A Hybridized Planner for Stochastic Domains

Mausam
Dept. of Computer Sc. and Engg.
University of Washington
Seattle, WA-98195
mausam@cs.washington.edu

Abstract

Markov Decision Processes are a powerful frame-
work for planning under uncertainty, but current al-
gorithms have difficulties scaling to large problems.
We present a novel probabilistic planner based on
the notion of hybridizing two algorithms. In partic-
ular, we hybridize GPT, an exact MDP solver, with
MBP, a planner that plans using a qualitative (non-
deterministic) model of uncertainty. Whereas ex-
act MDP solvers produce optimal solutions, quali-
tative planners sacrifice optimality to achieve speed
and high scalability. Our hybridized planner, HYB-
PLAN, is able to obtain the best of both techniques
— speed, quality and scalability. Moreover, HYB-
PLAN has excellent anytime properties and makes
effective use of available time and memory.

1 Introduction

Many real-world domains involve uncertain actions whose
execution may stochastically lead to different outcomes.
Such problems are frequently modeled as an indefinite hori-
zon Markov Decision Process (MDP) also known as stochas-
tic shortest path problem [Bertsekas, 1995]. While MDPs are
a very general framework, popular optimal algorithms (e.g.,
LAO#* [Hansen and Zilberstein, 2001], Labeled RTDP [Bonet
and Geffner, 2003]) do not scale to large problems.

Many researchers have argued for planning with a quali-
tative, non-deterministic model of uncertainty (in contrast to
numeric probabilities). Such contingent planners (e.g., MBP
[Bertoli et al., 2001]) cannot make use of quantitative likeli-
hood (and cost) information. Because they solve a much sim-
pler problem, these planners are able to scale to much larger
problems than probabilistic planners. By stripping an MDP
of probabilities and costs, one could use a qualitative contin-
gent planner to quickly generate a policy, but the quality of
the resulting solution will likely be poor. Thus it is natural to
ask “can we develop an algorithm with the benefits of both
frameworks?”.

Using two (or more) algorithms to obtain the benefits of
both is a generic idea that forms the basis of many proposed
algorithms, e.g., bound and bound [Martello and Toth, 1990]
and algorithm portfolios [Gomes and Selman, 2001]. Vari-
ous schemes hybridize multiple algorithms differently and are

Piergiorgio Bertoli
ITC-IRST
via Sommarive 18
38050 Povo, Trento, Italy
bertoli@itc.it

Daniel S. Weld
Dept. of Computer Sc. and Engg.
University of Washington
Seattle, WA-98195
weldW@cs.washington.edu

aimed at different objectives. For example, algorithm portfo-
lios run multiple algorithms in parallel and thus reduce the
total time to obtain a solution; bound and bound uses a solu-
tion from one algorithm as a bound for the other algorithm. In
this paper we employ a tighter notion of hybridization, where
we explicitly incorporate solutions to sub-problems from one
algorithm into the partial solution of the other.

We present a novel algorithm, HYBPLAN, which hy-
bridizes two planners: GPT and MBP. GPT (General Plan-
ning Tool) [Bonet and Geffner, 2005] is an exact MDP
solver using labeled real time dynamic programming (RTDP).
MBP (Model Based Planner) [Bertoli et al., 2001], is a non-
deterministic planner exploiting binary decision diagrams
(BDDs). Our hybridized planner enjoys benefits of both al-
gorithms, i.e., scalability and quality. To the best of our
knowledge, this is the first attempt to bridge the efficiency-
expressiveness gap between the planners dealing with quali-
tative vs. probabilistic representations of uncertainty.

HYBPLAN has excellent anytime properties — it produces
a legal solution very fast and then successively improves on
this solution'. Moreover, HYBPLAN can effectively han-
dle interleaved planning and execution in an online setting,
makes use of the available time and memory efficiently, is
able to converge within a desired optimality bound, and re-
duces to optimal planning given an indefinite time and mem-
ory. Our experiments demonstrate that HYBPLAN is competi-
tive with the state-of-the-art planners, solving problems in the
International Planning Competition that most other planners
could not solve.

2 Background

Following [Bonet and Geffner, 2003], we define an in-
definite horizon Markov decision process as a tuple

(S, A, Pr,C,G,sp):

e S is afinite set of discrete states. We use factored MDPs,
i.e., S is compactly represented in terms of a set of state
variables.

e A is a finite set of actions. An applicability function,
Ap : § — P(A), denotes the set of actions that can be
applied in a given state (P represents the power set).

"While RTDP is popular as an anytime algorithm itself, for prob-
lems with absorbing goals it may not return any legal policy for as
much as 10 min. or more.

e Pr:SxAxS — [0,1] is the transition function.
Pr(s’|s,a) denotes the probability of arriving at state s’
after executing action « in state s.

e C: A — Rt is the cost model.

e G C S is a set of absorbing goal states, i.e., the process
ends once one of these states is reached.

e 5p is a start state.

We assume full observability, and we seek to find an opti-
mal stationary policy, i.e., a function 7m: S — A, which mini-
mizes the expected cost (over an indefinite horizon) incurred
to reach a goal state. A policy 7 and its execution starting
from the start state induces an execution structure Exec[n]: a
directed graph whose nodes are states from S and transitions
are labeled with the actions performed due to 7. We denote
this graph to be free of absorbing cycles if for every non-goal
node there always exists a path to reach a goal (i.e., the prob-
ability to reach a goal is always greater than zero). A policy
free of absorbing cycles is also known as a proper policy.

Note that any cost function, J: S — ¥, mapping states to
the expected cost of reaching a goal state defines a greedy
policy as follows:

m7(s) = argmin {C(a) + Z Pr(s'|s,a)J(s’)} (1)

a€Ap(s) ses

The optimal policy derives from a value function, J*,
which satisfies the following pair of Bellman equations.

J*(s) =0, if s € Gelse

J*(s) = min {C(a) + Z Pr(s’s,a)]*(s’)} (2)

a€Ap(s) s

2.1 Labeled RTDP

Value iteration is a canonical algorithm to solve an MDP. In
this dynamic programming approach the optimal value func-
tion (the solution to equations 2) is calculated as the limit of a
series of approximations, each considering increasingly long
action sequences. If J,,(s) is the value of state s in iteration
n, then the value of state s in the next iteration is calculated
with a process called a Bellman backup as follows:

Jni1(s) = min {C(a) + Z Pr(s’|s,a)]n(s’)}

a€Ap(s) oS

Value iteration terminates when Vs € S, |J,(s) —
Jn—1(s)| < €, and this termination is guaranteed for ¢ > 0.
Furthermore, the sequence of {J;} is guaranteed to converge
to the optimal value function, J*, regardless of the initial val-
ues. Unfortunately, value iteration tends to be quite slow,
since it explicitly updates every state, and |S| is exponential
in the number of domain features. One optimization restricts
search to the part of state space reachable from the initial
state so. Two algorithms exploiting this reachability analy-
sis are LAO* [Hansen and Zilberstein, 2001] and our focus:
RTDP [Barto et al., 1995].

RTDP, conceptually, is a lazy version of value iteration in
which the states get updated in proportion to the frequency
with which they are visited by the repeated executions of the
greedy policy. Specifically, RTDP simulates the greedy pol-
icy along a single trace execution, and updates the values of
the states it visits using Bellman backups. An RTDP trial is
a path starting from sy and ending when a goal is reached
or the number of updates exceeds a threshold. RTDP repeats
these trials until convergence. Note that common states are
updated frequently, while RTDP wastes no time on states that
are unreachable, given the current policy. The complete con-
vergence (at every state) is slow because less likely (but po-
tentially important) states get updated infrequently. Further-
more, RTDP is not guaranteed to terminate.

Labeled RTDP fixes these problems with a clever labeling
scheme that focuses attention on states where the value func-
tion has not yet converged [Bonet and Geffner, 2003]. Specif-
ically, states are gradually labeled solved signifying that the
value function has converged for them. The algorithm back-
propagates this information starting from the goal states and
the algorithm terminates when the start state gets labeled.
Labeled RTDP is guaranteed to terminate. It is guaranteed
to converge to the optimal value function (for states reach-
able using the optimal policy), if the initial value function is
admissible. This algorithm is implemented in GPT (General
Purpose Tool) [Bonet and Geffner, 2005].

(Labeled) RTDP is popular for quickly producing a rela-
tively good policy for discounted reward-maximization prob-
lems, since the range of infinite horizon total rewards is finite.
However, problems in the planning competition are undis-
counted cost minimization problems with absorbing goals.
Intermediate RTDP policies on these problems often contain
absorbing cycles. This implies that the expected cost to reach
the goal is infinite! Clearly, RTDP is not an anytime algo-
rithm for our problems because ensuring that all trajectories
reach a goal takes a long time.

2.2 The Model-Based Planner

An MDP without cost and probability information trans-
lates into a planning problem with qualitative uncertainty.
A strong-cyclic solution to this problem — one that admits
loops but is free of absorbing cycles — can be used as a le-
gal solution to the original MDP, though it may be highly
sub-optimal. However, because we are solving a much easier
problem, the algorithms for solving this relaxed problem are
highly scalable. One such algorithm is implemented within
MBP.

The Model-Based Planner, MBP [Bertoli et al., 2001], re-
lies on effective BDD-based representation techniques to im-
plement a set of sound and complete plan search and veri-
fication algorithms. All the algorithms within MBP are de-
signed to deal with qualitatively non-deterministic planning
domains, defined as Moore machines using MBP’s input lan-
guage SMV. The planner is very general and is capable of ac-
commodating domains with various state observability (e.g.,
fully observable, conformant) and different kinds of planning
goals (e.g., reachability goals, temporal goals).

MBP has two variants of strong-cyclic algorithm denoted
by “global” and “local”. Both share the representation of the

policy 7 as a binary decision diagram, and the fact that it is
constructed by backward chaining from the goal. The general
idea is to iteratively regress from a set of solution states (the
current policy 7), first admitting any kind of loop introduced
by the backward step, and then removing those “bad” loops
for which no chance of goal achievement exists. On top of
this, the “local” variant of the algorithm prioritizes solutions
with no loops, in order to retrieve strong solutions whenever
possible. The search ends either when 7 covers the initial
state, or when a fixed point is reached. Further details can be
found in [Cimatti et al., 2003].

3 HYBPLAN: A Hybridized Planner

Our novel planner, HYBPLAN, hybridizes GPT and MBP. On
the one hand, GPT produces cost-optimal solutions to the
original MDP; on the other, MBP ignores probability and
cost information, but produces a solution extremely quickly.
HYBPLAN combines the two to produce high-quality solu-
tions in intermediate running times.

At a high level, HYBPLAN invokes GPT with a maximum
amount of time, say hybtime. GPT preempts itself after run-
ning for this much time and passes the control back to HYB-
PLAN. At this point GPT has performed several RTDP tri-
als and might have labeled some states solved. However, the
whole cost function .J,, has not converged and the start state
is not yet solved. Despite this, the current greedy partial®
policy (as given by Equation 1) contains much useful infor-
mation. HYBPLAN combines this partial policy (mgpr) with
the policy from MBP (myp) to construct a hybridized policy
(muyg) that is defined for all states reachable following myys,
and is guaranteed to lead to the goal. We may then evaluate
Tuys Dy computing Juys(So) denoting the expected cost to
reach a goal following this policy. In case we are dissatisfied
with 74y, we may run some more RTDP trials and repeat
the process. We describe the pseudo-code for the planner in
Algorithm 1.

The construction of the hybridized policy starts from the
start state and uses the popular combination of open and
closed lists denoting states for which an action needs to be
assigned and have been assigned, respectively. Additionally
we maintain a deadends list that memoizes all states starting
from which we cannot reach a goal (dead-end).

Deciding between GPT and MBP (lines 9 to 15): For every
state s, HYBPLAN decides whether to assign the action using
Tgpr OF Typp. If s is already labeled solved then we are cer-
tain that GPT has computed the optimal policy starting from
s (lines 8-9). Otherwise, we need to assess our confidence in
merr(8). We estimate our confidence on GPT’s greedy policy
by keeping a count on the number of times s has been updated
inside labeled RTDP. Intuitively, smaller number of visits to
a state s corresponds to our low confidence on the quality of
mepr(s) and we may prefer to use mygp(s) instead. A user-
defined threshold decides on how quickly we start trusting
GPT.

MBP returning with failure (Function 2): Sometimes MBP

™t is partial because some states reachable by the greedy policy
might not even be explored yet.

Algorithm 1 HYBPLAN(hybtime, threshold)

1: deadends < ()
2: repeat
: run GPT for hybtime

3
4: open «— 0; closed — ()

5: open.insert(so)

6: while open is non-empty do

7 remove s from open

8 closed.insert(s)

9 if s is labeled solved inside GPT then

10: WHYB(S) — WGPT(S)

11: else

12: if visit(s) > threshold then

13: Tuye (8) «— maer(s)

14: else

15: ASSIGNMBPSOLUTION(S)

16: for all s s.t. Pr(s’|s, muys(s)) > 0, s’ ¢ closed do
17: if s’ € deadends then

18: ASSIGNMBPSOLUTION(S)

19: else

20: open.insert(s’)

21: remove absorbing cycles from Exec[muyz]

22: evaluate uys by computing Juys (So0)
23: if mays is the best policy found so far, cache it
24: until all resources exhaust or desired error bound is achieved

Function 2 ASSIGNMBPSOLUTION(S)

if MBP(s) succeeds then
WHYB(S) — WMBP(S)
for all s’ s.t. Pr(s’|s, muvs(s)) > 0, s’ & closed do
open.insert(s")
else
if s = so then
problem is unsolvable; exit()
else
closed.remove(s)
deadends.insert(s)
for all s’ s.t. muys(s") leads directly to s do
ASSIGNMBPSOLUTION(s")

may return with a failure implying that no solution exists from
the current state. Clearly, the choice of the action (in the pre-
vious step) is faulty because that step led to this dead-end.
The procedure ASSIGNMBPSOLUTION recursively looks at
the policy assignments at previous levels and debugs myyp by
assigning solutions from 7yp. Additionally we memoize the
dead-end states to reduce future computation.

Cleaning, Evaluating and Caching myyy (lines 21-23): We
can formulate the evaluation of myyg as the following system
of linear equations:

Juye(s) = 0, if s € G else
Juve(s) = C(m(s)) + Z Pr(s'|s,m(s))Juys(s’) (3)

s'eS

These equations are tricky to solve, because it is still possi-
ble that there is an absorbing cycle in Exec[myyg]. If the rank
of the coefficient matrix is less than the number of equations
then there is an absorbing cycle. We can convert the matrix

into row-echelon form by using row transformations and in
parallel perform the same transformations on the identity ma-
trix. When we find a row with all zeros the non-zero entries
of the same row in the transformed identity matrix reveals the
states in the original system that form absorbing cycle(s). We
pick one of these states, assign the MBP action for it and re-
peat this computation. Note that this system of equations is
on a very small fraction of the overall state space (which are
in Exec[myys]), hence this step is not expensive. As we find
intermediate hybridized policies, we cache the best (i.e., the
one with minimum Jyyg (o)) policy found so far (line 23).

Termination (line 24): We may terminate differently in dif-
ferent situations: given a fixed amount of time, we may stop
GPT when the available time is about to expire and follow it
with a hybridized policy computation and terminate. Given
a fixed amount of memory, we may do the same with mem-
ory. If we need to terminate within a desired fraction of the
optimal, we may repeat hybridized policy computation at reg-
ular intervals and when we find a policy whose error bound is
within the desired limits, we terminate.

Error Bound: We develop a simple procedure to bound the
error in 7myyg. Since labeled RTDP is always started with an
admissible heuristic, GPT’s current cost function J,, remains
a lower bound of the optimal (J,, < J*). However the hy-
bridized policy is clearly worse than the optimal and hence

Juys > J*. Thus, % bounds the error of myyg.
Properties of HYBPLAN: HYBPLAN uses the current
greedy policy from GPT, combines it with solutions from MBP
for states that are not fully explored in GPT and ensures that
the final hybridized policy is proper, i.e., free of absorbing cy-
cles. Thus HYBPLAN has excellent anytime properties, i.e.,
once Typp(So) has returned with success, HYBPLAN is capa-
ble of improving the quality of the solution as the time avail-
able for the algorithm increases. If infinite time and resources
are available for the algorithm, then the algorithm reduces to
GPT, whereas if the available resources are extremely limited,
then it reduces to MBP. In all other cases, the hybridized plan-
ner demonstrates intermediate behavior.

3.1 Two Views of the Hybridized Planner

Our hybridized planner may be understood in two ways. The
first view is MBP-centric. If we run HYBPLAN without any
GPT computation then only mygp Will be outputted. This so-
lution will be a legal but possibly low quality. HYBPLAN
successively improves the quality of this basic solution from
MBP by plugging in additional information from GPT.

An alternative view is GPT-centric. We draw from the in-
tuition that, in GPT, the partial greedy policy (7gpr) improves
gradually and eventually gets defined for all relevant states
accurately. But before convergence, the current greedy pol-
icy may not even be defined for many states and may be in-
accurate for others, which have not been explored enough.
HYBPLAN uses this partial policy as much as reasonable and
completes it by adding in solutions from MBP; thus making
the final policy consistent and useful. In essence, both views
are useful: each algorithm patches the other’s weakness.

3.2 Implementation of HYBPLAN

We now address two different efficiency issues in implement-
ing HYBPLAN. First, instead of pre-computing an MBP pol-
icy for the whole state space, we do this computation on de-
mand. We modify MBP so that it can efficiently solve the
sub-problems without repeating any computation. We mod-
ify MBP’s “local” strong cyclic planning algorithm in the fol-
lowing ways — 1) we cache the policy table (mygp) produced
by previous planning episodes, 2) at each planning episode,
we analyze the cached result mygp, and if the input state is
solved already, search is skipped, 3) we perform search by
taking mygp as a starting point (rather than the goal).

Second, in our implementation we do not evaluate Tyyg
by solving the system of linear equations. Instead, we ap-
proximate this by averaging repeated simulations of the pol-
icy from the start state. If any simulation exceeds a maxi-
mum trajectory length we guess that the hybrid policy has
an absorbing cycle and we try to break the cycle by recur-
sively assigning the action from mygp for a state in the cycle.
This modification speeds up the overall algorithm. Although
in theory this takes away the guarantee of reaching the goal
with probability 1 since there could be some low probabil-
ity trajectory not explored by the simulation that may contain
an absorbing cycle, in practice this modification is sufficient
as even the planning competition relies on policy simulation
for evaluating planners. In our experiments, our hybridized
policies reach the goal with probability 1.

We finally remark that while GPT takes as input a planning
problem in probabilistic PDDL format, MBP’s input is a do-
main in SMV format. Our translation from PDDL to SMV is
systematic but only semi-automated; we are implementing a
fully automated procedure.

4 Experiments

We evaluate HYBPLAN on the speed of planning, quality of
solutions returned, anytime behavior, and scalability to large
problems. We also perform a sensitivity experiment testing
the algorithm towards sensitivity to the parameters.

Methodology

We compare HYBPLAN with GPT and MBP. In the graphs
we plot the expected cost of the cached policy for both HYB-
PLAN and GPT as a function of time. The first value in the
HYBPLAN curve is that of MBP (since initially for each state
s, visit(s) = 0, and thus myyg = muep). We also plot the
current J,, (so) value from labeled RTDP. As this admissible
value increases, the error bound of the solution reduces.

We run the experiments on three large probabilistic PDDL
domains. The first two domains are probabilistic variants of
the Rovers and MachineShop domains from the 2002 AIPS
Planning Competition. The third is the Elevators domain
from the 2006 ICAPS Planning Competition. The largest
problem we attempted was in the Elevators domain and had
606 state variables.

For our experiments we terminate when either labeled
RTDP terminates or when the memory goes out of bound.
For most experiments, we initialize HYBPLAN with hybtime
= 25 sec and threshold = 50. We also perform experiments to
analyze the sensitivity to these parameters.

A Rover Domain (without dead-ends)

120 ‘ ‘
Exp. Cost (GPT)
Exp. Cost (HybPlan) =-=====--
100 | J-value (GPT) R

J-value (HybPlan) -

])
1%} -
<] 5]
O 80 r 1g
B =4
2]
é [0 —\j fqg
5 ©
L‘J_‘J =4
a 40 *g
o bl
20 1
0

0 100 200 300 400 500 600 700 800
Time (in sec)

A MachineShop Domain (with dead-ends)

70
60 -]
2 5o [, e
o ! g
3 40} g
o 7]
g - 5
Al 30 -] R
@ 20r1 —"" Exp. Cost (GPT) &
Exp. Cost (HybPlan) ===
10 ¢ J-value (GPT) 1
J-value (HybPlan) -
0 \ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200

Time (in sec)

Figure 1: Anytime properties of HYBPLAN: On one Y-axis we show the expected cost of the cached policy and on the other
the J,,(so) values. J,, converges when the two curves meet. We find that HYBPLAN’s policy is superior to GPT’s greedy policy.
The first time when GPT’s policy has non-infinite expected cost occurs much later in the algorithm.

Anytime Property

We first evaluate the anytime properties of HYBPLAN for
moderate sized planning problems. We show results on two
problems, one from the Rovers domain and the other from
the MachineShop domain (Figures 1(a), 1(b)). These prob-
lems had 27 state variables and about 40 actions each. We
observe that myyg has a consistently better expected cost than
did 7gpr, and that the difference between the two algorithms
is substantial. For example, in Figure 1(b) the first time, when
Tgpr has a non-infinite expected cost (i.e., all simulated paths
reach the goal), is after 950 seconds; whereas HYBPLAN al-
ways constructs a valid policy.

Figure 1(a) is for a domain without any dead-ends whereas
in the domain of Figure 1(b) there are some ’bad’ actions
from which the agent can never recover. While HYBPLAN
obtains greater benefits for domains with dead-ends, for all
the domains the anytime nature of HYBPLAN is superior to
the GPT. Also notice the .J,,(sg) values in Figure 1. HYB-
PLAN sometimes takes marginally longer to converge be-
cause of overheads of hybrid policy construction. Clearly this
overhead is insignificant.

Recall that the first expected cost of myyg is the expected
cost of following the MBP policy. Clearly an MBP policy is
not of very high quality and is substantially improved as time
progresses. Also, the initial policy is computed very quickly.

Scaling to Large Problems

If we desire to run the algorithm until convergence then HYB-
PLAN is no better than GPT. For large problems, however,
running until convergence is not a practical option due to lim-
ited resources. For example, in Figure 2 we show experiments
on a larger problem from the rovers domain where the mem-
ory requirements exceed our machine’s 2 GB. (typically, the
memory fills up after the algorithm explores about 600,000
states) In such cases hybridization provides even more bene-
fits (Table 3). For many of the large domains GPT is in fact un-
able to output a single policy with finite expected cost. While
one might use MBP directly for such problems, by hybridiz-
ing the two algorithms we are able to get consistently higher
quality solutions.

A Large Rover Domain (with dead-ends)

100 . .
Exp. Cost (GPT)
Exp. Cost (HybPlan) =s==s====-

80 - J-value (GPT) |
= J-value (HybPlan) - .
8 —
3 IS
o s g
g 0R £
O 5 ﬁ
g N
% o
[40 e
D 2
o} . 3
o e z

20 | |

0 ! . . .)

0 200 400 600 800 1000 1200

Time (in sec)

Figure 2: Plot of expected cost on a problem too large for
GPT to converge.

Notice the Elevator problems in Table 3. There are 606
variables in this domain. These problems were the largest test
problems in the Elevators domain for the Planning Competi-
tion 2006 and few planners could solve it. Thus HYBPLAN’s
performance is very encouraging.

Sensitivity to Parameters

HYBPLAN is controlled by two parameters: hybtime and
threshold. We evaluate how sensitive HYBPLAN is to these
parameters. We find that increasing hybtime reduces the total
algorithm time but the difference is marginal, implying that
the overhead of hybrid policy construction is not significant.
However, smaller values result in repeated policy construc-
tion and this helps in finding a good quality solution early.
Thus small values of hybtime are overall more effective.
Varying threshold does not affect the overall algorithm
time. But it does marginally affect the first time a good so-
lution is observed. Increasing threshold implies that an MBP
policy is used until a state is sufficiently explored in GPT.
For Rovers domain this translates to some extra time before
a good policy is observed. For MachineShop we observe the

Problems Time before Expected Cost
memory exhausts GPT MBP HYBPLAN
Rover5 ~ 1100 sec 55.36 67.04 48.16
Rover2 ~ 800 sec o0 65.22 49.91
Mach9 ~ 1500 sec 14395 | 66.50 48.49
Mach6 ~ 300 sec o0 71.56 71.56
Elevl4 ~ 10000 sec 00 46.49 44.48
Elevl5 ~ 10000 sec 00 233.07 87.46
Figure 3: Scalability of HYBPLAN: Best quality solutions

found (before memory exhausts) by GPT, MBP and HYB-
PLAN for large problems. HYBPLAN outperforms the others
by substantial margins.

opposite behavior suggesting that we are better off using MBP
policies for less explored regions of the space. While overall
the algorithm is only marginally sensitive to this parameter,
the differences in two domains lead us to believe that the op-
timal values are domain-dependent and in general, intermedi-
ate values of threshold are preferable.

Finally, we also compare with symbolic LAO* [Feng and
Hansen, 2002] to determine whether our speedup is due pri-
marily to the use of a qualitative uncertainty representation
or instead to exploitation of symbolic techniques. We ob-
serve that for our large problems symbolic LAO* does not
converge even after many hours, since backing up the whole
ADD takes a huge amount of time. Thus, we conclude that
the speedup is due to hybridization with a simpler, qualitative
model of uncertainty.

5 Discussion and Related Work

Hybridizing planners were introduced recently in the plan-
ning community [Mausam and Weld, 2005; McMahan et al.,
2005]. Mausam and Weld used hybridization in the context
of concurrent probabilistic temporal planning by hybridizing
interwoven epoch and aligned epoch planning. McMahan
et al. used a sub-optimal policy to achieve policy guarantees
in an MDP framework (an extension of bound and bound to
MDPs). However, they did not provide any method to obtain
this sub-optimal policy. We are the first to present a princi-
pled, automated hybridized planner for MDPs.

The strength of our work is in the coupling of a probabilis-
tic and qualitative contingent planner. While there have been
several attempts to use classical planners to obtain probabilis-
tic solutions (e.g., generate, test and debug [Younes and Sim-
mons, 2004], FF-Replan), they have severe limitations be-
cause conversion to classical languages results in decoupling
various outcomes of the same action. Thus the classical plan-
ners have no way to reject an action that has two outcomes —
one good and one bad. However, this kind of information is
preserved in domains with qualitative uncertainty and com-
bining them with probabilistic planners creates a time-quality
balanced algorithm.

Although the computation of a proper policy is a strength
of HYBPLAN, it is also a weakness because there exist prob-
lems (which we term “improper”), which may not contain
even a single proper policy. For these improper problems
the algorithm (in its present form) will deem the problem
unsolvable, because we have specifically chosen GPT and

the strong-cyclic planning algorithm of MBP. Instead, we
could hybridize other algorithms (e.g., PARAGRAPH [Little
and Thiebaux, 2006] or GPT supplemented with a high but
non-infinite cost of reaching a dead-end) with MBP’s weak
planning algorithms. For better results we could combine
MBP’s strong-cyclic and weak planning algorithms sequen-
tially — if strong-cyclic planner returns failure then apply
weak planner. A planner hybridized in this manner would be
able to handle these improper problems comfortably and will
also guarantee reaching a goal if it is possible.

The idea of hybridizing planners is quite general and can
be applied to various other settings. We list several planning
problems that could make good use of a hybridized planner:

1. Partially Observable Markov Decision Processes
(POMDP): The scalability issues in POMDPs are
much more pronounced than in MDPs due to the
exponential blowup of the continuous belief-state
representation. We could hybridize GPT or point-based
value iteration based methods [Pineau et al, 2003;
Poupart, 2005] with disjunctive planners like MBP,
BBSP, or POND [Bertoli et al., 2006; Rintanen, 2005;
Bryce er al., 2006] to gain the benefits of both the
probabilistic and disjunctive representations.

2. Deterministic Over-subscription Planning: The objec-
tive of over-subscription planning problem is to maxi-
mize return by achieving as many goals as possible given
the resource constraints [Smith, 2004]. The problem
may be modeled as a search in the state space extended
with the goals already achieved. A heuristic solution to
the problem could be to achieve the goals greedily in the
order of decreasing returns. We can hybridize the two
algorithms to obtain a better than greedy, faster than op-
timal solution for the problem.

3. Probabilistic Planning with Continuous Resources: A
Hybrid AO* algorithm on an abstract state space solves
this problem. Here each abstract node consists of the dis-
crete component of the state space and contains the value
function for all values of continuous resources [Mausam
et al., 2005]. This Hybrid AO* algorithm may be hy-
bridized with an algorithm that solves a simpler problem
assuming deterministic resource consumption for each
action with the deterministic value being the average of
consumption distribution.

4. Concurrent MDP: A concurrent MDP is an MDP with a
factored action representation and is used to model prob-
abilistic planning problems with concurrency [Mausam
and Weld, 2004]. A concurrent MDP algorithm and the
equivalent single action MDP algorithm could be hy-
bridized together to obtain a fast concurrent MDP solver.

6 Conclusions

Our work connects research on probabilistic planning with
that on qualitative contingent planning — with exciting re-
sults. This paper makes the following contributions:

e We present a novel probabilistic planning algorithm
(HYBPLAN) that combines two popular planners in a
principled way. By hybridizing an optimal (but slow)

planner (GPT) with a fast (but sub-optimal) planner
(MBP) we obtain the best of both worlds.

e We empirically test HYBPLAN on a suite of medium and
large problems, finding that it has significantly better
anytime properties than RTDP. Given limited resources,
it is able to solve much larger problems while still com-
puting high quality solutions. Furthermore, HYBPLAN
is competitive with the best planners in the 2006 Inter-
national Planning Competition.

e Our notion of hybridization is a general one, and we dis-
cuss several other planning applications where we be-
lieve that the idea will be effective.

Acknowledgments

We thank Blai Bonet for providing the source code of GPT.
We thank Doug Aberdeen, Olivier Buffet, Zhengzhu Feng
and Sungwook Yoon for providing code for their software.
We also thank Paul Beame, Gaurav Chanda, Alessandro
Cimatti, Richard Korf, Eric Hansen, Subbarao Kambhampati,
Sylvie Thiebaux, and Hakan Younes for very helpful sugges-
tions. Pradeep Shenoy, Ravikiran Sarvadevabhatla and the
anonymous reviewers gave useful comments on prior drafts.
This work was supported by NSF grant I1S-0307906, ONR
grants N00014-02-1-0932, N00014-06-1-0147 and the WRF
/ TJ Cable Professorship.

References

[Barto et al., 1995] A. Barto, S. Bradtke, and S. Singh.
Learning to act using real-time dynamic programming. Ar-
tificial Intelligence, 72:81-138, 1995.

[Bertoli ef al., 2001] P. Bertoli, A. Cimatti, M. Pistore,
M. Roveri, and P. Traverso. MBP: a Model Based Plan-
ner. In ICAI-2001 workshop on Planning under Uncer-
tainty and Incomplete Information, pages 93-97, 2001.

[Bertoli et al., 2006] Piergiorgio Bertoli, Alessandro
Cimatti, Marco Roveri, and Paolo Traverso. Strong plan-

ning under partial observability. Artificial Intelligence,
170:337-384, 2006.

[Bertsekas, 1995] D. Bertsekas. Dynamic Programming and
Optimal Control. Athena Scientific, 1995.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. Labeled
RTDP: Improving the convergence of real-time dynamic
programming. In ICAPS’03, pages 12-21, 2003.

[Bonet and Geffner, 2005] B. Bonet and H. Geffner. mGPT:
A probabilistic planner based on heuristic search. JAIR,
24:933, 2005.

[Bryce et al., 2006] D. Bryce, S. Kambhampati, and D. E.
Smith. Planning graph heuristics for belief space search.
Journal of Artificial Intelligence Research, 26:35-99,
2006.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. Weak, strong, and strong cyclic planning via
symbolic model checking. Artificial Intelligence, 147(1-
2):35-84, 2003.

[Feng and Hansen, 2002] Z. Feng and E. Hansen. Symbolic
heuristic search for factored Markov decision processes.
In Proceedings of the Eighteenth National Conference on
Artificial Intelligence, 2002.

[Gomes and Selman, 2001] C. P. Gomes and B. Selman. Al-
gorithm portfolios. Artificial Intelligence, 126:43-62,
2001.

[Hansen and Zilberstein, 2001] E. Hansen and S. Zilber-
stein. LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence, 129:35-62, 2001.

[Little and Thiebaux, 2006] I. Little and S. Thiebaux. Con-
current probabilistic planning in the graphplan framework.
In ICAPS’06, 2006.

[Martello and Toth, 1990] S. Martello and P. Toth. Knap-
sack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, 1990.

[Mausam and Weld, 2004] Mausam and D. Weld. Solving
concurrent Markov decision processes. In AAAI’04, 2004.

[Mausam and Weld, 2005] Mausam and D. Weld. Concur-
rent probabilistic temporal planning. In ICAPS’05, pages
120129, 2005.

[Mausam et al., 2005] Mausam, E. Benazara, R. Brafman,
N. Meuleau, and E. Hansen. Planning with continuous
resources in stochastic domains. In IJCAI’05, page 1244,
2005.

[McMahan et al., 2005] H. B. McMahan, M. Likhachev, and
G. J. Gordon. Bounded real-time dynamic program-
ming: RTDP with monotone upper bounds and perfor-
mance guarantees. In ICML’05, 2005.

[Pineau et al., 2003] J. Pineau, G. Gordon, and S. Thrun.
Point-based value iteration: An anytime algorithm for
POMDPs. In IJCAI’03, pages 1025-1032, 2003.

[Poupart, 2005] P. Poupart. Exploiting structure to efficiently
solve large scale partially observable Markov decision pro-
cesses. Ph.D. thesis. University of Toronto, 2005.

[Rintanen, 2005] J. Rintanen. Conditional planning in the
discrete belief space. In IJCAI’05, 2005.

[Smith, 2004] D. E. Smith. Choosing objectives in over-
subscription planning. In ICAPS 04, page 393, 2004.

[Younes and Simmons, 2004] H. L. S. Younes and R. G.
Simmons. Policy generation for continuous-time stochas-
tic domains with concurrency. In ICAPS’ 04, page 325,
2004.

