfies the fol-

lowing pair ofBellman equations.

J∗(s) = 0, if s ∈ G else

J∗(s) = min
a∈Ap(s)

C(a) + γ
∑
s′∈S
Pr(s′|s, a)J∗(s′)

 (1)

For example, Figure 1 defines a simple MDP where four state variables (x1, . . . , x4)
need to be set using toggle actions. Some of the actions,e.g., toggle-x3 are proba-
bilistic.

1Indeed, all our techniques except Theorem 2 allow costs to be conditioned on states as well as
actions.
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State variables : x1, x2, x3, x4, p12

Action Precondition Effect Probability
toggle-x1 ¬p12 x1 ← ¬x1 1
toggle-x2 p12 x2 ← ¬x2 1
toggle-x3 true x3 ← ¬x3 0.9

no change 0.1
toggle-x4 true x4 ← ¬x4 0.9

no change 0.1
toggle-p12 true p12 ← ¬p12 1
Goal : x1 = 1, x2 = 1, x3 = 1, x4 = 1

Figure 1:Probabilistic STRIPS definition of a simple MDP with potential parallelism

Various algorithms have been developed to solve MDPs.Value iterationis a
dynamic programming approach in which the optimal value function (the solution
to equations 1) is calculated as the limit of a series of approximations, each consid-
ering increasingly long action sequences. IfJn(s) is the value of states in iteration
n, then the value of states in the next iteration is calculated with a process called
aBellman backupas follows:

Jn+1(s) = min
a∈Ap(s)

C(a) + γ
∑
s′∈S
Pr(s′|s, a)Jn(s′)


Value iteration terminates when∀s ∈ S, |Jn(s) − Jn−1(s)| ≤ ε, and this ter-

mination is guaranteed forε > 0. Furthermore, the sequence of{Ji} is guaranteed
to converge to the optimal value function,J∗, regardless of the initial values. Un-
fortunately, value iteration tends to be quite slow, since it explicitly updates every
state, and|S| is exponential in the number of domain features. One optimiza-
tion restricts search to the part of state space reachable from the initial states0.
Two algorithms exploiting thisreachability analysisare LAO* [10] and our focus:
RTDP [1].

RTDP, conceptually, is a lazy version of value iteration in which the states get
updated in proportion to the frequency with which they are visited by the repeated
executions of the greedy policy. Specifically, RTDP is an anytime algorithm that
simulates the greedy policy along a single trace execution, and updates the values
of the states it visits using Bellman backups. An RTDPtrial is a path starting from
s0 and ending when a goal is reached or the number of updates exceeds a threshold.
RTDP repeats these trials until convergence. Note that common states are updated
frequently, while RTDP wastes no time on states that are unreachable, given the
current policy. RTDP’s strength is its ability to quickly produce a relatively good
policy; however, complete convergence (at every state) is slow because less likely
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(but potentially important) states get updated infrequently. Furthermore, RTDP is
not guaranteed to terminate.Labeled RTDPfixes these problems with a clever
labeling scheme that focusses attention on states where the value function has not
yet converged [4]. Labeled RTDP is guaranteed to terminate, and is guaranteed
to converge to the optimal value function (for states reachable using the optimal
policy) if the initial value function is admissible.

3 Concurrent Markov Decision Processes

Extending traditional MDPs toconcurrent MDPs, i.e.allowing multiple parallel ac-
tions, each of unit duration, requires several changes. Clearly, certain actions can’t
be executed in parallel; so we adopt the classical planning notion of mutual exclu-
sion [3] and apply it to afactoredaction representation:probabilistic STRIPS[5].
Two actions aremutex(may not be executed concurrently) if in any state 1) they
have inconsistent preconditions, 2) they have conflicting effects, or 3) the precon-
dition of one conflicts with the (possibly probabilistic) effect of the other. Thus,
non-mutex actions don’t interact — the effects of executing the sequencea1; a2

equals those fora2; a1.
Example: Continuing with Figure 1, toggle-x1, toggle-x3 and toggle-x4 can

execute in parallel but toggle-x1 and toggle-x2 are mutex as they have conflict-
ing preconditions. Similarly, toggle-x1 and toggle-p12 are mutex as the effect of
toggle-p12 interferes with the precondition of toggle-x1.

3.1 Cost model

An action combination, A, is a set of one or more actions to be executed in parallel.
The cost modelC is now a function,C : P(A)→ <+, i.e. the domain is thepower-
setof actions. Note that unless there exists a combinationA, such thatC(A) <∑

a∈A C({a}), the optimal policy from the single-action MDP would be optimal
for the concurrent case as well. However, we believe that in many domains most
combinations do obey the inequality. Indeed, the inequality always holds when the
cost of a combination includes bothresourceandtimecomponents. Here, one can
define the cost model to be comprised of two parts:

• t : Time taken to complete the action.

• r : Amount of resources used for the action.

Assuming additivity, we can think of cost of an actionC(a) = t(a) + r(a), to
be sum of its time and resource usage. Hence, the cost model for a combination of
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actions in terms of these components would be defined as:

C({a1, a2, ..., ak}) =
k∑

i=1

r(ai) + max
i=1..k

{t(ai)}

For example, a Mars rover might incur lower cost when it preheats an instrument
while changing locations than if it executes the actions sequentially, because the
makespan is reduced while the energy consumed does not change.

3.2 Applicability Function

The applicability function,Ap(s), for concurrent MDPs now has rangeP(P(A));
it is redefined in terms of our original definition, now denotedAp1. Ap(s) = {A ⊆
A|∀a, a′ ∈ A, a, a′ ∈ Ap1(s) ∧ ¬mutex(a, a′)}

3.3 Transition Function

Let A = {a1, a2, . . . , ak} be an action combination applicable ins. Since the
actions don’t interact, the transition function may be calculated as follows:

Pr(s′|s,A) =
∑

. . .
∑

s1,s2,...sk∈S

Pr(s1|s, a1)Pr(s2|s1, a2) . . .Pr(s′|sk, ak)

3.4 Bellman equations

Finally, instead of equations (1), the following set of equations represents the solu-
tion to a concurrent MDP:

J∗(s) = 0, if s ∈ G else

J∗(s) = min
A∈Ap(s)

C(A) + γ
∑
s′∈S
Pr(s′|s,A)J∗(s′)

 (2)

These equations are the same as in a traditional MDP, except that instead of
considering single actions for backup in a state, we need to consider all applicable
action combinations. Thus, only this small change must be made to traditional al-
gorithms (e.g., value iteration, LAO*, Labeled RTDP). However since the number
of action combinations is exponential in|A|, efficiently solving a concurrent MDP
requires new techniques. Unfortunately, there is no easy structure to exploit, since
an optimal action for a state from a classical MDP solution may not even appear in
the optimal action combination for a concurrent MDP.
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Lemma 1 All actions in optimal combination for Concurrent MDP may individu-
ally be sub-optimal for the Classical MDP.

In the next section, we describe two provably-sound pruning techniques that
speed policy construction; then in Section 5, we present fast sampling methods
which generate near-optimal policies.

4 Pruned RTDP

Recall that during a trial, labeled RTDP performs Bellman backups in order to cal-
culate the values of applicable actions (or in our case, action combinations) and
then chooses the best action (combination); we now describe two pruning tech-
niques that reduce the number of backups to be computed. Also, letQ(s,A) be
the expected cost incurred by executing action combinationA in states and then
following the greedy policy,i.e.

Qn(s,A) = C(A) + γ
∑
s′∈S
Pr(s′|s,A)Jn−1(s′)

A Bellman update can thus be rewritten as:

Jn(s) = min
A∈Ap(s)

Qn(s,A)

4.1 Combo Skipping

Since the number of applicable action combinations can be exponential, we’d like
to prune suboptimal combinations. The following theorem imposes a lower bound
onQ(s,A) in terms of the costs and theQ-values of single actions.

Theorem 2 LetA = {a1, a2, . . . , ak} be an action combination which is applica-
ble in states.

Q(s,A) ≥ γ1−kQ(s, {a1}) + C(A)−
(

k∑
i=1

γi−kC({ai})
)

Proof:

Qn(s,A) = C(A) + γ
∑
s′

Pr(s′|s,A)Jn−1(s′)

⇒
∑
s′

Pr(s′|s,A)Jn−1(s′) =
1
γ

(Qn(s,A)− C(A))
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Qn(s, {a1}) = C({a1}) + γ
∑
s′′

Pr(s′′|s, a1)Jn−1(s′′)

≤ C({a1}) + γ
∑
s′′

Pr(s′′|s, a1)

[
C({a2}) + γ

∑
s′′′

Pr(s′′′|s′′, a2)Jn−2(s′′′)

]
= C({a1}) + γC({a2}) + γ2

∑
s′′′

Pr(s′′′|s, {a1, a2})Jn−2(s′′′)

≤
k∑

i=1

γi−1C({ai}) + γk
∑
s′

Pr(s′|s,A)Jn−k(s′)

=
k∑

i=1

γi−1C({ai}) + γk−1[Qn−k+1(s,A)− C(A)]

Qn(s,A) ≥ γ1−kQn+k−1(s, {a1}) + C(A)− γ1−k

(
k∑

i=1

γi−1C({ai})
)

≥ γ1−kQn(s, {a1}) + C(A)− γ1−k

(
k∑

i=1

γi−1C({ai})
)

Corollary 3 Let dJn(s)e be an upper bound ofJn(s). If

dJn(s)e < γ1−kQn(s, {a1}) + C(A)−
(

k∑
i=1

γi−kC({ai})
)

then,A cannot be optimal for states in this iteration.

Corollary 3 justifies a pruning rule,combo-skipping, that preserves optimality
in any iteration algorithm that maintains value function monotonicity. This is pow-
erful because all Bellman-backup based algorithms preserve monotonicity when
started with an admissible value function. To apply combo-skipping, one must
compute all theQ(s, {a}) values for single actionsa that are applicable ins; it is

useful to precompute the summation of discounted costs,i.e.
(∑k

i=1 γi−kC({ai})
)
,

for all possible combinations. In the undiscounted case, this computation reduces
to the simple sum of costs. To calculatedJn(s)e one may use the optimal combi-
nation for states in the previous iteration (Aopt) and computeQn(s,Aopt). This
value gives an upper bound on the valueJn(s).

8



Theorem 2 and Corollary 3 are valid for any ordering ofai’s. But in order to
skip the most combinations, we must maximise the right-hand side. In practice,
the following heuristic suffices: choosea1 to be theai with maximalQ(s, ai) and
order other actions in order of increasing cost.

Example: In Figure 1, letγ=1. Let a single action incur unit cost, and let the
cost of an action combination be:C(A) = 0.5+ 0.5|A|. Let states = (1,1,0,0,1)
represent the ordered valuesx1 = 1, x2 = 1, x3 = 0, x4 = 0, andp12 = 1. Sup-
pose, after thenth iteration, the value function assigns the values:Jn(s) = 1,
Jn(s1=(1,0,0,0,1)) = 2, Jn(s2=(1,1,1,0,1)) = 1, Jn(s3=(1,1,0,1,1)) = 1. LetAopt

for states be {toggle-x3, toggle-x4}. Now, Qn+1(s, {toggle-x2}) = C(toggle-x2) +
Jn(s1) = 3 andQn+1(s,Aopt) = C(Aopt) + 0.81×0 + 0.09×Jn(s2) + 0.09×Jn(s3)
+ 0.01×Jn(s) = 1.69. So now we can apply Corollary 3 to skip combination
{toggle-x2, toggle-x3} in this iteration, since using toggle-x2 asa1, we havedJn+1(s)e
= Qn+1(s,Aopt) = 1.69≤ 3 + 1.5 - 2 = 2.5.

Experiments in Section 6 show that combo-skipping yields considerable sav-
ings. Unfortunately, combo-skipping has a weakness — it prunes a combination
for only asingle iteration. In contrast, our second rule,combo-elimination, prunes
irrelevant combinations altogether.

4.2 Combo Elimination

We adapt the action elimination theorem from traditional MDPs [2] to prove a
similar theorem for concurrent MDPs.

Theorem 4 Let A be an action combination which is applicable in states. Let
bQ∗(s,A)c denote a lower bound ofQ∗(s,A). If bQ∗(s,A)c > dJ∗(s)e thenA is
never the optimal combination for states.

In order to apply the theorem for pruning, one must be able to evaluate the up-
per and lower bounds. By using an admissible value function when starting RTDP
search (or in value iteration, LAO*etc.), the current valueJn(s) is guaranteed to
be a lower bound of the optimal cost; thus,Qn(s,A) will also be a lower bound
of Q∗(s,A). Thus, it is easy to compute the left hand side of the inequality. To
calculate an upper bound of the optimalJ∗(s), one may solve the MDP (e.g., using
labeled RTDP) while forbidding concurrency. This is much faster than solving the
concurrent MDP, and yields an upper bound on cost, because forbidding concur-
rency restricts the policy to use a strict subset of legal action combinations.

Example: Continuing with the previous example, letA={toggle-x2} then
Qn+1(s,A) = C(A) + Jn(s1) = 3 anddJ∗(s)e = 2.222 (from solving MDP forbid-
ding concurrency). As 3 > 2.222,A can be eliminated for states in all remaining
iterations.
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Used in this fashion, combo-elimination requires the additional overhead of
optimally solving the single-action MDP. Since algorithms like RTDP exploit state-
space reachability to limit computation to relevant states, we do this computation
incrementally, as new states are visited by our algorithm.

Combo-elimination also requires computing the current value ofQ(s,A) (for
the lower bound ofQ∗(s,A)); this differs from combo-skipping which avoids this
computation. However, once combo-elimination prunes a combination, it never
needs to be reconsidered. Thus, there is a tradeoff: should one perform an expen-
sive computation, hoping for long-term pruning, or try a cheaper pruning rule with
fewer benefits? SinceQ-value computation is the costly step, we adopt the fol-
lowing heuristic: “First, try combo-skipping; if it fails to prune the combination,
attempt combo-elimination”. We also tried implementing some other heuristics,
such as: 1) If some combination is being skipped repeatedly, then try to prune it
altogether with combo-elimination. 2) In every state, try combo-elimination with
probabilityp. Space precludes presenting our experimental results, but neither al-
ternative performed significantly better, so we kept our original (lower overhead)
heuristic.

Since combo-skipping does not change any step of labeled RTDP and combo-
elimination removes provably sub-optimal combinations,pruned labeled RTDP
maintains convergence, termination, optimality and efficiency, when used with an
admissible heuristic.

5 Sampled RTDP

Since the fundamental challenge posed by concurrent MDPs is the explosion of
action combinations, sampling is a promising method to reduce the number of
Bellman backups required per state. We describe a variant of RTDP, calledsam-
pled RTDP, which performs backups on a random set of action combinations2,
choosing from a distribution that favors “likely combinations.” We generate our
distribution by: 1) using combinations that were previously discovered to have low
Q-values (recorded bymemoizingthe best combinations per state, after each iter-
ation); 2) calculating theQ-values of all applicable single actions (using current
value function) and then biasing the sampling of combinations to choose the ones
that contain actions with lowQ-values.

This approach exposes an exploration / exploitation trade-off. Exploration,
here, refers to testing a wide range of action combinations to improve understand-
ing of their relative merit. Exploitation, on the other hand, advocates performing

2A similar action sampling approach was also used in the context of space shuttle scheduling to
reduce the number of actions for value function computation [17].
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backups on the combinations that have previously been shown to be the best. We
manage the tradeoff by carefully maintaining the distribution over combinations.
First, we only memoize best combinations per state; these are always backed-up
number of combinations memoized. Other combinations are constructed by an
incremental probabilistic process, which builds a combination by first randomly
choosing an initial action (weighted by it’s individualQ-value), then deciding
whether to add a non-mutex action or stop growing the combination.

5.1 Termination and Optimality

Since the system doesn’t consider every possible action combination, sampled
RTDP is not guaranteed to choose the best combination to execute at each state.
As a result, even when started with an admissible heuristic, the algorithm may as-
sign Jn(s) a cost that is greater than the optimalJ∗(s) — i.e., theJn(s) values
are no longer admissible. If a better combination is chosen in a subsequent iter-
ation,Jn+1(s) might be set a lower value thanJn(s), thus sampled RTDP is not
monotonic. This is unfortunate, since admissibility and monotonicity are important
properties required for termination3 and optimality in labeled RTDP; indeed, sam-
pled RTDP loses these important theoretical properties. The good news is that it is
extremely useful in practice. In our experiments, sampled RTDP usually terminates
quickly, and returns values that are extremely close to the optimal.

5.2 Improving Solution Quality

We have investigated several heuristics in order to improve the quality of the solu-
tions found by sampled RTDP.

• Heuristic 1: Whenever sampled RTDP asserts convergence of a state, do
not immediately label it as converged (which would preclude further explo-
ration [4]); instead first run a complete backup phase, using all the admissible
combinations, to rule out any easy-to-detect inconsistencies.

• Heuristic 2: Run sampled RTDP to completion, and use the value function
it produces,Js(), as the initial heuristic estimate,J0(), for a subsequent run
of pruned RTDP. Usually, such a heuristic, though inadmissible, is highly
informative. Hence, pruned RTDP terminates quite quickly.

• Heuristic 3: Run sampled RTDP before pruned RTDP, as in Heuristic 2,
except instead of using theJs() value function directly as an initial esti-

3To ensure termination we implemented the policy:if number of trials exceeds a threshold, force
monotonicity on value function.This will achieve termination but will reduce quality of solution.
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mate, scale linearly downward —i.e., useJ0() := cJs() for some constant
c ∈ (0, 1). Hopefully, the estimate will be admissible (though there is no
guarantee). In our experience,c = 0.9 suffices, and the run of pruned RTDP
yields the optimal policy very quickly.

Experiments showed that Heuristic 1 returns a value function that is close to
optimal. Adding Heuristic 2 improves this value moderately, and Heuristic 3 in-
variably returns the optimal solution.

6 Experiments

We tested our algorithms on problems in three domains. The first domain was a
probabilistic variant of NASA Rover domain from the 2002 AIPS Planning Com-
petition, in which there are multiple objects to be photographed and various rocks
to be tested with resulting data communicated back to the base station. Cameras
need to be focussed, and arms need to be positioned before usage. Since the rover
has multiple arms and multiple cameras, the domain is highly parallel. The cost
function includes both resource and time components, so executing multiple ac-
tions in parallel is cheaper than executing them sequentially4. We generated prob-
lems with 20-30 state variables having up to 81,000 reachable states and average
number of applicable combinations per state (Avg(Ap(s))) up to 2735.

We also tested on a probabilistic version of a factory domain with multiple sub-
tasks (e.g., roll, shape, paint, polishetc.), which need to be performed on different
objects using different machines. Machines can perform in parallel, but not all are
capable of every task. We tested on problems with 26-28 state variables and around
32000 reachable states.Avg(Ap(s)) ranged between 170 and 2640.

Finally, we tested on an artificial domain similar to Figure 1 but much more
complex. In this domain, some Boolean variables need to be toggled; however,
toggling is probabilistic in nature. Moreover, certain pairs of actions have con-
flicting preconditions and thus, by varying the number of mutex actions we may
control the domain’s degree of parallelism. All the problems in this domain had 19
state variables and about 32000 reachable states, withAvg(Ap(s)) between 1024
and 12287.

We used Labeled RTDP, as implemented in GPT, as the base MDP solver. We
implemented various algorithms, unpruned RTDP (U -RTDP), pruned RTDP using
only combo skipping (Ps-RTDP), pruned RTDP using both combo skipping and
combo elimination (Pse-RTDP), sampled RTDP using Heuristic 1 (S-RTDP) and

4For details on the domain, refer to http://www.cs. washing-
ton.edu/ai/concurrent/NasaRover.pddl
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running times.
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sampled RTDP using both Heuristics 1 and 3, with value functions scaled with 0.9.
(S3-RTDP). We tested all of these algorithms on a number of problem instantia-
tions from our three domains, generated by varying the number of objects, degrees
of parallelism, and distances to goal.

Problem J(s0) (S-RTDP) J∗(s0) (Optimal) Error
Rover1 10.7538 10.7535 <0.01%
Rover2 10.7535 10.7535 0
Rover3 11.0016 11.0016 0
Rover4 12.7490 12.7461 0.02%
Rover5 7.3163 7.3163 0
Rover6 10.5063 10.5063 0
Rover7 12.9343 12.9246 0.08%
Art1 4.5137 4.5137 0
Art2 6.3847 6.3847 0
Art3 6.5583 6.5583 0
Fact1 15.0859 15.0338 0.35%
Fact2 14.1414 14.0329 0.77%
Fact3 16.3771 16.3412 0.22%
Fact4 15.8588 15.8588 0
Fact5 9.0314 8.9844 0.56%

Table 1:Quality of solutions produced by Sampled RTDP

We observe (Figure 2(a,b)) that pruning significantly speeds the algorithm. But
the comparison ofPse-RTDP withS-RTDP andS3-RTDP (Figure 3(a,b,c)) shows
that sampling has a dramatic speedup with respect to the pruned versions. In fact,
pure sampling,S-RTDP, converges extremely quickly, andS3-RTDP is slightly
slower. However,S3-RTDP is still much faster thanPse-RTDP. The comparison of
qualities of solutions produced byS-RTDP andS3-RTDPw.r.t. optimal is shown
in Table 1. We observe that solutions produced byS-RTDP are always nearly op-
timal. Since the error ofS-RTDP is small, scaling it by 0.9 makes it an admissible
initial value function for the pruned RTDP; indeed, in all experiments,S3-RTDP
produced the optimal solution.

Figure 4(a,b) demonstrates how running times vary with problem size. We use
the product of the number of reachable states and the average number of applicable
action combinations per state as an estimate of the size of the problem (the number
of reachable states in all artificial domains is the same, hence the x-axis for Figure
4(b) isAvg(Ap(s))). From these figures, we verify that the number of applicable
combinations plays a major role in the running times of the concurrent MDP algo-
rithms. In Figure 4(c), we fix all factors and vary the degree of parallelism. We
observe that the speedups obtained byS-RTDP increase as concurrency increases.

16



This is a very encouraging result, and we can expectS-RTDP to perform well on
large problems involving high concurrency, even if the other approaches fail.

In Figure 2(c), we present another experiment in which we vary the number
of action combinations sampled in each backup. While solution quality is infe-
rior when sampling only a few combinations, it quickly approaches the optimal on
increasing the number of samples. In all other experiments we sample 40 combi-
nations per state.

7 Related Work

Meuleauet al. [12] and Singh and Cohn [15] deal with a special type of MDP
(called a factorial MDP)5 that can be represented as a set of smaller weakly cou-
pled MDPs — the separate MDPs are completely independent except for some
common resource constraints, and the reward and cost models are purely additive.
They describe solutions in which these sub-MDPs are independently solved and
the sub-policies are merged to create a global policy. Thus, concurrency of ac-
tions of different sub-MDPs is a by-product of their work. Singh & Cohn present
an optimal algorithm (similar to our combo-elimination), whereas Meuleauet al.’s
domain specific heuristics have no such guarantees.

All of the work in Factorial MDPs assumes that a weak coupling exists and has
been identified, but factoring an MDP is a hard problem in itself. In contrast, our
algorithm can handle strongly coupled MDPs and does not require any sub-task
decomposition as input.

Rohanimanesh and Mahadevan [14] investigate a special class of semi-MDPs
in which the action space can be partitioned by (possibly concurrent)Markov op-
tions. They propose an algorithm based on value-iteration, but their focus is cal-
culating joint termination conditions and rewards received, rather than speeding
policy construction. Hence, they considerall possible Markov option combina-
tions in a backup. Although their model supports options with varying durations,
it is restricted in several ways. First, they require the user to specify all possible
options (as well as to define the effects of primitive actions). Second, they assume
different constraints on action concurrency: i) they omit condition 3 of our mu-
tex definition (Section 3), hence they are subject to race conditions, and ii) their
definition restricts some well-defined types of concurrency6 in a way which may

5Guestrin, Koller and Parr [9] have investigated similar representations in the context of multia-
gent planning.

6In their model, two options,oa andob, may not be executed concurrently if there exist actions,
a ∈ oa and b ∈ ob, which have 1) inconsistent preconditions or 2) conflicting effects. This is
overly conservative because the option’spoliciesmight guarantee thata andb are never executed
concurrently.
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preclude finding optimal solutions, which our methodswould find. Finally, they
only experiment on a single, small problem with 400 states.

NASA researchers have developed techniques for solving a harder version of
the Rover domain (e.g., with uncertain continuous effects). They propose ajust-
in-casescheduling algorithm, which incrementally adds branches to a straight-line
plan. While their work is more general than ours, their solution is heuristic and
it is unclear how closely their policies approximate optimality [6, 7]. It would be
exciting to combine their methods with ours, perhaps by using their heuristic to
guideS-RTDP.

Recently, Younes and Simmons [16] have developed a generic test and debug
approach which converts a continuous time MDP into a deterministic planning
problem. The optimal plan of the deterministic problem is converted back into a
policy which can then be repaired if any failure points are identified.

Fast generation of parallel plans has also been investigated in (deterministic)
classical state space based planning scenarios. Edelkamp [8] presents an anytime
algorithm that repeatedly creates sequential plans of increasing lengths, and sched-
ules the actions in the plan concurrently using “critical path analysis”. This ap-
proach is based on the observation that any parallel plan to a goal can be serialised
into a valid serial plan to the goal and vice versa. However, this observation is
not true in the probabilistic version of the problem as a parallel policy may not be
serialisable to a serial policy.

AltAlt p builds greedy parallelisations within the state space heuristic regres-
sion search coupled withpushing upthe current actions if they can be parallelised
with some earlier nodes of the search tree [13]. Unfortunately, its heuristics draw
heavily from planning graph constructions that have not been as effective in prob-
abilistic problems. Secondly, as AltAltp performs greedy action selection, it is not
guaranteed to find an optimal plan.

8 Conclusions and Future Work

This paper formally defines the concurrent MDP problem and describes two al-
gorithms to solve them.Pruned RTDPrelies on combo-skipping and combo-
elimination; with an admissible initial value function, it is guaranteed to converge
to an optimal policy and is faster than plain, labeled RTDP on concurrent MDPs.
Sampled RTDPperforms backups on a random subset of possible action combina-
tions; when guided by our heuristics, it converges orders of magnitude faster than
other methods and produces optimal or close-to-optimal solutions. We believe that
our sampling techniques will be extremely effective on very large, concurrent MDP
problems. Moreover, our sampling and pruning techniques are extremely general
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and can be applied to other base algorithms like value iteration, LAO*etc.Thus,
we believe our methods will extend easily to solve concurrent MDPs with rewards,
non-absorbing goals, and other formulations.

In the future, we wish to prove error bounds onS-RTDP and to modify it so
that its convergence is formally guaranteed. Concurrent reinforcement learning
may also benefit from our sampling techniques. We also hope to extend our
methods to include durative actions, and continuous parameters.
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