

Probabilistic Temporal Planning

PART I: The Problem

Mausam David E. Smith Sylvie Thiébaux

Motivation

[Visual servo (.2,15)			Dig(5)) D	rive (-1)	NIR]
⊢						+	+	->

K9

Reality Bites

Discrete failures

Tracking failure Instrument placement failure Hardware faults and failures

Time & Energy

- Wheel slippage
- Obstacle avoidance
- Feature tracking

Alternative Approaches

Replanning

processing power safety lost opportunities dead ends

Improving robustness

Conservatism Flexibility Conformance Conditionality

wasteful useful but limited difficult & limited very difficult

Technical Challenges

Durative actions	5						
	Visual servo (.2,1	5) Lo res	Rock finder	NIR			
Concurrency		Warı	nup NIR				
				Comm.			
Continuous resources							
Energy Storage							
Time constraints	IS [10	,14:30]	1				
Oversubscription	n]		
$G_1, G_2, G_3, G_4,$							
$V_1, V_2, V_3, V_4, .$							

Problem Dimensions

Full vs. Partial satisfaction

Assumptions

Probabilistic POCL Approaches

- 1. Introduction
- 2. Basics of probabilistic planning (Mausam)
- 3. Durative actions w/o concurrency (Mausam)
- 4. Concurrency w/o durative actions (Sylvie)
- 5. Durative actions w/concurrency (Sylvie)
- 6. Practical considerations

References

Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and Washington, R. Planning under continuous time and resource uncertainty: A challenge for AI. *UAI-02*.

Draper, D.; Hanks, S.; and Weld, D. Probabilistic planning with information gathering and contingent execution. *AIPS-94*.

Onder, N., and Pollack, M. Conditional, probabilistic planning: A unifying algorithm and effective search control mechanisms. *AAAI-99*.

Onder, N.; Whelan, G. C.; and Li, L. Engineering a conformant probabilistic planner. *JAIR 25*.

Peot, M. Decision-Theoretic Planning. Ph.D. Dissertation, Dept of Engineering Economic Systems, Stanford University, 1998.

Probabilistic Temporal Planning

PART II: Introduction to Probabilistic Planning Algorithms

Mausam David E. Smith Sylvie Thiébaux

Objective of a Fully Observable MDP

- Find a policy $\pi: S \to A$
- which optimises
 - minimises (discounted) expected cost to reach a goal
 - maximises
 - maximises undiscount.

or

expected reward expected (reward-cost)

- given a _____ horizon
 - finite
 - infinite
 - indefinite
- assuming full observability

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
 - useful for infinite horizon problems
 - sometimes indefinite horizon: if there are deadends
- Intuition (economics):
 - Money today is worth more than money tomorrow.
- Total reward: $\mathbf{r}_1 + \gamma \mathbf{r}_2 + \gamma^2 \mathbf{r}_3 + \dots$
- Total cost: $c_1 + \gamma c_2 + \gamma^2 c_3 + \dots$

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimisation MDP
 - $<S, A, Pr, C, G, s_0 >$
 - Most often studied in planning community
- Infinite Horizon, Discounted Reward Maximisation MDP
 - $< S, A, Pr, R, \gamma >$
 - Most often studied in reinforcement learning
- Goal-directed, Finite Horizon, Prob. Maximisation MDP
 - $< S, A, Pr, G, s_0, T >$
 - Also studied in planning community
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP
 - $< S, A, Pr, G, R, s_0 >$
 - Relatively recent model

Bellman Equations for MDP₁

- $<S, A, Pr, C, G, s_0>$
- Define J*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- J* should satisfy the following equation:

•

$$J^*(s) = 0 \text{ if } s \in \mathcal{G}$$

$$J^*(s) = \min_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{C}(s,a,s') + J^*(s') \right]$$

Bellman Equations for MDP₂

- <S, A, Pr, R, s_{0} , γ >
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in S} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V^*(s') \right]$$

Bellman Equations for MDP₃

- $<S, A, Pr, G, s_0, T>$
- Define J*(s,t) {optimal cost} as the minimum expected cost to reach a goal from this state at tth timestep.
- J* should satisfy the following equation:

$$P^*(s,t) = 1 \text{ if } s \in \mathcal{G}$$

$$P^*(s,T) = 0 \text{ if } s \in \mathcal{G}$$

$$P^*(s,t) = \max_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a)P^*(s',t+1)$$

Bellman Backup

- Given an estimate of J* function (say J_n)
- Backup J_n function at state s
 - calculate a new estimate (J_{n+1}) :

$$Q_{n+1}(s,a) = \sum_{\substack{s' \in \mathcal{S} \\ J_{n+1}(s)}} Pr(s'|s,a) \left[\mathcal{C}(s,a,s') + J_n(s') \right]$$

$$J_{n+1}(s) = \min_{a \in Ap(s)} \left[Q_{n+1}(s,a) \right]$$

- Q_{n+1}(s,a) : value/cost of the strategy:
 - execute action a in s, execute π_n subsequently
 - $\pi_n = \operatorname{argmin}_{a \in Ap(s)} Q_n(s,a)$

Bellman Backup

Value iteration [Bellman'57]

assign an arbitrary assignment of J₀ to each state.

Comments

- Decision-theoretic Algorithm
- Dynamic Programming
- Fixed Point Computation
- Probabilistic version of Bellman-Ford Algorithm
 - for shortest path computation
 - MDP₁: Stochastic Shortest Path Problem
- $J_n \rightarrow J^*$ in the limit as $n \rightarrow \infty$
- ε -convergence : J_n function is within ε of J^*
 - works only when no state is a dead-end (J* is finite)
- Monotonicity
 - $J_0 \leq_p J^* \Rightarrow J_n \leq_p J^*$ (J_n monotonic from below)
 - $J_0 \ge_p J^* \Rightarrow J_n \ge_p J^*$ (J_n monotonic from above)
 - otherwise J_n non-monotonic

Policy Computation

$$\pi^*(s) = \underset{a \in Ap(s)}{\operatorname{argmin}} Q^*(s, a)$$

=
$$\underset{a \in Ap(s)}{\operatorname{argmin}} \sum_{s' \in S} \mathcal{P}r(s'|s, a) \left[\mathcal{C}(s, a, s') + J^*(s') \right]$$

Optimal policy is stationary and time-independent.

for infinite/indefinite horizon problems

Policy Evaluation

$$J_{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, \pi(s)) \left[\mathcal{C}(s, \pi(s), s') + J_{\pi}(s') \right]$$

A system of linear equations in |S| variables.

Changing the Search Space

Value Iteration

- Search in value space
- Compute the resulting policy

Policy Iteration

- Search in policy space
- Compute the resulting value

Policy iteration [Howard'60]

• assign an arbitrary assignment of π_0 to each state.

- searching in a finite (policy) space as opposed to uncountably infinite (value) space ⇒ convergence faster.
- all other properties follow!

Connection with Heuristic Search

regular graph

acyclic AND/OR graph

cyclic AND/OR graph

Connection with Heuristic Search

regular graph

soln:(shortest) path

A*

acyclic AND/OR graph

soln:(expected shortest) acyclic graph

AO* [Nilsson'71]

cyclic AND/OR graph

soln:(expected shortest) cyclic graph

LAO* [Hansen&Zil.'98]

All algorithms able to make effective use of reachability information!

LAO* [Hansen&Zilberstein'98]

- 1. add s₀ in the fringe and in greedy graph
- 2. repeat
 - expand a state on the fringe (in greedy graph)
 - initialize all new states by their heuristic value
 - perform value iteration for all expanded states
 - recompute the greedy graph
- 3. until greedy graph is free of fringe states
- 4. output the greedy graph as the final policy

add s_0 in the fringe and in greedy graph

expand a state on fringe in greedy graph

- initialise all new states by their heuristic values
- perform VI on expanded states

recompute the greedy graph

expand a state on the fringe initialise new states

WASHINGTON LAO* [Iteration 2] NICTA S₀ ? ? h h h perform VI compute greedy policy

LAO* [Iteration 3]

expand fringe state

WASHINGTON LAO* [Iteration 3] S₀ ? h h h perform VI

NICTA

recompute greedy graph

LAO* [Iteration 4]

Stops when all nodes in greedy graph have been expanded

Comments

- Dynamic Programming + Heuristic Search
- admissible heuristic ⇒ optimal policy
- expands only part of the reachable state space
- outputs a partial policy
 - one that is closed w.r.t. to \mathcal{P} r and s₀

Speedups

- expand all states in fringe at once
- perform policy iteration instead of value iteration
- perform partial value/policy iteration
- weighted heuristic: f = (1-w).g + w.h
- ADD based symbolic techniques (symbolic LAO*)

Real Time Dynamic Programming [Barto, Bradtke, Singh'95]

- Trial: simulate greedy policy starting from start state; perform Bellman backup on visited states
- RTDP: repeat Trials until cost function converges

Comments

Properties

• if all states are visited infinitely often then $J_n \rightarrow J^*$

Advantages

Anytime: more probable states explored quickly

Disadvantages

- complete convergence is slow!
- no termination condition

Labeled RTDP [Bonet&Geffner'03]

- Initialise J₀ with an admissible heuristic
 - \Rightarrow J_n monotonically increases
- Label a state as solved
 - if the J_n for that state has converged

both s and t get solved together

- Backpropagate 'solved' labeling
- Stop trials when they reach any solved state
- Terminate with s₀ is solved

Properties

- admissible $J_0 \Rightarrow$ optimal J^*
- heuristic-guided
 - explores a subset of reachable state space
- anytime
 - focusses attention on more probable states
- fast convergence
 - focusses attention on unconverged states
- terminates in finite time

Recent Advances: Bounded RTDP [McMahan, Likhachev & Gordon'05]

- Associate with each state
 - Lower bound (lb): for simulation
 - Upper bound (ub): for policy computation
 - gap(s) = ub(s) lb(s)
- Terminate trial when $gap(s) < \varepsilon$
- Bias sampling towards unconverged states
 - proportional to Pr(s'|s,a).gap(s')
- Perform backups in reverse order for current trajectory.

Recent Advances: Focused RTDP [Smith&Simmons'06]

Similar to Bounded RTDP except

- a more sophisticated definition of priority that combines gap and prob. of reaching the state
- adaptively increasing the max-trial length

Recent Advances: Learning DFS [Bonet&Geffner'06]

- Iterative Deepening A* equivalent for MDPs
- Find strongly connected components to check for a state being solved.

Other Advances

- Ordering the Bellman backups to maximise information flow.
 - [Wingate & Seppi'05]
 - [Dai & Hansen'07]
- Partition the state space and combine value iterations from different partitions.
 - [Wingate & Seppi'05]
 - [Dai & Goldsmith'07]
- External memory version of value iteration
 - [Edelkamp, Jabbar & Bonet'07]

Policy Gradient Approaches [Williams'92]

- direct policy search
 - parameterised policy Pr(a|s,w)
 - no value function
 - flexible memory requirements
- policy gradient
 - $J(w) = E_w[\sum_{t=0..\infty} \gamma^t c_t]$
 - gradient descent (wrt w)
 - reaches a local optimum
 - continuous/discrete spaces

Policy Gradient Algorithm

- $J(w) = E_w[\sum_{t=0..\infty} \gamma^t c_t]$ (failure prob., makespan, ...)
- minimise J by
 - computing gradient $\nabla J(\mathbf{w}) = \left[\frac{\partial J}{\partial \mathbf{w}_1}, \frac{\partial J}{\partial \mathbf{w}_2}, \dots, \frac{\partial J}{\partial \mathbf{w}_k}\right]$
 - stepping the parameters away $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \nabla J(\mathbf{w})$
- until convergence
- Gradient Estimate [Sutton et.al.'99, Baxter & Bartlett'01]
- Monte Carlo estimate from trace s₁, a₁, c₁, ..., s_T, a_T, C_T
 - $\mathbf{e}_{t+1} = \mathbf{e}_t + \nabla_{\mathbf{w}} \log \Pr(a_{t+1}|s_t, \mathbf{w}_t)$
 - $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \gamma^t \mathbf{C}_t \mathbf{e}_{t+1}$

Policy Gradient Approaches

- often used in reinforcement learning
 - partial observability
 - model free (*P*r(s'|s,a),
 *P*r(o|s) are unknown)

to learn a policy from observations and costs

LP Formulation of MDPs

maximise $\sum_{s \in S} \alpha(s) J^*(s)$

under constraints

- for $s \in \mathcal{G}$: $J^*(s) = 0$
- for every s, a: J*(s) ≤ ∑_{s'∈S} Pr(s'|a,s)[C(s,a,s') + J*(s')]

• α(s) > 0

Modeling Complex Problems

- Modeling time
 - continuous variable in the state space
 - discretisation issues
 - large state space
- Modeling concurrency
 - many actions may execute at once
 - large action space
- Modeling time and concurrency
 - large state and action space!!

References

- Simple statistical gradient following algorithms for connectionist reinforcement learning. R. J. Williams. Machine Learning, 1992.
- Learning to Act using Real-Time Dynamic Programming. Andrew G. Barto, Steven J. Bradtke, Satinder P. Singh. Artificial Intelligence, 1995.
- Policy Gradient Methods for Reinforcement Learning with Function Approximation. Richard S. Sutton, David A. McAllester, Satinder P. Singh, Yishay Mansour. NIPS 1999.
- Infinite-Horizon Policy-Gradient Estimation. Jonathan Baxter and Peter L. Bartlett. JAIR 2001.
- LAO*: A Heuristic Search Algorithm that Finds Solutions with Loops. E.A. Hansen and S. Zilberstein. Artificial Intelligence, 2001.
- Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming. Blai Bonet and Héctor Geffner. ICAPS 2003.

References

- Bounded Real-Time Dynamic Programming: RTDP with monotone upper bounds and performance guarantees. H. Brendan McMahan, Maxim Likhachev, and Geoffrey Gordon. ICML 2005.
- Learning Depth-First Search: A Unified Approach to Heuristic Search in Deterministic and Non-Deterministic Settings, and its application to MDPs. Blai Bonet and Héctor Geffner. ICAPS 2006.
- Focused Real-Time Dynamic Programming for MDPs: Squeezing More Out of a Heuristic, Trey Smith and Reid Simmons. AAAI 2006.
- Prioritization Methods for Accelerating MDP Solvers. David Wingate, Kevin Seppi. JMLR 2005.
- Topological Value Iteration Algorithm for Markov Decision Processes. Peng Dai, Judy Goldsmith. IJCAI 2007.
- Prioritizing Bellman Backups Without a Priority Queue. Peng Dai and Eric Hansen. ICAPS 2007.
- External Memory Value Iteration. Stefan Edelkamp, Shahid Jabbar and Blai Bonet. ICAPS 2007.

Probabilistic Temporal Planning

PART III: Durative Actions without Concurrency

Mausam David E. Smith Sylvie Thiébaux

Motivation

- Why are durative actions important?
 - Race against time: deadlines
 - Increase reward (single goal): time dependent reward
 - Increase reward (many non-absorbing goals)
 - oversubscription Planning
 - achieve as many goals as possible in the given time
- Why is uncertainty important?
 - durations could be uncertain
 - we may decide the next action based on the time taken by the previous ones.

Different Related Models

MDD - CMDD

	MDF < SMDF				
• MDP	TMDP < HMDP				
no explicit action durations					
• Semi-MDP	- discounting w/				
continuous/discrete action durations	action durations				
discounted/undiscounted					
Time-dependent MDP	<u>undiscounted</u>				
discrete MDP + one continuous variable – time	deadline problems.				
undiscounted					
Continuous MDP					
MDP with only continuous variables					
Hybrid MDP					
MDP with many discrete and continuous variables					

Undiscounted/Discrete-time/No-deadline

- Embed the duration information in \mathcal{C} or \mathcal{R}
- Minimise make-span initialise C by its duration

$$J^{*}(s) = 0 \text{ if } s \in \mathcal{G}$$

$$J^{*}(s) = \min_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{C}(s,a,s') + J^{*}(s') \right]$$

$$J^*(s) = 0 \text{ if } s \in \mathcal{G}$$

$$J^*(s) = \min_{a \in Ap(s)} \sum_{s', N} \mathcal{P}r(s', N|s, a) \left[N + J^*(s') \right]$$

Discounted/Discrete-time/No-deadline

• A single γ won't describe the dynamics accurately!

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in S} \mathcal{P}r(\mathcal{M}(s, a)) \left[\mathcal{R}(s, a, s') + \mathcal{M}^*(s') \right]$$

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s',N} \mathcal{P}r(s',N|s,a) \left[\mathcal{R}(s,a,s') + \gamma^N V^*(s') \right]$$

Semi-MDP [Howard'71]

Time-dependent MDP [Boyan and Littman'00]

WASHINGTO Undiscounted/Continuous-time/Deadline NICTA Summation is now integral! $V^{*}(s,t) = \max_{a \in Ap(s)} \sum_{s',N} \mathcal{P}r(s',N|s,a) \left[\mathcal{R}(s,t,a,s',t+N) + V^{*}(s',t+N) \right]$ $V^{*}(s,t) = \max_{a \in Ap(s)} \sum_{s'} \int_{0}^{\infty} \mathcal{P}r(s',N|s,a) \Big[\mathcal{R}(s,t,a,s',t+N) + V^{*}(s',t+N) \Big] dN$ $\max_{a \in Ap(s)} \sum_{s'} \mathcal{P}r(s'|s,a) \int_0^\infty \mathcal{P}r(N|s,a,s') \left[\mathcal{R}(s,t,a,s',t+N) + V^*(s',t+N) \right] dN$

Discounted/Continuous-time/No-deadline NICTA $V^{*}(s) = \max_{a \in Ap(s)} \sum_{s'} \int_{0}^{\infty} \mathcal{P}r(s', N|s, a) \left[\mathcal{R}(s, a, s', N) + \gamma^{N} V^{*}(s') \right] dN$ = $\max_{a \in Ap(s)} \sum_{s'} \mathcal{P}r(s'|s, q) \int_{0}^{\infty} \mathcal{P}r(N|s, a, s') \left[\mathcal{R}(s, a, s', N) + \gamma^{N} V^{*}(s') \right] dN$ convolutions

WASHINGTON

Algorithms

- All previous algorithms extend
 - with new Bellman update rules
 - e.g. value iteration, policy iteration, linear prog.
- Computational/representational challenges
 - efficient represent of continuous value functions
 - efficient computation of convolutions
- Algorithm extensions
 - reachability analysis in continuous space?

Representation of Continuous Functions

- flat discretisation
 - costly!
- piecewise constant
 - models deadline problems
- piecewise linear
 - models minimise make-span problems
- phase type distributions
 - approximates arbitrary probability density functions
- piecewise gamma function

Result of convolutions

probability density function

value function

		discrete	constant	linear
	discrete	discrete	constant	linear
	constant	constant	linear	quadratic
	linear	linear	quadratic	cubic

Convolutions

discrete-discrete

constant-discrete [Feng et.al.'04]

Analytical solution to convolutions [Marecki, Koenig, Tambe'07]

- probability function approximated one time
 - as phase-type distribution $p(N) = \lambda e^{-\lambda N}$
- value function is piecewise gamma gamma fn. = $c - e^{-\lambda l} \left(a_0 + a_1(\lambda t) + \dots + \frac{a_n(\lambda t)^n}{n!} \right)$
- convolutions can be computed analytically!
Hybrid AO* [Mausam et.al'05]

- search in discrete state space.
- associate piecewise constant value functions with each discrete node.
- employ sophisticated continuous reachability.

References

- Markov Decision Processes: Discrete Stochastic Dynamic Programming. Martin Puterman. John Wiley and Sons 1994.
- Dynamic Programming and Optimal Control. Dmitri Bertsekas. Athena Scientific 1995.
- Exact Solutions to Time-Dependent MDPs. Justin Boyan and Micheal Littman. NIPS 2000.
- Dynamic Programming for Structured Continuous Markov Decision Problems. Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington. UAI 2004.
- Lazy approximation for solving continuous finite-horizon MDPs. Lihong Li and Michael L. Littman. AAAI 2005.
- Planning with Continuous Resources in Stochastic Domains. Mausam, Emmanuelle Benazara, Ronen Brafman, Nicolas Meuleau, Eric Hansen. IJCAI 2005.
- A Fast Analytical Algorithm for Solving Markov Decision Processes with Real-Valued Resources. J. Marecki, Sven Koenig and Milind Tambe. IJCAI 2007.

Probabilistic Temporal Planning

PART IV: Concurrency w/o Durative Actions

Mausam, David E. Smith, Sylvie Thiébaux

Stochastic Planning

Plan for Part IV

- Concurrent MDP (CoMDP) Model
- Value-Based Algorithms
- Planning Graph Approaches
- Policy Gradient Approaches
- Related Models

Concurrent MDPs (CoMDPs)

- formally introduced by Mausam & Weld [AAAI-04]
- MDP that allows simultaneous execution of action sets
- \neq semi-MDPs where time is explicit but concurrency is lacking
- cost of an action set accounts for time and resources
- notion of concurrency (mutex), generalising *independence* (deterministic actions *a* and *b* are independent iff *a*; $b \equiv b$; *a*):

restrictive: all executions of the actions are independent permissive: some execution is independent; requires failure states

Concrete Independence Example

Probabilistic STRIPS:

- each action has a set of preconditions and a probability distribution over a set of outcomes
- each outcome has sets of positive and negative effects
- an outcome set is consistent when no outcome deletes a positive effect or the precondition of another('s action)
- a set of actions is independent when:

restrictive: all joint outcomes of the actions are consistent permissive: at least one joint outcome is consistent

Concurrent MDPs (CoMDPs)

MDP equivalent to a CoMDP

A CoMDP $\langle S, A, \mathcal{P}r, \mathcal{C}, \mathcal{G}, \mathbf{s}_0 \rangle$ translates into the MDP $\langle S, A_{||}, \mathcal{P}r_{||}, \mathcal{C}_{||}, \mathcal{G}, \mathbf{s}_0 \rangle$:

- $A_{||}(s)$: mutex-free subsets of actions $A = \{a_1, \ldots, a_k\} \subseteq A(s)$
- due to independence

$$\mathcal{P}r_{||}(s' \mid s, A) = \sum_{s_1 \in S} \sum_{s_2 \in S} \dots \sum_{s_k \in S} \mathcal{P}r(s_1 \mid s, a_1) \mathcal{P}r(s_2 \mid s_1, a_2) \dots \mathcal{P}r(s' \mid s_{k-1}, a_k)$$

•
$$\mathcal{C}_{||}(A) = \sum_{i=1}^{k} \operatorname{res}(a_i) + \max_{i=1}^{k} \operatorname{dur}(a_i)$$

- Concurrent MDP (CoMDP) Model
- Value-Based Algorithms
- Planning Graph Approaches
- Policy Gradient Approaches
- Related Models

Value-Based Algorithms

compute a proper optimal policy for the CoMDP
dynamic programming, e.g., RTDP applies:

$$J_{||n}(s) = \min_{A \in \mathcal{A}_{||}(s)} Q_{||n}(s, A)$$

- need to mitigate the exponential blowup in $\mathcal{A}_{||}$
 - 1. pruning Bellman backups
 - 2. sampling Bellman backups

Pruning Bellman Backups

Theorem (Mausam & Weld AAAI-04)

Let U_n be an upper bound on $J_{||n}(s)$. If

$$U_n < \max_{i=1}^k Q_{||n}(s, \{a_i\}) + C_{||}(A) - \sum_{i=1}^k C_{||}(\{a_i\})$$

then combination A is not optimal for state s in this iteration.

Combo-skipping pruning rule:

- 1. compute $Q_{||n}(s, \{a\})$ for all applicable single actions
- 2. set $U_n \leftarrow Q_{||n}(s, A_{n-1}^*)$, using the optimal combination A_{n-1}^* at the previous iteration
- 3. apply the theorem

Pruning Bellman Backups

Theorem (Bertsekas (1995))

Let L be a lower bound on $Q_{||}^*(s, A)$ and U be an upper bound on $J_{||}^*(s)$. If L > U then A is not optimal for s.

Combo-elimination pruning rule:

- 1. initialise RTDP estimates with an admissible heuristic; $Q_{||n}(s, A)$ remain lower bounds
- 2. set U to the optimal cost of the serial MDP
- 3. apply the theorem

combo skipping: cheap but short-term benefits (try it first) combo elimination: expensive but pruning is definitive

Backup random combinations

- bias towards action sets with previously best Q-values
- bias towards action sets built from best individual actions

Loss of optimality; $J_{||n|}(s)$ might not monotonically increase

- do full backup when convergence is asserted for a state
- use (scaled down) result as heuristic to pruned RTDP

- Concurrent MDP (CoMDP) Model
- Value-Based Algorithms
- Planning Graph Approaches
- Policy Gradient Approaches
- Related Models

Motivated by the need to compress the state space

The planning graph data structure facilitates this by:

- exploiting a probabilistic STRIPS representation
- using problem relaxations to find cost lower bounds
- enabling goal-regression

History

- Graphplan [Blum & First IJCAI-95]
 - classical, concurrent, optimal
 - uses the graph as a heuristic and for goal regression search
- TGraphplan [Blum & Langford ECP-99]
 - replanner, concurrent, non-optimal
 - returns the most-likely trajectory to the goal
- PGraphplan [Blum & Langford ECP-99]
 - probabilistic contingent, non-concurrent, optimal
 - probabilistic graph yields a heuristic for DP
- Paragraph [Little & Thiébaux ICAPS-06]
 - probabilistic contingent, concurrent, optimal
 - extends the full Graphplan framework

Paragraph

- solves concurrent probabilistic STRIPS planning problems
- finds a concurrent contingency plan with smallest failure probability within a time horizon
- \Rightarrow goal-directed, finite horizon, prob. maximisation CoMDP
 - has a cyclic version

Paragraph

- Builds the probabilistic planning graph
 - until $G \subseteq P_i$ and G is mutex-free
- Attempts plan extraction
 - use goal regression search to find all trajectories that Graphplan would find
 - some of those will link naturally
 - additionally link other trajectories using forward simulation
- Alternates graph expansion and plan extraction
 - until the time horizon is exceeded or a plan of cost 0 is found (or goal unreachability can be proven)

• action, propositions, and outcome levels and mutexes

P0 A1 O1 P1

Goal-Regression Search (Probabilistic)

- nodes: goal set, action sets, world states set, cost, (time)
- arcs: joint outcome, (world state for conditional arcs)
- requires extra linking via forward simulation

Why do we need extra linking?

• $I = \{p1, p2\}, G = \{pg\}$

• optimal plan: execute one action; if it fails execute the other

- ends with forward simulation and backward cost update
- each node/world state pair yields a potential plan step
- select pairs and action sets with optimal cost

Cost (prob. failure) of a node/world state pair $C(n, s_n) = \begin{cases} 0 & \text{if } n \text{ is a goal node} \\ \min_{A \in \operatorname{act}(n)} \sum_{O \in \operatorname{Out}(A)} \Pr(O) \times \min_{n' \in \operatorname{SuCC}(n, O, s_n)} C(n', \operatorname{res}(O, s_n)) \end{cases}$

- Concurrent MDP (CoMDP) Model
- Value-Based Algorithms
- Planning Graph Approaches
- Policy Gradient Approaches
- Related Models

Policy Gradient Approaches

Minimise the expected cost of a parameterised policy by gradient descent in the parameters space.

Factored policy gradient

- need to mitigate the blowup caused by CoMDPs
- factorise the CoMDP policy into individual action policies [Peshkin et. al UAI-00, Aberdeen & Buffet ICAPS-07]

Factored policy gradient

Theorem (Peshkin *et. al*, UAI-00)

- For factored policies, factored policy gradient is equivalent to joint policy gradient.
- Every strict Nash equilibrium is a local optimum for policy gradient in the space of parameters of a factored policy, but not vice versa.

FPG planner [Aberdeen & Buffet, 2007]

- did well in the probabilistic planning competition
- has a more efficient parallel version
- cost function favors reaching the goal as soon as possible
- individual policies are linear networks with prob. function:

$$\Pr(a_{it} = yes \mid \mathbf{o}_t, \mathbf{w}_i) = \frac{1}{\exp(\mathbf{o}_t^{\top} \mathbf{w}_i) + 1}$$

- Concurrent MDP (CoMDP) Model
- Value-Based Algorithms
- Planning Graph Approaches
- Policy Gradient Approaches
- Related Models

Related Models

• range of decentralised MDP models [Goldman & Zilberstein AIJ-04]

Composite MDPs [Singh & Cohn NIPS-97]

- *n* component MDPs $\langle S_i, A_i, \mathcal{P}r_i, \mathcal{R}_i, s_{0i} \rangle$
- composite MDP $\langle S, A, Pr, R, s_0 \rangle$ satisfies:

•
$$S = \prod_{i=1}^{n} S_i$$
, $s_0 = \prod_{i=1}^{n} s_{0i}$

- $\mathcal{A}(s) \subseteq \prod_{i=1}^{n} \mathcal{A}_{i}(s)$ (constraints on simultaneous actions)
- $\mathcal{P}r(s' \mid a, s) = \prod_{i=1}^{n} \mathcal{P}r_i(s'_i \mid a_i, s_i)$ (transition independence)
- $\mathcal{R}(s, a, s') = \sum_{i=1}^{n} \mathcal{R}_i(s, a, s')$ (additive utility independence)
- useful for resource allocation [Meuleau et. al UAI-98]
- opt. solutions to component MDPs yield bounds for pruning composite MDPs (as in combo-elimination) [Singh & Cohn NIPS-97]
- composite value function can be approximated as a linear combination of component value functions [Guestrin et. al NIPS-01]

References

- How to Dynamically Merge Markov Decision Processes, S. Singh and D. Cohn. NIPS-97.
- Solving Very Large Weakly Coupled Markov Decision Processes, N. Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin, L. Kaelbling, and T. Dean. UAI-98.
- Learning to Cooperate via Policy Search, L. Peshkin, K.-E. Kim, N. Meuleau, L. Kaelbling. UAI-00.
- Multi-Agent Planning with Factored MDPs, C. Guestrin, D Koller, and R. Parr. NIPS-01.
- Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis, C.V. Goldman and S. Zilberstein. JAIR, 2004.
- Solving Concurrent Markov Decision Processes, Mausam and D. Weld. AAAI-04.
- Concurrent Probabilistic Planning in the Graphplan Framework, I. Little and S. Thiébaux. ICAPS-06.
- Concurrent Probabilistic Temporal Planning with Policy-Gradients, D. Aberdeen and O. Buffet. ICAPS-07.

Probabilistic Temporal Planning

PART V: Durative Actions w/ Concurrency

Mausam, David E. Smith, Sylvie Thiébaux

Stochastic Planning

- Concurrent Probabilistic Temporal Planning (CPTP)
- CoMDP Model
- Value-Based Algorithms
- AND-OR Search Formulation
- Policy Gradient Approach
- Related Models

Concurrent Probabilistic Temporal Planning

• concurrency, time

- durative actions
- timed effects
- concurrency

uncertainty

- about the effects
- their timing
- the action duration

and
Actions in CPTP

WASHINGT

Plans in CPTP

WASHINGTON

UNIVERSITY

Decision Points in CPTP

Definitions

Pivot: Time point at which an event might take place (effect, condition being needed). **Happening:** Time point at which an event actually takes place.

Completeness/Optimality Results [Mausam & Weld, AAAI-06]

- With TGP actions, decision points may be restricted to pivots.
- With TGP actions and deterministic durations, decision points may be restricted to happenings.
- Conjecture: idem with effect-independent durations and monotonic continuations.
- In general, restriction to pivots may cause incompleteness.

- Concurrent Probabilistic Temporal Planning (CPTP)
- CoMDP Model
- Value-Based Algorithms
- AND-OR Search Formulation
- Policy Gradient Approach
- Related Models

CoMDP in Interwoven Epoch State Space

Why Interwoven?

The traditional aligned CoMDP model is suboptimal for CPTP

CoMDP in Interwoven Epoch State Space

- **CoMDP state** contains:
 - current world state w
 - event queue q, records advancement of executing actions
 - inspired from SAPA, TLPIan, HSP, etc
- Event queue contains pairs:
 - event *e* (simple effect, prob effect, condition check ...)
 - distribution for the duration remaining until *e* happens

• Queue for TGP actions with fixed durations: $q = \{ \langle a, \delta \rangle \mid a \text{ is executing and will terminate in } \delta \text{ time units} \}$

CoMDP in Interwoven Epoch State Space

- A(s) : as in standard CoMDP, but includes the empty set (wait). Need to check interference with executing actions in the queue.
- *Pr*: tedious to formalise (even for restricted cases), see [Mausam & Weld, JAIR-07]. Considers all possible states at all pivots between the min. time an event could happen and the max. time one is guaranteed to happen. → motivates sampling!

• C(s, A, s'): time elapsed between s and s'.

- Concurrent Probabilistic Temporal Planning (CPTP)
- CoMDP Model
- Value-Based Algorithms
- AND-OR Search Formulation
- Policy Gradient Approach
- Related Models

Value-Based Algorithms

- DUR family of planners [Mausam & Weld ICAPS-05, JAIR-07]
- assumptions (to start with):
 - TGP actions with fixed integer durations
 - \Rightarrow decision points are happenings
 - \Rightarrow event queue records remaining duration for each action
- sampled RTDP applies
- to cope with interwoven state space blow-up:
- heuristics
- 2 hybridisation

Maximum Concurrency Heuristic

- divide the optimal serial MDP cost by
- max nb. actions executable concurrently in the domain

Eager Effects Heuristic

- effects realised when the fastest started actions ends
- time advances accordingly
- CoMDP state:
 - \langle world state after effects, duration until last executing action ends \rangle
- relaxed problem:
- get information about effects ahead of time
- mutex action combinations are allowed (lost track of time)

Hybridisation.

Hybrid interwoven/aligned policy for probable/unprobable states

- run RTDP interwoven for a number of trials \rightarrow yields lower bound $L = J(s_0)$
- In aligned on low frequency states
- Solution 3 Clean up and evaluate hybrid policy π → yields upper bound $u = J_{\pi}(s_0)$
- repeat until performance ratio *r* reached $\left(\frac{(U-L)}{L} < r\right)$

Extensions of the DUR Planner

 Δ DUR [Mausam & Weld, AAAI-06, JAIR-07] extends DUR to TGP actions with stochastic durations.

- MC and hybrid: apply with minor variations.
- \triangle DUR_{*exp*}, expected duration planner:
 - effect-independent durations & monotonic continuations
 - assigns an action its (fixed) mean duration
 - use DUR to generate policy and execute:
 - if action terminates early, extend policy from current state
 - if action is late to terminate, update mean, then extend.
- \triangle DUR_{*arch*}, archetypal duration planner:
 - extends ΔDUR_{exp} to multimodal distributions
 - probabilistic outcomes with different mean durations

- Concurrent Probabilistic Temporal Planning (CPTP)
- CoMDP Model
- Value-Based Algorithms
- AND-OR Search Formulation
- Policy Gradient Approach
- Related Models

Prottle [Little et. al AAAI-05]

- forward search planner, solves CPTP over finite horizon
- not extremely different from DUR:
 - finer characterisation of the search space for CPTP
 - slightly different search algorithm (lower + upper bound)
 - planning graph heuristics
- o current implementation:
 - handles general CPTP actions with fixed durations on arcs
 - incomplete: only considers pivots
 - takes cost to be the probability of failure

Prottle's Search Space

Interwoven epochs and-or graph

- **and-or graph:** and = chance, or = choice
- **node purposes:** action selection or time advancement
- **node contains:** current state, current time, event queue

Prottle's Algorithm

Trial based with lower and upper bound (BRTDP and FRTDP are similar). Selection strategy quickly gets a likely path to the goal and robustifies known paths thereafter.

Prottle's Algorithm (details)

node lower/upper cost bounds

- cost = probability of failure
- bounds initialised using heuristics

bound update rules

$$\begin{array}{lll} L_{\text{choice}}(n) & := & \max(L(n), \min_{n' \in S(n)} L(n')) \\ U_{\text{choice}}(n) & := & \min(U(n), \min_{n' \in S(n)} U(n')) \\ L_{\text{chance}}(n) & := & \max(L(n), \sum_{n' \in S(n)} \Pr(n') L(n')) \\ U_{\text{chance}}(n) & := & \min(U(n), \sum_{n' \in S(n)} \Pr(n') U(n')) \end{array}$$

• cost converges when $U(n) - L(n) \le \epsilon$

- node labels: solved, failure (solved with cost 1), unsolved
- node selection: minimises P(n)U(n), uses P(n)L(n) to break ties

Prottle's Heuristic

Based on a probabilistic temporal planning graph

- Concurrent Probabilistic Temporal Planning (CPTP)
- CoMDP Model
- Value-Based Algorithms
- AND-OR Search Formulation
- Policy Gradient Approach
- Related Models

Policy Gradient Approach

WASHINGTON

Minimises the expected cost of a factored parameterised policy by factored gradient descent in the parameters space.

Factored Policy Gradient for CPTP

WASHINGTON

FPG handles continuous time dist. [Aberdeen & Buffet ICAPS-07].

- simulator manages an event queue
- cost function takes durations into account

- Concurrent Probabilistic Temporal Planning (CPTP)
- CoMDP Model
- Value-Based Algorithms
- AND-OR Search Formulation
- Policy Gradient Approach
- Related Models

Related Models

Generalised Semi-MDP (GSMDP)[Younes & Simmons, AAAI-04]

- set of states S
- set of events *E*; each event *e* is associated with:
 - $\Phi_e(s)$: enabling condition
 - $G_e(t)$: probability that *e* remains enabled before it triggers
 - Pr(s' | e, s) transition probability when *e* triggers in *s*
- actions $A \subseteq E$ are controllable events

• rewards:

- lump sum reward k(s, e, s') for transitions
- continuous reward rate c(a, s) for $a \in A$ being enabled in s
- disc. inf. horz. model; reward at time *t* counts as $e^{-\alpha t}$
- o policy: maps timed histories to set of enabled actions

Generalised Semi-Markov Decision Process

Parallel (asynchronous) composition of SMDPs is a GSMDP: distribution of an enabled event may depend on history.

Generalised Semi-Markov Decision Process

Specificities:

- synchronous systems
- discrete/continuous time

Solution methods:

- approximate distributions with phase-type distributions and solve the resulting MDP [younes & simmons AAAI-04]
- \rightarrow to know more: attend Hakan's Dissertation Award talk!
- incremental generate test (statistical sampling) debug [younes & simmons ICAPS-04]
- \rightarrow covered by David

References

- Policy Generation for Continuous Time Domains with Concurrency, H. Younes and R. Simmons. ICAPS-04.
- Solving Generalized Semi-Markov Processes using Continuous Phase-Type Distributions, H. Younes and R. Simmons. AAAI-04.
- Prottle: A Probabilistic Temporal Planner, I. Little, D. Aberdeen, and S. Thiébaux. AAAI-05.
- Concurrent Probabilistic Temporal Planning, Mausam and D. Weld. ICAPS-05.
- Probabilistic Temporal Planning with Uncertain Durations. Mausam and D. Weld. AAAI-06
- Concurrent Probabilistic Temporal Planning with Policy-Gradients, D. Aberdeen and O. Buffet. ICAPS-07.
- Planning with Durative Actions in Uncertain Domains, Mausam and D. Weld. JAIR, to appear, 2007.

Probabilistic Temporal Planning

PART 6: Practical Considerations

Incremental approaches When is contingency planning really needed ? Combining contingency planning & replanning Applications

Problem Dimensions

Full vs. Partial satisfaction

Problem Dimensions

What does "nominal" mean?

Collect

Drive (30, 52)

What does "nominal" mean?

Picture

Drive (30, 52)

Incremental approaches JIC ICP Tempastic When is contingency planning needed ? Combining contingency planning & replanning Applications

Incremental Approaches

Differences

Incremental approaches JIC ICP Tempastic When is contingency planning needed ? Combining contingency planning & replanning Applications

Just in Case (JIC) Scheduling

Ref: Drummond, Bresina, & Swanson, AAAI-94

Ref: Drummond, Bresina, & Swanson, AAAI-94

Limits of JIC Heuristic

Incremental approaches JIC ICP Tempastic When is contingency planning needed ? Combining contingency planning & replanning Applications

Back-Propagate Value Tables

WASHINGTON

Simple Back-Propagation

$$V(r') = \int_{0}^{\infty} P_{c}(r) V(r'-r) dr$$

Conjunctions

Estimating Branch Value

Expected Branch Gain

Generating the Branch

Evaluating the Branch

Incremental approaches JIC ICP Tempastic When is contingency planning needed ? Combining contingency planning & replanning Applications

Tempastic

Policy Generation

Policy Tree

Policy Debugging Details

Event values:

 $V(e_1) = 2 \cdot (V(s_1) - V(s_0)) = -1.284$ $V(e_2) = (V(s_2) - V(s_1)) + (V(s_2) - V(s_4)) = -0.245$ $V(e_3) = V(s_3) - V(s_0) = +1.213$ $V(e_4) = V(s_4) - V(s_1) = -0.045$ $V(e_4) = V(s_4) - V(s_1) = -0.045$

Markov chain:

State values: $V(s_0) = -0.213$ $V(s_1) = -0.855$ $V(s_2) = -1$ $V(s_3) = +1$ $V(s_4) = -0.9$

Revised Policy Tree

Tempastic Summary

Advantages & Drawbacks

Advantages

Tractability

Anytime

Simple plans

Drawbacks

Sacrifice optimality

seed plan

repairs

Thrashing

Flaw Selection

particularly for oversubscription

Incremental approaches When is contingency planning really needed? Combining contingency planning & replanning Applications

Alternative Approaches

Replanning

Improving robustness

Conservatism Flexibility Conformance Conditionality

Alternative Approaches

Replanning

Improving robustness

Conservatism Flexibility Conformance Conditionality

Not mutually exclusive

Which one when?

Requirements & Drawbacks

Approach	Requirements	Drawbacks
Replanning	Adequate time, computational power Time not critical resource No dead ends	Lost opportunity Non-optimal Failure
Improving robustness		
Conservatism	Resource usage	Lost opportunity
Flexibility	Limited uncertainty Sophisticated rep., planner, exec	Weak Computational
Conformant	Limited uncertainty Powerful actions	Weak Computational
Contingency	Model outcomes # of outcomes small	Computational

When?

Approach	When	ISS Examples
Replanning	Minor annoyances reversible outcomes low penalty Rich opportunities Highly stochastic	Misplaced supplies Loading, storage Job jar Obstacle avoidance
Improving robustness		
Conservatism	Critical resource	O ₂ , H ₂ O, food, power
Flexibility	Duration uncertainty Event time uncertainty	Daily tasks Communication
Conformant	Simple forcing actions	Computer reset
Contingency	Only Critical situations	Power inverter failure Pressure leak Fire

\start{soapbox}

Considered within larger context replanning Different emphasis unrecoverable outcomes (not just high probability/low value outcomes)

Considered within larger context replanning Different emphasis unrecoverable outcomes (not just high probability/low value outcomes)

- 1. Don't care about having a complete policy
- 2. Policy must cover critical outcomes

\end{soapbox}

Incremental approaches When is contingency planning really needed ? Combining contingency planning & replanning Applications

Ref: Foss, Onder & Smith, ICAPS-07 Wkshp

Seed Plan Generation

Split discrete outcomes Expectations Assign costs Invoke LPG-TD

Unrecoverable Outcomes

NICTA

WASHINGTON **Execution** NICTA Α .6 02 Generate high probability -log(.4 deterministic seed plan 0₁ Α -log(.6) ► O₂ Α limited horizon Evaluate goal Identify & repair $(\mathbf{1})$ reachability in PG unrecoverable outcomes successful 2 successful Create new action ·· 🕨 G' Forcing goal R Execute next step **Regress conditions** 3 Invoke LPG-TD unexpected outcome Replan from current state

Unplanned Outcomes

WASHINGTON

Main Points

Ref: Foss, Onder & Smith, ICAPS-07 Wkshp

Incremental approaches	
When is contingency planning really needed ?	
Combining contingency planning & replanning	
Applications	
Military air campaign planning	[Meuleau et al AAAI-98]
Military operations planning	[Aberdeen et al ICAPS-04]
Rover planning	[Pedersen et al IEEEaero-05]
	[Meuleau et al AAAI-04 Wkshp]

Military Air Campaign Planning

[Meuleau et al AAAI-98]

Military Operations Planning

[Aberdeen et al ICAPS-04]

Customer: Australian Defence Science & Technology Organisation

Problem:

set of military objectives (propositions)

tasks (durative actions) make propositions true/false

objective - achieve goals

minimize failure, makespan, resource cost

Concurrency (8) Durative actions Discrete outcomes

Approach

LRTDP

admissible heuristics – probability, makespan, resource usage pruning of states not recently visited (LRU)

Results

synthetic problems (85) & military scenarios (2) biggest: 41 tasks, 51 facts, 19 resource types 10 minutes

Rover Planning

[Pedersen et al IEEEaero-05]

Customer: NASA

Problem:

set of science goals w/utilities, time constraints time & energy limitations duration & resource usage uncertain (driving) objective - maximize scientific reward

Approach

ICP w/EUROPA planner heuristics branch selection – utility drop goal selection – orienteering

Results

simulator problems w/upto 20 objectives K9 rover - small problems (5 objectives) Durative actions Continuous outcomes Oversubscription Minor concurrency

Planner Architecture

Contingency Plan

[Meuleau et al AAAI-04 Wkshp]

References – Incremental Approaches

Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and Washington, R. Incremental contingency planning. *ICAPS-03 Wkshp on Planning under Uncertainty and Incomplete Information*.

Drummond, M.; Bresina, J.; and Swanson, K. Just In-Case scheduling. AAAI-94.

Foss, J., and Onder, N. A hill-climbing approach to planning with temporal uncertainty. *FLAIRS-06*.

Foss, J.; Onder, N.; and Smith, D. Preventing unrecoverable failures through precautionary planning. *ICAPS-07 Wkshp on Moving Planning and Scheduling Systems into the Real World*.

Long, D., and Fox, M. Singe-trajectory opportunistic planning under uncertainty. 2002 UK Planning and Scheduling SIG.

Younes, H., and Simmons, R. Policy generation for continuous-time stochastic domains with concurrency. *ICAPS-04*.

Aberdeen, D.; Thiébaux, S.; and Zhang, L. Decision theoretic military operations planning. *ICAPS-04*.

Meuleau, N.; Dearden, R.; and Washington, R. Scaling up decision theoretic planning to planetary rover problems. *AAAI-04 Workshop on Learning and Planning in Markov Processes: Advances and Challenges*.

Meuleau, N.; Hauskrecht, M.; Kim, K.; Peshkin, L.; Kaelbling, L.; Dean, T.; and Boutilier, C. 1998. Solving very large weakly coupled Markov Decision Processes. *AAAI-98*.

Pedersen, L.; D.Smith; Dean, M.; Sargent, R.; Kunz, C.; Lees, D.; and Rajagopalan, S. Mission planning and target tracking for autonomous instrument placement. *2005 IEEE Aerospace Conf.*