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Abstract

Topological value iteration (TVI) is an effective algorithm for
solving Markov decision processes (MDPs) optimally, which
1) divides an MDP into strongly-connected components, and
2) solves these components sequentially. Yet, TVI’s useful-
ness tends to degrade if an MDP has large components, be-
cause the cost of the division process isn’t offset by gains
during solution. This paper presents a new algorithm to solve
MDPs optimally, focused topological value iteration (FTVI).
FTVI addresses TVI’s limitations by restricting its attention
to connected components that are relevant for solving the
MDP. Specifically, FTVI uses a small amount of heuristic
search to eliminate provably sub-optimal actions; this prun-
ing allows FTVI to find smaller connected components, thus
running faster. We demonstrate that our new algorithm out-
performs TVI by an order of magnitude, averaged across sev-
eral domains. Surprisingly, FTVI also significantly outper-
forms popular ‘heuristically-informed’ MDP algorithms such
as LAO*, LRTDP, and BRTDP in many domains, sometimes
by as much as two orders of magnitude. Finally, we charac-
terize the type of domains where FTVI excels — suggesting
a way to an informed choice of solver.

Introduction
Markov Decision Processes (MDPs) (Bellman 1957) are a
powerful and widely-adopted formulation for modeling au-
tonomous decision making under uncertainty. For instance,
NASA researchers use MDPs to model the Mars rover plan-
ning problems (Bresina et al. 2002). MDPs are also used
to formulate the military operations planning (Aberdeen,
Thiébaux, and Zhang 2004) and coordinated multi-agent
planning (Musliner et al. 2007), etc.

Classical dynamic programming algorithms, such as
value iteration (VI), solve a Markov decision process op-
timally by iteratively updating the value of every state by
a fixed order, one state per iteration. This is sometimes
very inefficient, since it overlooks the graphical structure of
a problem, which can provide vast information about the
state dependencies. Recently, Dai and Goldsmith (2007)
developed a new algorithm named topological value itera-
tion (TVI), which performs an additional topological anal-
ysis of the MDP state space. TVI first divides an MDP
into strongly connected components and then solves each
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strongly connected component sequentially in the topolog-
ical order. Experimental results demonstrated significant
performance gains over VI and other heuristic search algo-
rithms in a specific kind of domain – one that has many small
strongly connected components (e.g., a chess game against
a stochastic opponent (Dai and Goldsmith 2007)).

However, such a graphical structure is not present in many
benchmark domains leaving TVI’s performance no better (or
often worse, due to the overhead of topological analysis)
than other MDP algorithms. For instance, many domains
(e.g., Blocksworld) have reversible actions. For these do-
mains all of the states connected by reversible actions end
up being in one (large) strongly connected component, thus,
reducing the benefit of TVI. In our work we wish to remove
this limitation by observing that, while the complete MDP
may be strongly connected, the subset of states relevant for
solving the particular problem at hand may be divisible into
smaller components.

We present a novel algorithm to solve MDPs optimally
called focused topological value iteration (FTVI), which ad-
dresses the weaknesses of TVI. FTVI first performs a phase
of heuristic search and eliminates provably sub-optimal ac-
tions found during the search. Then it builds a more infor-
mative graphical structure based on the remaining actions.
We find that a very short phase of heuristic search is often
able to eliminate many actions leading to an MDP structure
that is amenable to efficient topology-based solutions.

We evaluate FTVI across several benchmark domains and
find that FTVI outperforms TVI by significant margins. Sur-
prisingly, we also find that FTVI outperforms state-of-the-
art heuristic search algorithms in many domains. This is
unexpected, since common wisdom dictates that heuristic
guided search is much faster than all-state dynamic pro-
gramming. To better understand this big improvement, we
study the convergence speed of heuristic search algorithms
on a few problem features. We discover two important fea-
tures of problems that are hard for heuristic search algo-
rithms: smaller number of goal states and long search dis-
tance to the goal. These features are commonly found in
many domains, e.g., Mountain car (Wingate and Seppi 2005)
and Wet-floor (Bonet and Geffner 2006). We show that, in
such domains, FTVI outperforms heuristic search by an or-
der of magnitude on average, and sometimes by even two
orders of magnitude.



Background
Markov Decision Processes
AI researchers typically use MDPs to formulate probabilis-
tic planning problems. An MDP is defined as a four-tuple
〈S,A, T, C〉, where S is a discrete set of states, A is a fi-
nite set of all applicable actions, T is the transition matrix
describing the domain dynamics, and C denotes the cost of
action transitions.

The agent executes its actions in discrete time steps called
stages. At each stage, the system is at one distinct state
s ∈ S. The agent can pick any action a from a set of ap-
plicable action Ap(s) ⊆ A, incurring a cost of C(s, a). The
action takes the system to a new state s′ stochastically, with
probability Ta(s′|s).

The horizon of an MDP is the number of stages for which
costs are accumulated. For ease of illustration, we concen-
trate on a special set of MDPs called stochastic shortest path
(SSP) problems.1 The horizon in such an MDP is indefinite
and the costs are accumulated with no discounting. There
are an initial state s0, and a set of sink goal states G ⊆ S.
Reaching any one of g ∈ G, terminates the execution. The
cost of the execution is the sum of all costs along the path
from s0 to a goal g.

To solve the MDP we need to find an optimal policy
(π∗ : S → A), a probabilistic execution plan that reaches
a goal state with the minimum expected cost. We evaluate
any policy π by a value function.

V π(s) = C(s, π(s)) +
∑
s′∈S

Tπ(s)(s′|s)V π(s′).

Any optimal policy must satisfy the following system of
Bellman equations:

V ∗(s) = 0 if s ∈ G else (1)

V ∗(s) = min
a∈Ap(s)

[C(s, a) +
∑
s′∈S

T (s′|s, a)V ∗(s′)].

The corresponding optimal policy can be extracted from
the value function:

π∗(s) = argmina∈Ap(s)[C(s, a) +
∑
s′∈S

Ta(s′|s)V ∗(s′)].

Q-value is a key notion in MDP algorithms. Given an
implicit optimal policy π∗, in the form of its optimal value
function V ∗(·), the Q-value of a state-action pair (s, a) is
defined as the value of state s, if an immediate action a is
performed, followed by π∗ afterwards. More concretely,

Q∗(s, a) = C(s, a) +
∑
s′∈S

Ta(s′|s)V ∗(s′). (2)

Therefore, the optimal value function can be rewritten as:

V ∗(s) = mina∈Ap(s)Q
∗(s, a).

1Despite its simplicity, SSP is a general MDP representation.
Any infinite horizon discounted reward MDP can be easily con-
verted to an undiscounted SSP (Bertsekas and Tsitsiklis 1996).

Dynamic Programming
Most optimal MDP algorithms are based on dynamic pro-
gramming. Its usefulness was first proved by a simple yet
powerful algorithm named value iteration (Bellman 1957).
Value iteration first initializes the value function arbitrarily.
Then, the values are updated iteratively using an operator
called Bellman backup to create successively better approxi-
mations per state per iteration. Value iteration stops updating
when the value function converges (one future backup can
change a state value by at most ε, a pre-defined threshold).

Value iteration converges to the optimal value function
in time polynomial in |S| (Littman, Dean, and Kaelbling
1995), yet in practice it is usually inefficient, since it blindly
performs backups over the state space iteratively, often in-
troducing many unnecessary backups over the state space.

Topological Value Iteration Topological value iteration
(TVI) (Dai and Goldsmith 2007) is an enhancement of value
iteration, which solves an MDP problem by using the prob-
lem’s graphical structure wisely. Given an MDP, TVI first
builds a directed reachability graph GR, where G has one
vertex per state s ∈ S. A directed edge from vertex s1 to
s2 exists if there is an action a such that Ta(s2|s1) > 0.
TVI then finds all the strongly connected components of
GR, and the topological order of the components. Later, it
solves every connected component individually, by value it-
eration, according to their topological order. By decompos-
ing an MDP into smaller components, TVI’s convergence
can be much faster than VI. Results (Dai and Goldsmith
2007) show that TVI outperforms VI and state-of-the-art
heuristic search algorithms when an MDP has many small
components.

Heuristic Search To improve the efficiency of dynamic
programming, researchers (Barto, Bradtke, and Singh 1995;
Hansen and Zilberstein 2001; Bonet and Geffner 2003b;
2006; McMahan, Likhachev, and Gordon 2005; Smith and
Simmons 2006) have explored various ideas from traditional
heuristic-guided search, and have consistently demonstrated
its usefulness for MDPs. The basic idea of heuristic search
is to expand an action only when necessary, and leads to a
more conservative backup strategy. This strategy helps save
a lot of unnecessary backups.

Heuristic search algorithms have two main features: (1)
values of the state space are initialized by an admissible and
consistent heuristic function. Note that dynamic program-
ming algorithms such as VI and TVI can also take advantage
of initial heuristic values as an informative bootstrap, but do
not require the heuristics to be admissible or consistent to
guarantee optimality. (2) The search is limited to states that
are reachable from the initial state. Given the heuristic value,
heuristic search generates a running greedy policy – the best
policy by one-step lookahead given the current value func-
tion, as well as the greedy policy graph – a subset of the
original MDP that contains all states that are reachable from
the initial state through the current greedy policy and cor-
responding transitions. The algorithm performs a series of
heuristic searches, until states on the greedy policy graph
converge. A search typically starts from the initial state,
and expands along a greedy action, either deterministically



or stochastically. Visited states have their values backed-up
during the search.

Different heuristic search algorithms use different search
strategies, and therefore perform Bellman backups in dif-
ferent orders. For example, searches in real-time dynamic
programming (RTDP) and its variants (Barto, Bradtke,
and Singh 1995; Bonet and Geffner 2003b; McMahan,
Likhachev, and Gordon 2005; Smith and Simmons 2006)
occur in the form of execution trials. An execution trial
is a path from s0 to any goal state, where the next state is
chosen stochastically based on the greedy action of the cur-
rent state. States are backed-up immediately when they are
visited. Searches in improved LAO* (ILAO*) (Hansen and
Zilberstein 2001) traverse the entire greedy policy graph. It
starts from s0, and expands frontier states in the depth-first
manner. Visited states are backed-up in the post-order.

Focused Topological Value Iteration
Heuristic search is a powerful solution technique. It success-
fully concentrates computation, in the form of backups, on
states and transitions that are more likely to be part of an op-
timal policy. However, heuristic search iteratively evaluates
the whole greedy policy, which itself can be time consum-
ing.

On the other hand, topological value iteration is a pure
dynamic programming algorithm and does not remove any
state from consideration. It improves the performance of
value iteration when an MDP has many small connected
components. However, after careful analysis over many
MDP domains, we observe that many MDPs do not have
evenly distributed connected components. This is due to
the following reason: a state can have many actions, most
of which are sub-optimal. These sub-optimal actions, al-
though not part of an optimal policy, may lead to connec-
tivity between a lot of states. For example, domains like
Blocksworld have reversible actions. Due to these actions
most states get connected bidirectionally. As a result, states
connected by reversible actions end up forming a large con-
nected component, making TVI slow.

Continuing with the example we note that an optimal pol-
icy seldom contains an action and its reverse, since that will
typically make the plan more costly. If we know that an ac-
tion is guaranteed to be better than its reverse, we can elim-
inate the reverse and break connected components. In gen-
eral, we can eliminate sub-optimal actions from our domain
leading to a reduced connectivity and hopefully, smaller
sizes of connected components.

Figure 1 shows the graphical representation of one sim-
ple MDP that has 7 states and 12 actions. In the figure,
successors of probabilistic actions are connected by an arc.
For simplicity reason, transition probabilities Ta and costs
C(s, a) are omitted. Using TVI, we can divide the MDP into
two connected components C1 and C2. However, suppose
we are given some additional information that a5 and a12

are sub-optimal. Based on the remaining actions, C1 and C2

can be sub-divided into three and two smaller components
respectively (as shown in the figure). Dynamic program-
ming will greatly benefit from the new graphical structure,
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Figure 1: The graphical representation of an MDP and its set of
strongly connected components (before and after the knowledge of
some sub-optimal actions). Arcs represent probabilistic transitions,
e.g., a7 has two probabilistic successors – s5 and s7.

since solving smaller components can be much easier than
the larger ones.

The FTVI Algorithm
The key insight of our novel algorithm is to break the big
components into smaller parts, by removing actions that can
be proven suboptimal for the current problem at hand. This
exploits the knowledge of the current initial state and goal,
which TVI mostly ignores. We call our new algorithm fo-
cused topological value iteration (FTVI). The pseudo-code
is shown in Algorithm 1.

At its core, FTVI makes use of the action elimination the-
orem, which states:

Theorem 1 Action Elimination (Bertsekas 2000): If a
lower bound of Q∗(s, a) is greater than an upper bound of
V ∗(s) then action a cannot be an optimal action for state s.

This gives us a template to eliminate actions, except that
we need to compute a lower bound for Q∗ and an upper
bound for V ∗. FTVI keeps two bounds of V ∗ simultane-
ously: the lower bound Vl(·) and the upper bound Vu(·).
Vl(·) is initialized via the admissible heuristic. We note
two properties of Vl: (1) Q(s, a) computed as in Line 29
of pseudo-code is a lower bound of Q∗(s, a), and (2) all the
values in value iteration remain a lower bound throughout
the value iteration, if they were initialized by an admissible
heuristic. So, this lets us easily compute a lower bound of
Q∗, which also improves as more iterations are performed.

Similar properties hold for Vu, the upper bound of V ∗,
i.e., if we initialize Vu by an upper bound and use back-
ups over Vu then each successive value estimates remain
upper bounds. Our implementation section below lists our
exact procedure to compute the lower and upper bounds in a
domain-independent manner. We note that to employ action
elimination we can use any lower and upper bounds, so if
a domain has informative, domain-dependent bounds avail-
able, that can be easily plugged into FTVI.

FTVI contains two sequential steps. In the first step,
which we call the search step, FTVI performs a small num-
ber of heuristic searches similar to ILAO*, but differs fun-



Algorithm 1 Focused Topological Value Iteration
1: Input: an MDP 〈S,A, T, C〉, x: the number of search it-

erations in a batch, y: the lower bound of the percentage of
change in the initial state value for a new batch of search iter-
ations

2: // step 1: search
3: while true do
4: old value← Vl(s0)
5: for iter ← 1 to x do
6: for every state s do
7: mark every state as unvisited
8: s← s0

9: Search(s)
10: if old value/Vl(s0) > (100− y)% then
11: break
12:
13: // step 2: computation
14: build the graph GSR

15: compute the strongly connected components of GSR, order
them by topological order C1, . . . , Ck

16: for c← 1 to k do
17: solve component Cc by value iteration
18:
19: Function Search(s)
20: if s /∈ G then
21: mark s as visited
22: a← argminaQ(s, a)
23: for every unvisited successor s′ of action a do
24: Search(s′)
25: Back − up(s)
26:
27: Function Back − up(s)
28: for each action a do
29: Q(s, a)← C(s, a) +

P
s′∈S Ta′(s′|s)Vl(s

′)
30: if Q(s, a) > Vu(s) then
31: eliminate a from Ap(s)
32: Vl(s)← mina∈Ap(s)Q(s, a)
33: Vu(s)← mina∈Ap(s)[C(s, a) +

P
s′∈S Ta′(s′|s)Vu(s′)]

dermentally in that FTVI backs-up a state at most once per
iteration. This difference makes the searches in FTVI much
faster, but useful enough to eliminate sub-optimal actions.
There are two other differences in common heuristic search
and the search phase of FTVI. First, in each backup, we up-
date the upper bound in the same manner as the lower bound.
This is reminiscent of backups in Bounded RTDP (McMa-
han, Likhachev, and Gordon 2005). Second, we also check
and eliminate sub-optimal actions using action elimination
(Lines 28-33).

In the second step, the computation step, FTVI generates
a directed graph GSR in the same manner as TVI, but, only
based on the remaining actions. More concretely, a directed
edge from vertex s1 to s2 exists if there is an uneliminated
action a such that Ta(s2|s1) > 0. It is easy to see that the
graph GSR generated is always a sub-graph of GR – the one
generated by TVI. FTVI then finds all connected compo-
nents of GSR, their topological order, and solves each com-
ponent sequentially in the topological order.

We can state the following theorem for FTVI:

Theorem 2 FTVI is guaranteed to converge to the optimal

value function.

The correctness of the theorem is based on two facts: 1)
action elimination preserves soundness, and 2) TVI is an op-
timal planning algorithm (Dai and Goldsmith 2007).

Implementation
There are several interesting questions to answer in imple-
mentation. How to calculate the initial upper and lower
bounds? How many search iterations do we need to perform
in the search step? What if there still exists a big component
even after action elimination?

We calculate our lower bound (admissible heuristic) as
follows: We first simplify an MDP into a deterministic prob-
lem, splitting an action and its probabilistic transitions into
several deterministic actions, with the same cost. We then
solve this problem by a single backward systematic search
from the set of goal states. Values of the deterministic prob-
lems are used as Vl.

We start with a simple upper bound:

Vu(s) = 0 if s ∈ G else (3)
Vu(s) = ∞

This initialization gives us a global yet very imprecise up-
per bound. To improve its tightness, we perform a backward
best-first search from the set of goal states. States visited
have their Vu values updated as in Algorithm 1 Line 33.
We can iteratively get tighter and tighter bounds when more
backward searches are performed.

Amount of search can have a significant impact on FTVI.
Very few search iterations might not eliminate enough sub-
optimal actions. However, too many search iterations will
turn FTVI into a heuristic search algorithm. Considering the
tradeoff, we let the algorithm automatically determine the
number of search iterations. FTVI incrementally performs
a batch of x search iterations. After the batch, it computes
the amount of change to the Vl(s0) value. If the change is
over a percentage of y, a new batch of search is performed.
Otherwise, the search phase is considered complete. In our
implementation, we use x = 100, and y = 3.

Sometimes there are cases where GSR still contains some
large connected components. This can be caused by two
reasons (1) an optimal policy indeed has large components,
or (2) the connectivity caused by many suboptimal actions
is not successfully eliminated by search. To try to further
decompose these large components, we let FTVI perform
additional intra-component heuristic searches. An intra-
component heuristic search is a search that takes place only
inside a particular component. Its aim is to find new sub-
optimal actions, which might help decompose the compo-
nent. Given a component C of GSR, we define SourceC
to be a set of states where none of its incoming transitions
are from states in C. In other words, states in SourceC are
the incoming bridge states between C and rest of the MDP.
An intra-component heuristic search of C originates from a
state in SourceC . A search branch terminates when a state
outside C is encountered.

We did some experiments and compared the performance
of FTVI with and without additional intra-component search



on problems from four domains, namely Wet-floor (Bonet
and Geffner 2006), Single-arm pendulum (Wingate and
Seppi 2005), Drive and Elevator (ipc 2006). Our results
show that additional intra-component search only provided
limited gains in Wet-floor problems, in which it helped de-
crease the size of the largest components by approximately
50% on average, and sped up the convergence by 10% at
best. However, intra-component search turned out to be
harmful for the other domains, as it did not provide any new
graphical information (no smaller components were gener-
ated). On the contrary, the search itself introduced a lot of
unnecessary overhead. So we use the version that does not
perform additional intra-component search throughout the
rest of the experiments.

Experiments
We address the following two questions in our experiments:
(1) How does FTVI compare with other algorithms on a
broad range of domain problems? (2) What are the specific
kind of domains on which FTVI should be preferred over
heuristic search?

We used the fully optimized C code of ILAO* (Hansen
and Zilberstein 2001). We additionally implemented
LRTDP (Bonet and Geffner 2003b), BRTDP (McMahan,
Likhachev, and Gordon 2005), HDP (Bonet and Geffner
2003a), TVI, and FTVI over the same framework. We
performed all experiments on a 2.5GHz Dual-Core AMD
Opteron(tm) Processor with 2GB memory. We used a cut-
off time of 5 minutes for each algorithm per problem. We
used a threshold value ε = 10−6. We ran BRTDP on the
same upper bound as FTVI, and used α = 2 × 10−6 and
τ = 10. We found HDP too slow, so do not report its perfor-
mance.

Relative Speed of FTVI
We evaluate the various algorithms on problems from seven
domains – Mountain Car, Single and Double Arm Pen-
dulum (Wingate and Seppi 2005), Wet-floor (Bonet and
Geffner 2006)2, and three domains from International Plan-
ning Competition 2006 – Drive, Elevators and TireWorld. A
mountain car problem usually has many source states.3 We
choose each source state as an initial state, and average the
statistics per problem. Table 1 lists the running times for the
various algorithms (Time). For FTVI, we additionally re-
port the time used by the searches (Tsearch), and the time
spent in generating the graphical structure (Tgen), where the
leftover is the time spent in solving the SCCs. We also com-
pare the size of the biggest component (BC size) generated
by TVI and FTVI.

Overall we find that FTVI outperforms the other four
algorithms on most of these domains. FTVI outperforms
TVI in all but the DAP domain (in DAP FTVI’s search
step takes too long). Notice that on MCar and Tireworld
problems, FTVI establishes very favorable graphical struc-
tures (strongly connected components of size one) during
the search step. This graphical structure makes the second

2Note that we used the probability of wet cells, p = 0.5.
3A source state is a state with no incoming transitions.

step of FTVI trivial. But, TVI has to solve much bigger com-
ponents, so it runs much slower. FTVI outperforms heuris-
tic search algorithms most significantly in domains such as
MCar, SAP and Drive. It is faster than ILAO* by an order of
magnitude. The two RTDP algorithms are not competitive
with the other algorithms in these domains, and fail to return
a solution by the cutoff time for many problems. In contrast,
FTVI shows limited speedup against heuristic search in do-
mains such as Wet-floor, DAP, and Elevator. FTVI is slower
than heuristic search in Tireworld problems, largely due to
its overhead in constructing the graphical structures.

Factors Determining Performance
We have shown that FTVI is faster than heuristic search in
many domains, but its relative speedup is somewhat domain-
dependent. Can we find any domain features that are partic-
ularly beneficial for FTVI or worse for heuristic search? If
so, then we can make an informed choice regarding the best
MDP solver to use. In this evaluation we perform control ex-
periments by varying the domains across different features
and study the effect on planning time of various algorithms.

We make an initial prediction of three features:
1. The number of goals in the domain: If the number of goal

states is small search may take a long time before it dis-
covers a path to a goal. Therefore, many sub-optimal poli-
cies might be evaluated by a heuristic search algorithm.

2. Search depth from the initial state to a goal state: This
depth is a lower bound of the length of an execution trial
and also of the size of any policy: the number of reach-
able states under that policy. A longer depth implies more
search iterations, which might make evaluating a policy
(in the form of probabilistic paths) time-consuming.

3. Heuristic informativeness: The performance of a
heuristic-search algorithm depends a lot on the quality
of the initial heuristic function. We expect the win from
FTVI to increase when heuristic is less informed.

The Number of Goals As far as we know, there is no suit-
able domain where we can specify the total number of goal
states arbitrarily, so we use a randomly-generated, artificial
domain. In this domain each state has two applicable ac-
tions, and each action has at most two random successors.
We test all algorithms on domains of two sizes, 10,000 (Fig-
ure 2(a)) and 100,000 (Figure 2(b)). For each problem size,
we vary the number of goal states |G|. For each |G| value, we
generate 10 problems, and report the median running time
of four algorithms (LRTDP was slow in this domain). We
observe that all algorithms take more time to solve a prob-
lem with a smaller number of goal states than with a larger
number. However, beyond a point (|G| > 20 in our exper-
iments), the running times become stable. FTVI runs only
marginally slower when |G| is small, suggesting that its per-
formance is relatively less dependent on the number of goal
states. BRTDP is the second best in handling small number
of goal states, and it runs faster than FTVI when the number
of goal states is large.

Search Depth In this experiment, we study how the search
depth of a goal from the initial state influences the perfor-



Problem Reachable States ILAO* LRTDP BRTDP TVI FTVI
Time T ime T ime BC size Time BC size Tsearch Tgen Time

MCar100 10,000 1.91 1.23 2.81 7,799 0.68 1 0.20 0.01 0.22
MCar300 90,000 11.91 229.70 117.23 71,751 23.22 1 2.22 0.13 2.35
MCar700 490,000 101.65 - 216.01 390,191 233.98 1 12.29 0.76 13.06
SAP100 10,000 1.81 2.58 9.39 9,999 2.37 510 0.15 0.01 0.17
SAP300 90,000 32.4 - - 89,999 44.2 43,251 2.63 0.20 5.99
SAP500 250,000 130.17 - - - - 121,143 8.53 0.55 24.20
WF200 40,000 11.22 - 22.08 39,999 20.58 15,039 3.30 0.12 8.81
WF400 160,000 98.97 - 97.73 159,999 100.78 141,671 14.27 0.36 74.24
DAP10 10,000 1.02 51.45 3.04 9,454 0.75 9,250 0.82 0.04 0.89
DAP20 160,000 32.68 - 144.12 150,489 21.95 146,159 22.33 0.74 23.98
Drive 4,563 1.60 0.69 7.85 4,560 1.23 4,560 0.01 0.02 1.07
Drive 29,403 96.09 273.37 163.91 29400 13.03 29,400 0.02 0.15 10.63
Drive 75,840 - - - 75,840 74.70 75,840 0.03 0.40 41.93

Elevator (IPPC p13) 539,136 227.53 - - 1053 58.46 1,053 0.01 1.73 54.11
Elevator (IPPC p15) 539,136 27.35 - - 1053 14.59 1,053 0.01 1.60 12.11
Tireworld (IPPC p5) 671,687 0.01 0.14 0.01 23 2.26 1 0.00 1.26 1.26
Tireworld (IPPC p6) 724,933 0.01 0.16 0.01 618,448 48.81 1 0.00 1.44 1.44

Table 1: Performance of the different algorithms on problems in various domains. FTVI outperforms all algorithms by vast margins. (BC
size means the size of the biggest connected component. All running times are in seconds. Fastest times are bolded. ‘-’ means that the
algorithm failed to solve the problem within 5 minutes.)
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Figure 2: Running time of algorithms with different number of goal states and problem size (left) |S| = 10, 000 (right) |S| = 100, 000 in
random MDPs. All algorithms except FTVI slow down massively when the number of goal states is small.
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Figure 3: Running time of algorithms with different shortest distance to the goal on (left) mountain car 300 × 300 (MCar300) (right)
single-arm pendulum 300 × 300 (SAP300) problems. Heuristic search algorithms slow down massively when the number search depth is
large.



mance of various algorithms. We choose a Mountain car
problem and a Single-arm pendulum problem. We randomly
pick initial states from the state space4, measure the search
depth, i.e., the shortest distance to a goal state, d. The run-
ning times in Figure 3 are ordered by d.

As we can see from Figure 3, TVI’s performance is un-
affected by the search depth, which is expected, since it is
a variant of value iteration and has no search component.
LRTDP runs the fastest when d is relatively small, but it
slows down considerably and is unable to solve many prob-
lems when d becomes larger. ILAO*’s convergence speed
varies a bit when the distance is small. As d increases, its
running time also increases. BRTDP’s performance is very
close to that of ILAO*, except that it is slower in SAP300
when d is large. ILAO*, LRTDP and BRTDP suffer the
most from the increase in the search depth, since they are
pure search algorithms. FTVI, the fastest algorithm in this
suite of experiments, converges very quickly for all initial
states (usually around one or two seconds on Mcar300, and
less than 10 seconds on SAP300). We observe that as d in-
creases, FTVI does not slow down and it converges one or-
der of magnitude faster than ILAO*, BRTDP and TVI, and
two orders of magnitude faster than LRTDP for large depths.

Heuristic Quality Finally we study the effect of the
heuristic informativeness on the algorithms. We conduct two
sets of experiments, based on two sets of consistent heuris-
tics. We find BRTDP slower than other algorithms in these
experiments, so do not plot its running times in the figures.
In the first experiment, we pre-compute the optimal value
function of a problem using value iteration, and use a frac-
tion of the optimal value as an initial heuristic. Given a frac-
tion f , we calculate h(s) = f × V ∗(s). Figure 4 plots the
running time of different algorithms against f for three prob-
lems. Note that f = 1 means the initial heuristic is already
optimal, so a problem is trivial for all algorithms, but TVI
and FTVI have the overhead of building a topological struc-
ture. LRTDP is slow in the Wet100 problem, so its running
times in the Wet100 problem are omitted from the figure.
The figure shows that as f increases (i.e. as the heuristic
becomes more informative) the running times of all algo-
rithms decrease almost linearly. This is true even for TVI,
which is not a heuristically-guided algorithm, but takes less
time probably because the initial values affect the number of
iterations required till convergence.

To thoroughly study the influence of the heuristics, we
conduct a second set of experiments. In this experiment,
we use a fractional Vl value as our initial heuristic. Recall
that Vl is a lower bound of V ∗ computed by the value of a
determinized problem. We calculate the initial heuristic by
h(s) = f × Vl(s). All included algorithms show a similar
smooth decrease in running time when f increases. BRTDP,
however, shows strong dependence on the heuristics in the
Wet100 problem. Its running time decreases sharply from
120.45 seconds to 0.6 seconds and from 124.36 seconds to
7.54 seconds from when f = 0.02 to when f = 1 in the two
experiments. Stable changes in the two experiments sug-

4Note that these problems have well-defined initial states. Here
we pick initial states arbitrarily from S.

gests the following for algorithms except BRTDP: (1) No al-
gorithm is particularly vulnerable to a less informed heuris-
tic function; (2) extremely informative heuristics (when f is
very close to 1) do not necessarily lead to extra fast conver-
gence. This result is in line with recent results in (Helmert
and Röger 2008) for deterministic domains.

Discussion
From the experiments, we learn that FTVI is vastly better
in domains whose problems have a small number of goal
states and a long search depth from the initial state to a goal
(such as MCar, SAP and Drive). In contrast, heuristic search
performs the best for domains whose problems have many
goal states and the search depth is short (such as Tireworld).
In addition, FTVI displays limited advantage over heuristic
search in the two intermediate cases where a problem has
(1) many goal states but long search depth (Elevator), (2) a
short depth but fewer goal states (DAP). In conclusion, FTVI
is our algorithm of choice whenever a problem has either a
small number of goal states or a long search depth.

Related Work
Besides TVI several other researchers have proposed de-
composing an MDP into subproblems and combining their
solutions for the final policy, e.g., (Hauskrecht et al. 1998;
Parr 1998). However, these approaches typically assume
some additional structure in the problem, either known hier-
archies, or known decomposition into weakly coupled sub-
MDPs, etc., whereas FTVI assumes no additional structure.
Moreover, FTVI is optimal whereas other algorithms are ap-
proximate.

BRTDP also keeps an upper bound for the value function.
But, it uses the upper bound purely to judge how close a state
is to convergence, by comparing the difference between the
upper and lower bound values. The algorithm tries to make
searches focus more on states whose two bounds have larger
differences, or intuitively, states whose values are less con-
verged. Unlike FTVI, BRTDP does not perform action elim-
ination, nor does it use any connected component informa-
tion to solve an MDP. Furthermore, unlike FTVI its perfor-
mance is highly dependent on the quality of the heuristics.

Conclusions
This paper makes several contributions. First, we present a
new optimal algorithm to solve MDPs, focused topological
value iteration (FTVI), which extends topological value it-
eration algorithm by focusing the construction of strongly
connected components on transitions that likely belong to
an optimal policy. FTVI does this by using a small amount
of heuristic search to eliminate provably suboptimal actions.
In contrast to TVI, which does not care about goal-state in-
formation, FTVI ignores transitions which it determines to
be irrelevant to an optimal policy for reaching the goal. In
this sense, FTVI builds a much more informative topological
structure than TVI.

Second, we show empirically that FTVI outperforms TVI
in many domains, usually by an order of magnitude. This
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Figure 4: Running time of algorithms with different initial heuristic on (left) mountain car 100×100 (MCar100) (middle) single-arm pendu-
lum 100×100 (SAP100) (right) wet-floor 100×100 (WF100) problems. All algorithms are equally sensitive to the heuristic informativeness.
(top) f =

P
s∈S h(s)/

P
s∈S V ∗(s) (bottom) f =

P
s∈S h(s)/

P
s∈S Vl(s).

performance is due to the success of a more informed graph-
ical structure, since the size of the connected components
found by FTVI are vastly smaller than those constructed by
TVI’s.

Third, we find that for many domains FTVI massively
outperforms popular heuristic search algorithms, such as
ILAO* and LRTDP. After analyzing the performance of
these algorithms over different problems, we find that a
smaller number of goal states and long search depth to a goal
are two key features of problems that are especially hard for
heuristic search to handle. Our results show that FTVI out-
performs heuristic search in such domains by an order of
magnitude.
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