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Abstract
One of the most popular uses of crowdsourcing is to provide
training data for supervised machine learning algorithms.
Since human annotators often make errors, requesters com-
monly ask multiple workers to label each example. But is this
strategy always the most cost effective use of crowdsourced
workers? We argue “No” — often classifiers can achieve
higher accuracies when trained with noisy “unilabeled” data.
However, in some cases relabeling is extremely important.
We discuss three factors that may make relabeling an effec-
tive strategy: classifier expressiveness, worker accuracy, and
budget.

Introduction
Data annotation is one of the most common crowdsourc-
ing applications on labor markets, such as Mechanical Turk,
as well as on internal crowdsourcing platforms at compa-
nies like Microsoft and Google. Since human workers are
error prone, requesters commonly ask multiple workers to
redundantly label each example, because multiple workers
can simulate an expert worker (Snow et al. 2008). Highly
accurate labels may be inferred from the multiple labels, ei-
ther using a policy such as “Ask two workers and recruit
a third to break ties if needed” or more complex EM-style
approaches (Dawid and Skene 1979; Whitehill et al. 2009;
Lin, Mausam, and Weld 2012b). Indeed, some researchers
have developed extremely sophisticated algorithms to guide
the relabeling process (Dai et al. 2013; Wauthier and Jor-
dan 2011; Ipeirotis et al. 2013). But a fundamental question
remains unaddressed: “Is it better to spend an incremental
dollar asking a worker to relabel an existing example or to
label a new example?”

In some cases relabeling is clearly necessary. For exam-
ple, if the data is to be used as a test set, then high accu-
racy is paramount. More often, however, the data is being
annotated in order to train a learning algorithm. In this case,
whether the resulting learned classifier will have higher ac-
curacy when trained on m noisy examples instead of on a
smaller set of (say m/3) examples with more accurate la-
bels is unclear.

We first set out to answer this question by considering a
subset of real-world datasets from the UCI Machine Learn-
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Figure 1: Relabeling training data improved learned-
classifier accuracy on 5 out of 12 real-world domains (see
Table 1) when workers were highly noisy (p = 0.55). But
why these domains and not the others?

ing Repository (Bache and Lichman 2013). We simulated a
noisy annotation process with a fixed budget using a sim-
ple, deterministic vote aggregation scheme. Specifically, we
considered an optimized majority voting scheme, which we
call j/k relabeling, where we ask up to k workers to label
an example, stopping as soon as j = dk/2e identical re-
sponses are received. Unilabeling refers to the strategy that
only collects one label per example, i.e., 1/1 relabeling. Fig-
ure 1 shows the ratio of the accuracy achieved by classifiers
trained using relabeling (denoted as relabeling accuracy) to
the accuracy achieved by classifiers trained using unilabel-
ing (denoted as unilabeling accuracy). The results were in-
conclusive and puzzling. Relabeling helped in 5 of 12 do-
mains, but it was unclear when relabeling would be useful
and what level of redundancy would lead to the best results.

To understand this phenomenon, we identified three char-
acteristics of learning problems that might affect the relative
relabeling versus unilabeling performances. These three di-
mensions include (1) the inductive bias of the learning algo-
rithm, (2) the accuracy of workers, and (3) the budget.

In the rest of this paper we seek to study the effect of
each of these dimensions on relabeling power. We expect to
find general principles that will help us determine whether
to unilabel or relabel for a given problem.



Problem Setting
Since we address complex issues and this study is the first
of its kind, we make a number of simplifying assumptions.
We focus on binary classification problems with symmetric
loss functions. We assume that workers have uniform (but
unknown) error rates. Finally, this paper focuses on passive
learning, where the next data point is uniformly sampled
from an unlabeled dataset, as opposed to actively picked
based on current classifier performance. While we believe
that the insights drawn from our setup will also inform other
settings, such as active learning or pools of workers with
varying abilities, we leave these extensions to future work.

Let X denote the space of examples and D, its distribu-
tion. We consider binary classification problems of the fol-
lowing form. Given some hypothesis class, C, which con-
tains a set of mappings from X to {0, 1}, and a budget b,
the goal is to learn some true concept c : X 7→ {0, 1} by
outputting the hypothesis h ∈ C which minimizes the ex-
pected error ε = Px∼Dc(x) 6= h(x). Asking a worker to
label an example incurs a fixed unit cost of 1. We assume
that each worker exhibits the same (but unknown) accuracy
p ∈ (0.5, 1], an assumption known as the classification noise
model (Angluin and Laird 1988), and we assume worker er-
rors are independent.

Let ζk : {0, 1}k 7→ {0, 1} denote the aggregation func-
tion that produces a single aggregate label given k multiple
labels. The aggregation function represents how we consol-
idate the multiple labels we receive from workers. Since all
workers are equally accurate in our model, majority voting, a
common aggregation function that takes k votes and outputs
the class that received greater than k/2 votes, is an effective
strategy. In all our experiments we use a simple optimization
of majority vote, j/k relabeling, and stop requesting votes as
soon as a class obtains j = dk/2e votes.

We also define ηζk : [0, 1] → [0, 1] as the function that,
given the number of labels k that will be aggregated by ζk
and the accuracy p of those labels, calculates the probability
that the answer returned by the aggregation function ζk will
be correct. In other words, it outputs the aggregate accuracy,
the probability that the aggregate label will be equal to the
true label ((Sheng, Provost, and Ipeirotis 2008; Ipeirotis et
al. 2013) call this probability integrated quality). As we will
see, η is an important function that characterizes the power
of relabeling.

In order to train the best classifier possible, an interme-
diate goal, and our goal in this paper, is to determine the
scenarios under which relabeling is better than unilabeling,
assigning a single worker to annotate each example. In other
words, given the dataset and classifier, we would like to de-
termine whether or not examples should be relabeled (and
with what redundancy) in order to maximize the classifier’s
accuracy.

The Effect of Inductive Bias
We first consider how the inductive bias of a classifier affects
the relative performance of relabeling and unilabeling. We
primarily use two tools to address the question: a theoretical
analysis of error bounds using PAC-learnability and a series

Figure 2: An “O” represents an example labeled as a “senior
citizen” and an “X” designates an example labeled as “not
a senior citizen.” The purple threshold represents the correct
classification of all people older than 65 as senior citizens.

of empirical experiments on simulated data. However, we
first provide some intuition.

Recall that a classifier’s inductive bias characterizes the
range of hypotheses that it will consider. A weakly regular-
ized learner willing to consider a vast number of hypotheses
that can be represented with an expressive hypothesis lan-
guage, e.g. decision tree induction, is said to have a weak
inductive bias. In contrast, logistic regression, which learns
a linear model, has a stronger inductive bias. Why might re-
labeling effectiveness depend on the strength of a classifier’s
inductive bias?

As classifier bias gets weaker, its ability to fit training
data patterns increases and the likelihood that it overfits in-
creases. Consider the effect of noise on overfitting. As the
noise in training labels increases, overfitting starts to hurt
more, because the classifier not only overfits data, but also
overfits the wrong data. Therefore, we predict that with
weaker inductive bias, relabeling will become more neces-
sary to prevent large overfitting errors.

As an illustration, suppose we want to classify whether or
not a person is a “senior citizen,” based on his/her age. Let
the instance space X be people between the ages of 0 and
100 and the distribution D uniform. Let us suppose the tar-
get concept is the simple threshold that everyone older than
65 is a senior citizen. For a hypothesis classH1 that consists
of all thresholds on [0,∞], the VC dimension is 2 (strong in-
ductive bias). This hypothesis class is quite robust to noise,
as shown in Figure 2. As long as the labeling accuracy is
above 50%, a learning algorithm usingH1 will probably get
the threshold approximately correct, so relabeling is not re-
ally necessary. Furthermore, spending one’s budget on ad-
ditional examples increases the chance of getting examples
that are close to the 65 year boundary and facilitates an ac-
curate hypothesis.

Now consider a hypothesis class H2 that allows the clas-
sifier to arbitrarily subdivide the space into regions (as in a
decision tree with unbounded depth). This hypothesis class
is extremely expressive and its VC dimension is equal to the
size of X (weak inductive bias). Given the set of noisy ex-
amples in Figure 2, a learning algorithm using H2 is very
likely to overfit and achieve low accuracy. In this case, re-
labeling is very important, because it reduces the likelihood
that the classifier overfits the noise.



Figure 3: Given a fixed budget of 1000, we see in various settings of worker accuracy that as the VC dimension increases, more
relabeling of a fewer number of examples achieves lower upper bounds on classification error.

Bound Analysis
We now make these intuitions precise by bounding clas-
sification accuracy in terms of the classifier’s Vapnik-
Chervonenkis (VC) dimension (Vapnik and Chervonenkis
1971). Recall that the VC dimension of a classifier measures
the size of the largest finite subset of X that it is capable of
classifying correctly (shatter). A classifier may make errors
when trying to learn datasets with size larger than its VC
dimension, but is guaranteed to have a hypothesis that can
distinguish all power sets of a dataset with size less than or
equal to its VC dimension. A higher VC dimension corre-
sponds to weaker inductive bias.

We assume that the concept class we are considering, C,
is Statistical-Query (SQ) learnable (Kearns 1993). While the
theory of SQ-learnability is beyond the scope of this pa-
per, this assumption basically guarantees the existence of a
classifier that can PAC-learn the target concept under noise.
Aslam & Decatur (1998) provide a sufficient bound on m,
the number of samples needed to learn to a given accuracy.
If each sample is incorrectly labeled with probability at most
ξ0, then an error less than ε with probability at least 1− δ is
guaranteed if m satisfies:
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where τ is a parameter that controls how easily the prob-
lem is SQ-learnable.

Notice that in our problem setting, the noise rate ξ0 de-
pends on the total budget b, the accuracy of the workers p,
and the number of examples m used to train the classifier.
Therefore, by fixing all parameters except for m and ε, we
can use this bound to find the m ≤ b that minimizes ε. We
now analyze this bound when the aggregation function ζ is
a majority vote.

We begin by ensuring that the resulting curve is smooth.
Since m may not divide the budget b perfectly, one or more
training examples may get an additional label. LetK = b bmc
be the minimum number of labels each example has if we
train using m examples with budget b. Let mK+1 = b −
(mK) denote the number of examples with K + 1 labels.
Let mK = m −mK+1 be the number of examples with K
labels. Then, we compute ξ0 as:

ξ0 = mK(1.0− ηζK (p)) +mK+1(1.0− ηζK+1
(p))

Because the function that computes aggregate accuracy
for majority vote, ηζk , is not defined for k that is even, we
use the defined points for when k is odd along with their
reflections across the axes and fit a logistic curve of the form

ηζk =
c0

1 + e−c1(k−c2)

in order to estimate ηζk . We use Scipy’s curve fitting library
(Jones et al. 2001), which uses the Levenberg-Marquardt al-
gorithm. The resulting curve is not perfect, but accurately
reflects the shape of ηζk .

Solving for ε analytically is difficult, so we employ nu-
merical methods. Since we are only concerned with the
change in ε as a function of m across various VC dimen-
sions, constant factors don’t matter so we set τ = 0.1 and
δ = 0.1. Now we use Scipy’s optimization library (Jones
et al. 2001) to solve for the error bound, ε, for all values of
m < b = 1000.

Figure 3 shows the curves that result for various settings
of worker accuracy and VC dimension. We see that as the
VC dimension increases, m, the number of examples (each
labeled ≈ 1000/m times) that minimizes the upper bound
on error, decreases. Thus the optimal relabeling redundancy
increases with increasing VC dimension. Furthermore, note
that when workers are 90% accurate, unilabeling yields the
lowest bounds at low VC dimensions while relabeling pro-
duces the lowest bounds when VC dimension is high.



Figure 4: As the number of features (VC dimension) in-
creases, relabeling becomes more and more effective at
training an accurate logistic regression classifier.

Figure 5: Classifiers with weaker inductive bias tend to ben-
efit more from relabeling.

Our analysis suggests a method to pick label redundancy,
the number of times to relabel each example. We can sim-
ply choose the value of m that minimizes the upper bound
on error for the given VC dimension. One caveat: the value
which produces the minimum error bound does not nec-
essarily guarantee the minimum error, unless the bound is
tight. Still, we plan to experiment with this heuristic in the
future.

Simulated Datasets
We now present experiments that empirically study the ef-
fect of inductive bias on relabeling accuracy. For these ex-
periments we test on an artificial dataset, which allows us
to control for various parameters. Our datasets contain two
Gaussian clusters, which correspond to the two classes. To
generate a dataset, we first we pick the number of fea-
tures to be l = 50. Then we randomly pick two means,
µ1, µ2 ∈ [0, 1]l. Next we randomly pick two corresponding
covariance matrices Σ1,Σ2 ∈ [0, 1]l×l.

For each Gaussian cluster (class), we generate an equal
number of examples. Setting a labeling budget of b = 500,
we can now train classifiers. We compare a unilabeling
strategy against relabeling strategies using 2/3-, 3/5- and
4/7-relabeling. We simulate moderately accurate workers

Figure 6: Decision trees with lower regularization tend to
benefit more from relabeling.

(p = 0.75) using the classification noise model. We aver-
age each strategy over 1000 runs, and use standard error to
compute 95% confidence intervals.

Figure 4 shows how VC dimension affects the power of
relabeling. Here we use a logistic regression classifier and
set an l2−regularization with a balanced regularization con-
stant such that relabeling strategies (which receive a fewer
number of examples) are not unfairly over-regularized. We
use a linear classifier so that as we vary the number of fea-
tures, we vary the VC dimension, which is equal to the num-
ber of features plus one (Dudley 1978). We see that as the
VC dimension increases, relabeling becomes more cost ef-
fective.

Figure 5 shows how different types of classifiers perform.
We use classifiers from the Scikit-learn (Pedregosa et al.
2011) package in their default settings. We see that logis-
tic regression and support vector machine (SVM) both per-
form best with a unilabeling strategy, but decision trees, ran-
dom forests, and nearest neighbor classifiers do not, because
these classifiers have high expressiveness and weak induc-
tive bias.

Figure 6 shows how a decision tree classifier performs as
we vary its maximum depth. Since increasing the depth of a
decision tree increases the expressiveness of the correspond-
ing logical formula, increasing depth corresponds to weaker
inductive bias. We see that as the maximum depth increases,
relabeling becomes the more effective strategy.

Our experiments validate the insights described previ-
ously. Overall, we believe that for low-dimensional data and
strongly biased classifiers, unilabeling may be the method of
choice. If, however, the VC dimension is high, then relabel-
ing is likely preferred.

The Effect of Worker Accuracy
We now consider the effect of worker accuracy on relabel-
ing. In the extreme case, relabeling cannot possibly help if
workers are perfect. Conversely, there is great potential to
improve the quality of one’s training set when worker accu-
racies are barely over p = 0.5. Hence, our a priori belief
was that relabeling should be more effective when workers
are less accurate.



Figure 7: The increase in the aggregate accuracy of the train-
ing set data when using relabeling instead of unilabeling for
various worker accuracies.

Figure 8: When the workers are moderately accurate (p =
0.7), the difference in the upper bound on error due to typical
relabeling strategies is greatest.

However, this intuition is faulty as we now explain. In-
deed, (Ipeirotis et al. 2013) have shown that typical relabel-
ing strategies have the maximum effect on the accuracy of
a training set (not on the resulting classifier), when workers
are of intermediate abilities. Consider Figure 7, which plots
the increase in aggregate accuracy of the training data when
relabeling instead of unilabeling as a function of worker ac-
curacy. The three peaks happen between 0.73–0.79. We also
observe that 2/3-relabeling only improves accuracy by about
0.1 in the best case, whereas 4/7-relabeling can get to an al-
most 0.2 increase. Furthermore, as the amount of relabeling
is increased, the peak in accuracy gain moves to the left, sug-
gesting that strategies with increasing amounts of relabeling
have their maximum effect as the workers become less ac-
curate.

But these past results only apply to the quality of a train-
ing set, not the accuracy of the resulting classifier. By con-
sidering the accuracy of the classifier, we must address the
confounding factor that eschewing relabeling frees budget to
be spent labeling new examples. To study this scenario fur-

Figure 9: For simulated Gaussian datasets, relabeling strate-
gies based on majority-vote are most powerful at moderate
values of worker accuracy.

ther we continue the analysis technique from the previous
section to produce Figure 8, which compares various upper
bound curves for different settings of worker accuracy in the
setting of VC=1 and budget = 1000. Consider the difference
in error bound as m ranges between 333 (when every exam-
ple is labeled 3 times) to 1000 (when thrice as many exam-
ples are labeled once). This delta is much greater when the
workers are moderately accurate (p = 0.75) than for other
settings of worker skill. We see similar patterns for other
settings of labeling redundancy and VC dimension. These
differences in error bound support the belief that typical re-
labeling strategies are most likely to reduce classifier error
when p is not an extreme value.

Simulated Datasets
To confirm these insights, we again present experimental
analysis using our artificial Gaussian datasets, and use vary-
ing settings of worker accuracy. As in the previous section,
we fix the number of features to be l = 50, and the bud-
get to be b = 500. We train using decision trees and set the
maximum depth to be 10. For this experiment, instead of av-
eraging over 1000 runs, we average over 2000 runs in order
to create tight confidence intervals across varying worker ac-
curacies.

Figure 9 shows our results. The more highly redundant
approaches, 4/7- and 3/5- relabeling, clearly have their max-
imum benefit when workers are 65% accurate. On the other
hand, 2/3-relabeling has its maximum benefit somewhere
between p = 0.65 and p = 0.75. These results (and simi-
lar ones that we find using different classifiers like logistic
regression) mirror our intuition and our theoretical analysis.
Thus, choosing the correct amount of relabeling redundancy
is a complex decision which ideally should be informed by
knowledge of worker accuracy.

The Effect of Budget
We now investigate the effect of budget on relabeling power.
Intuitively, one might think that as the budget increases, re-
labeling will become the more effective strategy, because
in the extreme case of when the budget is infinitely large,
we should clearly label each example infinitely many times.
Such a strategy allows us to train the classifier using the en-



Figure 10: When p = 0.75, relabeling strategies initially
achieve higher accuracies than unilabeling, but are eventu-
ally defeated.

tire set of noiseless examples. However, this extreme case
does not arise in typical finite budgets, and in fact our exper-
iments show quite an opposite trend.

We again train a decision tree with a maximum depth of
10 using our simulated Gaussian datasets with l = 50 fea-
tures and moderately accurate workers (p = 0.75), and we
vary the total budget. We plot the resulting learning curves
in Figure 10, which are averaged over 1000 runs. We see that
while initially relabeling strategies achieve higher accuracy
than unilabeling, eventually unilabeling overtakes relabeling
somewhere around a budget of 60000, because the slope of
the unilabeling learning curve is higher than that of the re-
labeling curves. Indeed, increasing the amount of relabeling
decreases the slope while increasing the initial accuracy.

Upon reflection, such a result makes sense. With very low
budgets, classifiers are unable to generalize well with noisy
data. However, with a large enough budget, the noise be-
comes simply that: irrelevant noise. There are enough ac-
curate examples such that the classifier can learn a correct
hypothesis that ignores the noisy data.

We also plot learning curves using poor workers (p =
0.55) in Figure 11 in order to show the effect more clearly.
When the budget reaches approximately 4000, unilabeling
begins to achieve higher accuracies than relabeling. Inter-
estingly, these two figures also show the effect of worker
accuracy. Unilabeling takes much longer to start achieving
higher accuracies when the workers are moderately accurate
because relabeling strategies are most powerful in this set-
ting.

We do not show a figure in the case when the workers
are excellent, but note that in this case, unilabeling is strictly
better than relabeling strategies. This result again intuitively
makes sense, as there is no need to improve labels when
the labels need not any improvement. Finally, we note that
we see similar trends with other classifiers (e.g., logistic re-
gression, random forests) as well. We conclude that increas-
ing the budget tends to benefit unilabeling, and the point at
which unilabeling defeats relabeling is controlled by other
factors, like worker accuracy.

Figure 11: When p = 0.55, relabeling strategies initially
achieve higher accuracies than unilabeling, but are defeated
earlier than when p = 0.75.

Real Dataset Experiments

Dataset # Features # Examples

(a) Breast Cancer 9 699
(b) Bank Note Authentication 4 1372
(c) Seismic Bumps 18 2584
(d) EEG Eye State 14 14980
(e) Sonar 60 208
(f) Breast Cancer Diagnostic 30 569
(g) Hill-Valley 100 606
(h) Hill-Valley with Noise 100 606
(i) Internet Ads 1558 2359
(j) Gisette 5000 6000
(k) Farm Ads 54877 4143
(l) Spambase 57 4601

Table 1: The 12 datasets we use, with the total number of
examples and number of features in each.

We now compare unilabeling and relabeling using 12
datasets from the UCI Machine Learning Repository (Bache
and Lichman 2013), with the goal of matching trends ob-
served in simulated datasets with real-world datasets. We list
the datasets in Table 1. We use half of the available exam-
ples as the budget, and hold out 15% of the examples for
testing. We simulate workers at accuracies of p = 0.55 and
p = 0.75. We train a logistic regression classifier (a linear
classifier) so that we can observe trends with varying VC di-
mension. Our results, averaged over 1000 runs, are shown in
Figures 1 and 12.1

We see that when the workers are poor (p = 0.55), do-
mains are split evenly with respect to which strategy is per-
forming better. This can be explained based on the VC di-
mension. In the five domains with high VC dimensions (100
or more features) relabeling is outperforming unilabeling.

1Under the stated parameters, when training using an expressive
classifier, like a decision tree, relabeling tends to always perform
better than unilabeling. However, the achieved accuracies are lower
than those of logistic regression.



Figure 12: Unilabeling obtains better classifiers in some
datasets, even when the workers are moderately accurate
(p=0.75).

When comparing Figures 1 and 12 we observe that re-
labeling performance has improved with higher worker ac-
curacy. This result is directly explained by the analysis in
the section on worker accuracy. We see that 75% accuracy
results in quick improvement of training quality using ma-
jority vote; 55% accuracy is a bad setting since relabeling
only results in slow improvement.

Overall, we find that the experiments on real datasets con-
firm the trends discussed earlier and shown in our simulation
experiments.

Related Work
A large body of work develops various methods for aggre-
gating labels. For example, see (Dawid and Skene 1979;
Whitehill et al. 2009; Raykar et al. 2010; Lin, Mausam,
and Weld 2012a). Of note is BBMC (Wauthier and Jor-
dan 2011), which develops a model that integrates active
learning with data curation and model learning. Their algo-
rithm can potentially trade off between relabeling and ac-
quiring labels for new examples, but it is not general and
is tied to their own classifier. Further, they do not con-
sider this tradeoff. Researchers have also considered auto-
mated methods to decide when to relabel (Dai et al. 2013;
Lin, Mausam, and Weld 2012a) but the goal is data accuracy
instead of classifier accuracy.

Several researchers have considered how to pick examples
or workers for (re)labeling when active learning or selective
sampling (Donmez, Carbonell, and Schneider 2009; Don-
mez and Carbonell 2008; Donmez, Carbonell, and Schneider
2010; Yan et al. 2011; Dekel, Gentile, and Sridharan 2010;
Sheng, Provost, and Ipeirotis 2008; Zhao, Sukthankar, and
Sukthankar 2011). However, unlike our work, these do not
answer the fundamental question of when to relabel.

Agnostic Learning (Kearns, Schapire, and Sellie 1994;
Balcan, Beygelzimer, and Langford 2006; Golovin, Krause,
and Ray 2010) is a general learning setting that makes little
to no assumptions about learners and datasets. In this set-
ting, noise refers to the labels that are inconsistent with the
best hypothesis that is available to the learner. Thus agnos-
tic learning can be viewed as a setting in which the goal is
to train a classifier that fits both the noise and the data as

well as possible. This scenario is inherently different than
the one we consider, where noise is an incorrect label, not
an inconsistent one, and we want to learn a classifier that fits
the ground truth despite the noise.

Many works (e.g. (Natarajan, Dhillon, and Ravikumar
2013; Khardon and Wachman 2007; Crammer, Kulesza, and
Dredze 2009)) design noise-tolerant classifiers. Indeed, ev-
idence suggests that classifiers with convex loss functions,
like logistic regression, are intolerant to label noise (Ding
and Vishwanathan 2010). However, these works are orthog-
onal to ours in purpose. We focus on the tradeoff between
unilabeling and relabeling for any black-box classifier. Our
results can inform the relabeling strategy for noise-tolerant
classifiers.

Several works seek to understand the sample complexity
of classifiers under noise. (Laird 1988; Angluin and Laird
1988) derive bounds for classifiers that minimize their train-
ing error. The Statistical Query Model (Kearns 1993) can
show that many PAC learning algorithms can be transformed
into ones which tolerate classification noise.

Conclusion and Future Work
We have shown that when using crowdsourcing to learn the
most accurate classifier possible with a fixed budget, rela-
beling examples should not be a default go-to strategy, as
unilabeling often results in higher accuracies. We provide
theoretical justification and empirical evidence using simu-
lated and real datasets to show the following:

• Relabeling provides the most benefit to expressive clas-
sifiers with weak inductive bias. When the classifier be-
ing trained is linear, a relabeling strategy (and, indeed,
higher levels of redundancy) is more likely to be appro-
priate when the domain has a large number of features.

• Typical relabeling strategies provide the most benefit
when workers are moderately accurate, and not when they
are extremely error-prone, as one might naively suspect.
Unilabeling is preferred when workers are very accurate.

• As the labeling budget increases, unilabeling provides in-
creasing benefits, but relabeling is often the more effective
strategy when the budget is small.

Important for future work is a relaxation of our assump-
tions. We have assumed that all workers have the same accu-
racy. However, when workers have variable skill levels that
are unknown to the controller, the utility of relabeling should
increase, because the redundancy provided by relabeling al-
lows aggregation strategies to jointly label data and calcu-
late worker accuracies (Whitehill et al. 2009). Bad workers
may simply be ignored. Determining the optimal relabeling
policy, in this case, will require confronting an exploration /
exploitation tradeoff.

Additionally, we have only considered passive learning
approaches in our analysis of relabeling. However, results
may drastically change when using more intelligent active
learning approaches. Active learning could not only pro-
vide greater flexibility to pick interesting training examples,
but also leverage the possibility that some examples may be
worth more than others to denoise. Can we create an end



to end decision-theoretic system that, given a new problem,
will automatically query the appropriate examples for a new
label or relabeling and output the best-quality classifier ob-
tainable for a given labeling budget?
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