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Abstract
Machine reading is a long-standing goal of AI
and NLP. In recent years, tremendous progress
has been made in developing machine learning
approaches for many of its subtasks such as
parsing, information extraction, and question
answering. However, existing end-to-end so-
lutions typically require substantial amount of
human efforts (e.g., labeled data and/or man-
ual engineering), and are not well poised for
Web-scale knowledge acquisition. In this pa-
per, we propose a unifying approach for ma-
chine reading by bootstrapping from the easi-
est extractable knowledge and conquering the
long tail via a self-supervised learning pro-
cess. This self-supervision is powered by joint
inference based on Markov logic, and is made
scalable by leveraging hierarchical structures
and coarse-to-fine inference. Researchers at
the University of Washington have taken the
first steps in this direction. Our existing work
explores the wide spectrum of this vision and
shows its promise.

1 Introduction

Machine reading, or learning by reading, aims to
extract knowledge automatically from unstructured
text and apply the extracted knowledge to end tasks
such as decision making and question answering. It
has been a major goal of AI and NLP since their
early days. With the advent of the Web, the billions
of online text documents contain virtually unlimited
amount of knowledge to extract, further increasing
the importance and urgency of machine reading.

In the past, there has been a lot of progress in
automating many subtasks of machine reading by

machine learning approaches (e.g., components in
the traditional NLP pipeline such as POS tagging
and syntactic parsing). However, end-to-end solu-
tions are still rare, and existing systems typically re-
quire substantial amount of human effort in manual
engineering and/or labeling examples. As a result,
they often target restricted domains and only extract
limited types of knowledge (e.g., a pre-specified re-
lation). Moreover, many machine reading systems
train their knowledge extractors once and do not
leverage further learning opportunities such as ad-
ditional text and interaction with end users.

Ideally, a machine reading system should strive to
satisfy the following desiderata:
End-to-end: the system should input raw text, ex-

tract knowledge, and be able to answer ques-
tions and support other end tasks;

High quality: the system should extract knowledge
with high accuracy;

Large-scale: the system should acquire knowledge
at Web-scale and be open to arbitrary domains,
genres, and languages;

Maximally autonomous: the system should incur
minimal human effort;

Continuous learning from experience: the
system should constantly integrate new infor-
mation sources (e.g., new text documents) and
learn from user questions and feedback (e.g.,
via performing end tasks) to continuously
improve its performance.

These desiderata raise many intriguing and chal-
lenging research questions. Machine reading re-
search at the University of Washington has explored



a wide spectrum of solutions to these challenges and
has produced a large number of initial systems that
demonstrated promising performance. During this
expedition, an underlying unifying vision starts to
emerge. It becomes apparent that the key to solving
machine reading is to:

1. Conquer the long tail of textual knowledge via
a self-supervised learning process that lever-
ages data redundancy to bootstrap from the
head and propagates information down the long
tail by joint inference;

2. Scale this process to billions of Web documents
by identifying and leveraging ubiquitous struc-
tures that lead to sparsity.

In Section 2, we present this vision in detail, iden-
tify the major dimensions these initial systems have
explored, and propose a unifying approach that sat-
isfies all five desiderata. In Section 3, we reivew
machine reading research at the University of Wash-
ington and show how they form synergistic effort
towards solving the machine reading problem. We
conclude in Section 4.

2 A Unifying Approach for Machine
Reading

The core challenges to machine reading stem from
the massive scale of the Web and the long-tailed dis-
tribution of textual knowledge. The heterogeneous
Web contains texts that vary substantially in subject
matters (e.g., finance vs. biology) and writing styles
(e.g., blog posts vs. scientific papers). In addition,
natural languages are famous for their myraid vari-
ations in expressing the same meaning. A fact may
be stated in a straightforward way such as “kale con-
tains calcium”. More often though, it may be stated
in a syntactically and/or lexically different way than
as phrased in an end task (e.g., “calcium is found in
kale”). Finally, many facts are not even stated ex-
plicitly, and must be inferred from other facts (e.g.,
“kale prevents osteoporosis” may not be stated ex-
plicitly but can be inferred by combining facts such
as “kale contains calcium” and “calcium helps pre-
vent osteoporosis”). As a result, machine reading
must not rely on explicit supervision such as manual
rules and labeled examples, which will incur pro-
hibitive cost in the Web scale. Instead, it must be
able to learn from indirect supervision.
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Figure 1: A unifying vision for machine reading: boot-
strap from the head regime of the power-law distribu-
tion of textual knowledge, and conquer the long tail in
a self-supervised learning process that raises certainty on
sparse extractions by propagating information via joint
inference from frequent extractions.

A key source of indirect supervision is meta
knowledge about the domains. For example, the
TextRunner system (Banko et al., 2007) hinges on
the observation that there exist general, relation-
independent patterns for information extraction. An-
other key source of indirect supervision is data re-
dundancy. While a rare extracted fact or inference
pattern may arise by chance of error, it is much less
likely so for the ones with many repetitions (Downey
et al., 2010). Such highly-redundant knowledge can
be extracted easily and with high confidence, and
can be leveraged for bootstrapping. For knowledge
that resides in the long tail, explicit forms of redun-
dancy (e.g., identical expressions) are rare, but this
can be circumvented by joint inference. For exam-
ple, expressions that are composed with or by sim-
ilar expressions probably have the same meaning;
the fact that kale prevents osteoporosis can be de-
rived by combining the facts that kale contains cal-
cium and that calcium helps prevent osteoporosis via
a transitivity-through inference pattern. In general,
joint inference can take various forms, ranging from
simple voting to shrinkage in a probabilistic ontol-
ogy to sophisticated probabilistic reasoning based
on a joint model. Simple ones tend to scale bet-
ter, but their capability in propagating information
is limited. More sophisticated methods can uncover
implicit redundancy and propagate much more in-



formation with higher quality, yet the challenge is
how to make them scale as well as simple ones.

To do machine reading, a self-supervised learning
process, informed by meta knowledege, stipulates
what form of joint inference to use and how. Effec-
tively, it increases certainty on sparse extractions by
propagating information from more frequent ones.
Figure 1 illustrates this unifying vision.

In the past, machine reading research at the Uni-
versity of Washington has explored a variety of so-
lutions that span the key dimensions of this uni-
fying vision: knowledge representation, bootstrap-
ping, self-supervised learning, large-scale joint in-
ference, ontology induction, continuous learning.
See Section 3 for more details. Based on this ex-
perience, one direction seems particularly promising
that we would propose here as our unifying approach
for end-to-end machine reading:

Markov logic is used as the unifying framework for
knowledge representation and joint inference;

Self-supervised learning is governed by a joint
probabilistic model that incorporates a small
amount of heuristic knowledge and large-scale
relational structures to maximize the amount
and quality of information to propagate;

Joint inference is made scalable to the Web by
coarse-to-fine inference.

Probabilistic ontologies are induced from text to
guarantee tractability in coarse-to-fine infer-
ence. This ontology induction and popula-
tion are incorporated into the joint probabilistic
model for self-supervision;

Continuous learning is accomplished by combin-
ing bootstrapping and crowdsourced content
creation to synergistically improve the reading
system from user interaction and feedback.

A distinctive feature of this approach is its empha-
sis on using sophisticated joint inference. Recently,
joint inference has received increasing interest in
AI, machine learning, and NLP, with Markov logic
(Domingos and Lowd, 2009) being one of the lead-
ing unifying frameworks. Past work has shown that
it can substantially improve predictive accuracy in
supervised learning (e.g., (Getoor and Taskar, 2007;
Bakir et al., 2007)). We propose to build on these ad-
vances, but apply joint inference beyond supervised

learning, with labeled examples supplanted by indi-
rect supervision.

Another distinctive feature is that we propose
to use coarse-to-fine inference (Felzenszwalb and
McAllester, 2007; Petrov, 2009) as a unifying
framework to scale inference to the Web. Es-
sentially, coarse-to-fine inference leverages the
sparsity imposed by hierarchical structures that
are ubiquitous in human knowledge (e.g., tax-
onomies/ontologies). At coarse levels (top levels in
a hierarchy), ambiguities are rare (there are few ob-
jects and relations), and inference can be conducted
very efficiently. The result is then used to prune un-
promising refinements at the next level. This process
continues down the hierarchy until decision can be
made. In this way, inference can potentially be sped
up exponentially, analogous to binary tree search.

Finally, we propose a novel form of continuous
learning by leveraging the interaction between the
system and end users to constantly improve the per-
formance. This is straightforward to do in our ap-
proach given the self-supervision process and the
availability of powerful joint inference. Essentially,
when the system output is applied to an end task
(e.g., answering questions), the feedback from user
is collected and incorporated back into the system
as a bootstrap source. The feedback can take the
form of explicit supervision (e.g., via community
content creation or active learning) or indirect sig-
nals (e.g., click data and query logs). In this way,
we can bootstrap an online community by an initial
machine reading system that provides imperfect but
valuable service in end tasks, and continuously im-
prove the quality of system output, which attracts
more users with higher degree of participation, thus
creating a positive feedback loop and raising the ma-
chine reading performance to a high level that is dif-
ficult to attain otherwise.

3 Summary of Progress to Date

The University of Washington has been one of the
leading places for machine reading research and has
produced many cutting-edge systems, e.g., WIEN
(first wrapper induction system for information ex-
traction), Mulder (first fully automatic Web-scale
question answering system), KnowItAll/TextRunner
(first systems to do open-domain information extrac-



tion from the Web corpus at large scale), Kylin (first
self-supervised system for Wikipedia-based infor-
mation extraction), UCR (first unsupervised corefer-
ence resolution system that rivals the performance of
supervised systems), Holmes (first Web-scale joint
inference system), USP (first unsupervised system
for semantic parsing).

Figure 2 shows the evolution of the major sys-
tems; dashed lines signify influence in key ideas
(e.g., Mulder inspires KnowItAll), and solid lines
signify dataflow (e.g., Holmes inputs TextRunner tu-
ples). These systems span a wide spectrum in scal-
ability (assessed by speed and quantity in extrac-
tion) and comprehension (assessed by unit yield of
knowledge at a fixed precision level). At one ex-
treme, the TextRunner system is highly scalable, ca-
pable of extracting billions of facts, but it focuses on
shallow extractions from simple sentences. At the
other extreme, the USP and LOFT systems achieve
much higher level of comprehension (e.g., in a task
of extracting knowledge from biomedical papers and
answering questions, USP obtains more than three
times as many correct answers as TextRunner, and
LOFT obtains more than six times as many correct
answers as TextRunner), but are much less scalable
than TextRunner.

In the remainder of the section, we review the
progress made to date and identify key directions for
future work.

3.1 Knowledge Representation and Joint
Inference

Knowledge representations used in these systems
vary widely in expressiveness, ranging from sim-
ple ones like relation triples (<subject, relation,
object>; e.g., in KnowItAll and TextRunner), to
clusters of relation triples or triple components (e.g.,
in SNE, RESOLVER), to arbitrary logical formulas
and their clusters (e.g., in USP, LOFT). Similarly,
a variety forms of joint inference have been used,
ranging from simple voting to heuristic rules to so-
phisticated probabilistic models. All these can be
compactly encoded in Markov logic (Domingos and
Lowd, 2009), which provides a unifying framework
for knowledge representation and joint inference.

Past work at Washington has shown that in su-
pervised learning, joint inference can substantially
improve predictive performance on tasks related to

machine reading (e.g., citation information extrac-
tion (Poon and Domingos, 2007), ontology induc-
tion (Wu and Weld, 2008), temporal information
extraction (Ling and Weld, 2010)). In addition, it
has demonstrated that sophisticated joint inference
can enable effective learning without any labeled
information (UCR, USP, LOFT), and that joint in-
ference can scale to millions of Web documents by
leveraging sparsity in naturally occurring relations
(Holmes, Sherlock), showing the promise of our uni-
fying approach.

Simpler representations limit the expressiveness
in representing knowledge and the degree of sophis-
tication in joint inference, but they currently scale
much better than more expressive ones. A key direc-
tion for future work is to evaluate this tradeoff more
thoroughly, e.g., for each class of end tasks, to what
degree do simple representations limit the effective-
ness in performing the end tasks? Can we automate
the choice of representations to strike the best trade-
off for a specific end task? Can we advance joint
inference algorithms to such a degree that sophisti-
cated inference scales as well as simple ones?

3.2 Bootstrapping
Past work at Washington has identified and lever-
aged a wide range of sources for bootstrapping. Ex-
amples include Wikipedia (Kylin, KOG, IIA, WOE,
WPE), Web lists (KnowItAll, WPE), Web tables
(WebTables), Hearst patterns (KnowItAll), heuristic
rules (TextRunner), semantic role labels (SRL-IE),
etc.

In general, potential bootstrap sources can be
broadly divided into domain knowledge (e.g., pat-
terns and rules) and crowdsourced contents (e.g., lin-
guistic resources, Wikipedia, Amazon Mechanical
Turk, the ESP game).

A key direction for future work is to combine
bootstrapping with crowdsourced content creation
for continuous learning. (Also see Subsection 3.6.)

3.3 Self-Supervised Learning
Although the ways past systems conduct self-
supervision vary widely in detail, they can be di-
vided into two broad categories. One uses heuristic
rules that exploit existing semi-structured resources
to generate noisy training examples for use by su-
pervised learning methods and with cotraining (e.g.,



ShopBot

WIEN

Mulder

RESOLVER

KnowItAll

REALM

Opine LEX

TextRunner

Kylin

WPEKOG

WOE

USP LOFTSNE

OLPI

PrecHybrid

Holmes Sherlock

1997 2001 2005 2007 20092008 2010

WebTables

LDA-SP

IIA

UCR

AuContraire

SRL-IE

2004

Figure 2: The evolution of major machine reading systems at the University of Washington. Dashed lines signify
influence and solid lines signify dataflow. At the top are the years of publications. ShopBot learns comparison-
shopping agents via self-supervision using heuristic knowledge (Doorenbos et al., 1997); WIEN induces wrappers
for information extraction via self-supervision using joint inference to combine simple atomic extractors (Kushmerick
et al., 1997); Mulder answers factoid questions by leveraging redundancy to rank candidate answers extracted from
multiple search query results (Kwok et al., 2001); KnowItAll conducts open-domain information extraction via self-
supervision bootstrapping from Hearst patterns (Etzioni et al., 2005); Opine builds on KnowItAll and mines product
reviews via self-supervision using joint inference over neighborhood features (Popescu and Etzioni, 2005); Kylin pop-
ulates Wikipedia infoboxes via self-supervision bootstrapping from existing infoboxes (Wu and Weld, 2007); LEX
conducts Web-scale name entity recognition by leveraging collocation statistics (Downey et al., 2007a); REALM
improves sparse open-domain information extraction via relational clustering and language modeling (Downey et al.,
2007b); RESOLVER performs entity and relation resolution via relational clustering (Yates and Etzioni, 2007); Tex-
tRunner conducts open-domain information extraction via self-supervision bootstrapping from heuristic rules (Banko
et al., 2007); AuContraire automatically identifies contradictory statements in a large web corpus using functional re-
lations (Ritter et al., 2008); HOLMES infers new facts from TextRunner output using Markov logic (Schoenmackers
et al., 2008); KOG learns a rich ontology by combining Wikipedia infoboxes with WordNet via joint inference using
Markov Logic Networks (Wu and Weld, 2008), shrinkage over this ontology vastly improves the recall of Kylin’s
extractors; UCR performs state-of-the-art unsupervised coreference resolution by incorporating a small amount of
domain knowledge and conducting joint inference among entity mentions with Markov logic (Poon and Domingos,
2008b); SNE constructs a semantic network over TextRunner output via relational clustering with Markov logic (Kok
and Domingos, 2008); WebTables conducts Web-scale information extraction by leveraging HTML table structures
(Cafarella et al., 2008); IIA learns from infoboxes to filter open-domain information extraction toward assertions that
are interesting to people (Lin et al., 2009); USP jointly learns a semantic parser and extracts knowledge via recursive
relational clustering with Markov logic (Poon and Domingos, 2009); LDA-SP automatically infers a compact repre-
sentation describing the plausible arguments for a relation using an LDA-Style model and Bayesian Inference (Ritter
et al., 2010); LOFT builds on USP and jointly performs ontology induction, population, and knowledge extraction via
joint recursive relational clustering and shrinkage with Markov logic (Poon and Domingos, 2010); OLPI improves the
efficiency of lifted probabilistic inference and learning via coarse-to-fine inference based on type hierarchies (Kiddon
and Domingos, 2010). SHERLOCK induces new inference rules via relational learning (Schoenmackers et al., 2010);
SRL-IE conducts open-domain information extraction by bootstrapping from semantic role labels, PrecHybrid is a
hybrid version between SRL-IE and TextRunner, which given a budget of computation time does better than either
system (Christensen et al., 2010); WOE builds on Kylin and conducts open-domain information extraction (Wu and
Weld, 2010); WPE learns 5000 relational extractors by bootstrapping from Wikipedia and using Web lists to generate
dynamic, relation-specific lexicon features (Hoffmann et al., 2010).



TextRunner, Kylin, KOG, WOE, WPE). Another
uses unsupervised learning and often takes a partic-
ular form of relational clustering (e.g., objects asso-
ciated with similar relations tend to be the same and
vice versa, as in REALM, RESOLVER, SNE, UCR,
USP, LDA-SP, LOFT, etc.).

Some distinctive types of self-supervision in-
clude shrinkage based on an ontology (KOG,
LOFT, OLPI), probabilistic inference via hand-
crafted or learned inference patterns (Holmes, Sher-
lock), and cotraining using relation-specific and
relation-independent (open) extraction to reinforce
semantic coherence (Wu et al., 2008).

A key direction for future work is to develop a
unifying framework for self-supervised learning by
combining the strengths of existing methods and
overcoming their limitations. This will likely take
the form of a new learning paradigm that combines
existing paradigms such as supervised learning, rela-
tional clustering, semi-supervised learning, and ac-
tive learning into a unifying learning framework that
synergistically leverages diverse forms of supervi-
sion and information sources.

3.4 Large-Scale Joint Inference
To apply sophisticated joint inference in machine
reading, the major challenge is to make it scal-
able to billions of text documents. A general solu-
tion is to identify and leverage ubiquitous problem
structures that lead to sparsity. For example, order
of magnitude reduction in both memory and infer-
ence time can be achieved for relational inference
by leveraging the fact that most relational atoms are
false, which trivially satisfy most relational formulas
(Singla and Domingos, 2006; Poon and Domingos,
2008a); joint inference with naturally occurring tex-
tual relations can scale to millions of Web pages by
leveraging the fact that such relations are approxi-
mately functional (Schoenmackers et al., 2008).

More generally, sparsity arises from hierarchical
structures (e.g., ontologies) that are naturally exhib-
ited in human knowledge, and can be leveraged to
do coarse-to-fine inference (OLPI).

The success of coarse-to-fine inference hinges on
the availability and quality of hierarchical structures.
Therefore, a key direction for future work is to auto-
matically induce such hierarchies. (Also see next
subsection.) Moreover, given the desideratum of

continuous learning from experience, and the speedy
evolution of the Web (new contents, formats, etc.),
it is important that we develop online methods for
self-supervision and joint inference. For example,
when a new text document arrives, the reading sys-
tem should not relearn from scratch, but should iden-
tify only the relevant pieces of knowledge and con-
duct limited-scoped inference and learning accord-
ingly.

3.5 Ontology Induction

As mentioned in previous subsections, ontologies
play an important role in both self-supervision
(shrinkage) and large-scale inference (coarse-to-fine
inference). A distinctive feature in our unifying ap-
proach is to induce probabilistic ontologies, which
can be learned from noisy text and support joint
inference. Past systems have explored two differ-
ent approaches to probabilistic ontology induction.
One approach is to bootstrap from existing onto-
logical structures and apply self-supervision to cor-
rect the erroneous nodes and fill in the missing ones
(KOG). Another approach is to integrate ontology
induction with hierarchical smoothing, and jointly
pursue unsupervised ontology induction, population
and knowledge extraction (LOFT).

A key direction for future work is to combine
these two paradigms. As case studies in ontology
integration, prior research has devised probabilistic
schema mappings and corpus-based matching algo-
rithms (Doan, 2002; Madhavan, 2005; Dong et al.,
2007), and has automatically constructed mappings
between the Wikipedia infobox “ontology” and the
Freebase ontology. This latter endeavor illustrated
the complexity of the necessary mappings: a simple
attribute in one ontology may correspond to a com-
plex relational view in the other, comprising three
join operations; searching for such matches yields
a search space with billions of possible correspon-
dences for just a single attribute.

Another key direction is to develop general meth-
ods for inducing multi-facet, multi-inheritance on-
tologies. Although single-inheritance, tree-like hier-
archies are easier to induce and reason with, natu-
rally occurring ontologies generally take the form of
a lattice rather than a tree.



3.6 Continuous Learning
Early work at Washington proposed to construct
knowledge bases by mass collaboration (Richard-
son and Domingos, 2003). A key challenge is to
combine inconsistent knowledge sources of varying
quality, which motivated the subsequent develop-
ment of Markov logic. While this work did not do
machine reading, its emphasis on lifelong learning
from user feedback resonates with our approach on
continuous learning.

Past work at Washington has demonstrated the
promise of our approach. For example, (Banko and
Etzioni, 2007) automated theory formation based on
TextRunner extractions via a lifelong-learning pro-
cess; (Hoffmann et al., 2009) show that the pairing
of Kylin and community content creation benefits
both by sharing Wikipedia edits; (Soderland et al.,
2010) successfully adapted the TextRunner open-
domain information extraction system to specific do-
mains via active learning.

Our approach also resonates with the never-
ending learning paradigm for “Reading the Web”
(Carlson et al., 2010). In future work, we intend to
combine our approach with related ones to enable
more effective continuous learning from experience.

4 Conclusion

This paper proposes a unifying approach to ma-
chine reading that is end-to-end, large-scale, maxi-
mally autonomous, and capable of continuous learn-
ing from experience. At the core of this approach
is a self-supervised learning process that conquers
the long tail of textual knowledge by propagating in-
formation via joint inference. Markov logic is used
as the unifying framework for knowledge represen-
tation and joint inference. Sophisticated joint in-
ference is made scalable by coarse-to-fine inference
based on induced probabilistic ontologies. This uni-
fying approach builds on the prolific experience in
cutting-edge machine reading research at the Uni-
versity of Washington. Past results demonstrate its
promise and reveal key directions for future work.
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