
Probabilistic Temporal Planning

PART I: The Problem
Mausam

David E. Smith
Sylvie Thiébaux

Drive (-1)Dig(5)Visual servo (.2, -.15) NIR

K9

Motivation

window

[10 ,14:30]

power power

Drive (-1)Dig(5)Visual servo (.2, -.15) NIRX X XX
?

Discrete failures
Tracking failure
Instrument placement failure
Hardware faults and failures

Time & Energy
Wheel slippage
Obstacle avoidance
Feature tracking

Reality Bites

Replanning processing power
safety
lost opportunities
dead ends

Improving robustness
Conservatism wasteful
Flexibility useful but limited
Conformance difficult & limited
Conditionality very difficult

Alternative Approaches

Technical Challenges

Durative actions

Concurrency

Continuous resources

Time constraints and resource bounds

Oversubscription
G1, G2, G3, G4, …
V1, V2, V3, V4, …

Energy Storage

Visual servo (.2, -.15)

Warmup NIR

Lo res Rock finder NIR

Comm.

[10 ,14:30]

NIR

Problem Dimensions

What action
next?

Percepts Actions

Environment

Static vs. Dynamic

Full vs. Partial satisfaction

Fully
vs.

 Partially
Observable

Perfect
vs.

Noisy

Deterministic
vs.

 Stochastic

Instantaneous
vs.

 Durative

Sequential
vs.

Concurrent

Discrete
vs.

 Continuous
Outcomes

Predictable vs. Unpredictable

World:
Static ✔

Actions:
Durative ✔

Concurrency ✔

Stochastic ✔

Discrete Outcomes ✖

Complete model ✔

Percepts:
Fully observable ✔

Perfect ✔

Free ✔

Objective:
Goals ✖

Assumptions

Probabilistic POCL Approaches

PPDDL-like model of action
no concurrency
no time
no resources

Discrete action outcomes

C-Buridan
DTPOP
Mahinur
Probapop

Fixable
but:
 lack good heuristic guidance
 no guarantees of optimality

A

O1: p1, p2, ...

O2: q1, q2, ...

O3: r1, r2, ...

.7

.2

.1

O4: s1, s2, ...

O5: t1, t2, ...

.4

.6

c 1,
c 2,

...

d
1 , d

2 , ...

1. Introduction
2. Basics of probabilistic planning (Mausam)

3. Durative actions w/o concurrency (Mausam)

4. Concurrency w/o durative actions (Sylvie)

5. Durative actions w/concurrency (Sylvie)

6. Practical considerations

Outline

References
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and Washington,
R. Planning under continuous time and resource uncertainty: A challenge for AI.
UAI-02.
Draper, D.; Hanks, S.; and Weld, D. Probabilistic planning with information
gathering and contingent execution. AIPS-94.

Onder, N., and Pollack, M. Conditional, probabilistic planning: A unifying algorithm
and effective search control mechanisms. AAAI-99.
Onder, N.; Whelan, G. C.; and Li, L. Engineering a conformant probabilistic planner.
JAIR 25.

Peot, M. Decision-Theoretic Planning. Ph.D. Dissertation, Dept of Engineering
Economic Systems, Stanford University, 1998.

Probabilistic Temporal Planning

PART II: Introduction to Probabilistic Planning Algorithms

Mausam

David E. Smith

Sylvie Thiébaux

Planning

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Full vs. Partial satisfaction

Fully
vs.

Partially
Observable

Perfect
vs.

Noisy

Deterministic
vs.

Stochastic

Instantaneous
vs.

Durative

Sequential
vs.

Concurrent

Discrete
vs.

Continuous
Outcomes

Predictable vs. Unpredictable

Classical Planning

What action

next?

Percepts Actions

Environment

Static

Full

Fully
Observable

Perfect

Predictable

Instantaneous

Sequential

Discrete

Deterministic

Stochastic Planning

What action

next?

Percepts Actions

Environment

Static

Full

Fully
Observable

Perfect

Stochastic

Instantaneous

Sequential

Unpredictable

Discrete

Markov Decision Process (MDP)

S: A set of states

A: A set of actions

P transition model

C cost model

G: set of goals

s0: start state

: discount factor

R(reward model

factored
Factored MDP

C(a) / C(s,a)

R(s) / R(s,a)

absorbing/
non-absorbing

Objective of a Fully Observable MDP

Find a policy : S A

which optimises

minimises expected cost to reach a goal

maximises expected reward

maximises expected (reward-cost)

given a ____ horizon

finite

infinite

indefinite

assuming full observability

discounted
or

undiscount.

Role of Discount Factor ()

Keep the total reward/total cost finite

useful for infinite horizon problems

sometimes indefinite horizon: if there are deadends

Intuition (economics):

Money today is worth more than money tomorrow.

Total reward: r1 + r2 + 2r3

Total cost: c1 + c2 + 2c3

Examples of MDPs

Goal-directed, Indefinite Horizon, Cost Minimisation MDP

<S, A, Pr, C, G, s0>

Most often studied in planning community

Infinite Horizon, Discounted Reward Maximisation MDP

<S, A, Pr, R, >

Most often studied in reinforcement learning

Goal-directed, Finite Horizon, Prob. Maximisation MDP

<S, A, Pr, G, s0, T>

Also studied in planning community

Oversubscription Planning: Non absorbing goals, Reward Max. MDP

<S, A, Pr, G, R, s0>

Relatively recent model

<S, A, Pr, C, G, s0>

Define J*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

J* should satisfy the following equation:

Bellman Equations for MDP1

<S, A, Pr, R, s0, >

Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

V* should satisfy the following equation:

Bellman Equations for MDP2

<S, A, Pr, G, s0, T>

Define J*(s,t) {optimal cost} as the minimum
expected cost to reach a goal from this state at tth

timestep.

J* should satisfy the following equation:

Bellman Equations for MDP3

Given an estimate of J* function (say Jn)

Backup Jn function at state s

calculate a new estimate (Jn+1) :

Qn+1(s,a) : value/cost of the strategy:

execute action a in s, execute n subsequently

n = argmina Ap(s)Qn(s,a)

Bellman Backup

Bellman Backup

J0= 0

J0= 1

J0= 2

Q1(s,a1) = 2 + 0
Q1(s,a2) = 20 + 0.9£ 1

+ 0.1£ 2

Q1(s,a3) = 4 + 2

min

J1= 2

agreedy = a1

20
a2

a1

a3

s0

s1

s2

s3

?

Value iteration

assign an arbitrary assignment of J0 to each state.

repeat

for all states s

compute Jn+1(s) by Bellman backup at s.

until maxs |Jn+1(s) Jn(s)| <

Iteration n+1

Residual(s)

-convergence

Comments

Decision-theoretic Algorithm
Dynamic Programming
Fixed Point Computation

Probabilistic version of Bellman-Ford Algorithm
for shortest path computation
MDP1 : Stochastic Shortest Path Problem

Jn J* in the limit as n 1

-convergence : Jn function is within of J*
works only when no state is a dead-end (J* is finite)

Monotonicity
J0 p J* Jn p J* (Jn monotonic from below)
J0 p J* Jn p J* (Jn monotonic from above)

otherwise Jn non-monotonic

Policy Computation

Optimal policy is stationary and time-independent.

for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

Changing the Search Space

Value Iteration

Search in value space

Compute the resulting policy

Policy Iteration

Search in policy space

Compute the resulting value

Policy iteration

assign an arbitrary assignment of 0 to each state.

repeat

compute Jn+1 the evaluation of n

for all states s

compute n+1(s): argmina2 Ap(s)Qn+1(s,a)

until n+1 n

Advantage

searching in a finite (policy) space as opposed to
uncountably infinite (value) space convergence faster.

all other properties follow!

costly: O(n3)

approximate
by value iteration
using fixed policy

Modified
Policy Iteration

Connection with Heuristic Search

s0

G

s0

G

? ?
s0

G

? ?

regular graph acyclic AND/OR graph cyclic AND/OR graph

Connection with Heuristic Search

s0

G

s0

G

? ?
s0

G

? ?

regular graph

soln:(shortest) path

A*

acyclic AND/OR graph

soln:(expected shortest)

acyclic graph

AO*

cyclic AND/OR graph

soln:(expected shortest)

cyclic graph

LAO*

All algorithms able to make effective use of reachability information!

LAO*

1. add s0 in the fringe and in greedy graph

2. repeat

expand a state on the fringe (in greedy graph)

initialize all new states by their heuristic value

perform value iteration for all expanded states

recompute the greedy graph

3. until greedy graph is free of fringe states

4. output the greedy graph as the final policy

LAO* [Iteration 1]

s0

G

? ?
s0

add s0 in the fringe and in greedy graph

LAO* [Iteration 1]

s0

G

? ?
s0

expand a state on fringe in greedy graph

? ?

LAO* [Iteration 1]

s0

G

? ?
s0

initialise all new states by their

heuristic values

perform VI on expanded states

? ?

h h h h

J1

LAO* [Iteration 1]

s0

G

? ?
s0

recompute the greedy graph

? ?

h h h h

J1

LAO* [Iteration 2]

s0

G

? ?
s0

expand a state on the fringe

initialise new states

? ?

h h h h

J1

h h

LAO* [Iteration 2]

s0

G

? ?
s0

perform VI

compute greedy policy

? ?

h h h

J2

h h

J2

LAO* [Iteration 3]

s0

G

? ?
s0

expand fringe state

? ?

h h

J2

h h

J2

G

LAO* [Iteration 3]

s0

G

? ?
s0

perform VI

recompute greedy graph

? ?

h h

J3

h h

J3

G

J3

LAO* [Iteration 4]

s0

G

? ?
s0

? ?

h

J4

h h

J4

G

J4

h

J4

LAO* [Iteration 4]

s0

G

? ?
s0

? ?

h

J4

h h

J4

G

J4

h

J4

Stops when all nodes in greedy graph have been expanded

Comments

Dynamic Programming + Heuristic Search

admissible heuristic optimal policy

expands only part of the reachable state space

outputs a partial policy
one that is closed w.r.t. to Pr and s0

Speedups

expand all states in fringe at once

perform policy iteration instead of value iteration

perform partial value/policy iteration

weighted heuristic: f = (1-w).g + w.h

ADD based symbolic techniques (symbolic LAO*)

Real Time Dynamic Programming

Trial: simulate greedy policy starting from start state;

perform Bellman backup on visited states

RTDP: repeat Trials until cost function converges

Min

?

?s0

Jn

Jn

Jn

Jn

Jn

Jn

Jn

Qn+1(s0,a)

Jn+1(s0)

agreedy = a2

Goala1

a2

a3

RTDP Trial

?

Comments

Properties

if all states are visited infinitely often then Jn J*

Advantages

Anytime: more probable states explored quickly

Disadvantages

complete convergence is slow!

no termination condition

Labeled RTDP

Initialise J0 with an admissible heuristic

Jn monotonically increases

Label a state as solved

if the Jn for that state has converged

Stop trials when they reach any solved state

Terminate with s0 is solved

s G
best action

)

s G?

t

both s and t
get solved
together

Properties

admissible J0 optimal J*

heuristic-guided

explores a subset of reachable state space

anytime

focusses attention on more probable states

fast convergence

focusses attention on unconverged states

terminates in finite time

Recent Advances: Bounded RTDP

Associate with each state

Lower bound (lb): for simulation

Upper bound (ub): for policy computation

gap(s) = ub(s) lb(s)

Terminate trial when gap(s) <

Bias sampling towards unconverged states
proportional to P

Perform backups in reverse order for current
trajectory.

Recent Advances: Focused RTDP

Similar to Bounded RTDP except

a more sophisticated definition of priority that
combines gap and prob. of reaching the state

adaptively increasing the max-trial length

Recent Advances: Learning DFS

Iterative Deepening A* equivalent for MDPs

Find strongly connected components to check
for a state being solved.

Other Advances

Ordering the Bellman backups to maximise information
flow.

Partition the state space and combine value iterations
from different partitions.

External memory version of value iteration

Policy Gradient Approaches

direct policy search

parameterised policy Pr(a|ss,w)

no value function

flexible memory requirements

policy gradient

J(ww)=Ew[t=0..1
tct]

gradient descent (wrt ww)

reaches a local optimum

continuous/discrete spaces

parameterised
policy Pr(a|s.w)

parameters w

state s action a

Pr(a=a1|s,w)

Pr(a=a2|s,w)

Pr(a=ak|s,w)

Policy Gradient Algorithm

J(ww)=Eww[t=0..1
tct

minimise J by

computing gradient

stepping the parameters away wwt+1 = wwt rrJ(ww)

until convergence

Gradient Estimate

Monte Carlo estimate from trace s1, a1, c1 T, aT, CT

eet+1 = eet + rrww log Pr(at+1|st,wwt)

wwt+1 = wwt - tcteet+1

Policy Gradient Approaches

often used in
reinforcement learning

partial observability

model free (P
Pr(oo|s) are unknown)

to learn a policy from
observations and costs

Reinforcement
Learner

Pr(a|o,w)

Pr(a=a1|o,w)

Pr(a=a2|o,w)

Pr(a=ak|o,w)

world/simulator

P
Pr(o|s)

observation o
cost c

action a

LP Formulation of MDPs

s S (s)J*(s)

under constraints

for s 2 G: J*(s) = 0

for every s, a:

2S P C

(s) > 0

Modeling Complex Problems

Modeling time

continuous variable in the state space

discretisation issues

large state space

Modeling concurrency

many actions may execute at once

large action space

Modeling time and concurrency

large state and action space!!

J(s)

J(s)

t

t

References

Simple statistical gradient following algorithms for connectionist
reinforcement learning. R. J. Williams. Machine Learning, 1992.

Learning to Act using Real-Time Dynamic Programming. Andrew
G. Barto, Steven J. Bradtke, Satinder P. Singh. Artificial
Intelligence, 1995.

Policy Gradient Methods for Reinforcement Learning with Function
Approximation. Richard S. Sutton, David A. McAllester, Satinder P.
Singh, Yishay Mansour. NIPS 1999.

Infinite-Horizon Policy-Gradient Estimation. Jonathan Baxter and
Peter L. Bartlett. JAIR 2001.

LAO*: A Heuristic Search Algorithm that Finds Solutions with
Loops. E.A. Hansen and S. Zilberstein. Artificial Intelligence, 2001.

Labeled RTDP: Improving the Convergence of Real-Time Dynamic
Programming. Blai Bonet and Héctor Geffner. ICAPS 2003.

References

Bounded Real-Time Dynamic Programming: RTDP with monotone
upper bounds and performance guarantees. H. Brendan McMahan,
Maxim Likhachev, and Geoffrey Gordon. ICML 2005.

Learning Depth-First Search: A Unified Approach to Heuristic
Search in Deterministic and Non-Deterministic Settings, and its
application to MDPs. Blai Bonet and Héctor Geffner. ICAPS 2006.

Focused Real-Time Dynamic Programming for MDPs: Squeezing
More Out of a Heuristic, Trey Smith and Reid Simmons. AAAI
2006.

Prioritization Methods for Accelerating MDP Solvers. David
Wingate, Kevin Seppi. JMLR 2005.

Topological Value Iteration Algorithm for Markov Decision
Processes. Peng Dai, Judy Goldsmith. IJCAI 2007.

Prioritizing Bellman Backups Without a Priority Queue. Peng Dai
and Eric Hansen. ICAPS 2007.

External Memory Value Iteration. Stefan Edelkamp, Shahid Jabbar
and Blai Bonet. ICAPS 2007.

Probabilistic Temporal Planning

PART III: Durative Actions without Concurrency

Mausam

David E. Smith

Sylvie Thiébaux

Stochastic Planning w/ Durative Actions

What action

next?

Percepts Actions

Environment

Static

Full

Fully
Observable

Perfect

Stochastic

Durative

Sequential

Unpredictable

Discrete/
Continuous

Motivation

Why are durative actions important?

Race against time: deadlines

Increase reward (single goal): time dependent reward

Increase reward (many non-absorbing goals)
oversubscription Planning

achieve as many goals as possible in the given time

Why is uncertainty important?

durations could be uncertain

we may decide the next action based on the time
taken by the previous ones.

Different Related Models

MDP < SMDP
TMDP < HMDP

undiscounted
deadline problems.

discounting w/
action durations

MDP
no explicit action durations

Semi-MDP
continuous/discrete action durations
discounted/undiscounted

Time-dependent MDP
discrete MDP + one continuous variable time
undiscounted

Continuous MDP
MDP with only continuous variables

Hybrid MDP
MDP with many discrete and continuous variables

Undiscounted/Discrete-time/No-deadline

Embed the duration information in C or R
Minimise make-span
initialise C by its duration

but the duration may be probabilistic

Discounted/Discrete-time/No-deadline

A single

Semi-MDP

V* depends on

current state

current time

Undiscounted/Discrete-time/Deadline

Time-dependent MDP

reward

time

Summation is now integral!

Undiscounted/Continuous-time/Deadline

Discounted/Continuous-time/No-deadline

convolutions

Algorithms

All previous algorithms extend

with new Bellman update rules

e.g. value iteration, policy iteration, linear prog.

Computational/representational challenges

efficient represent of continuous value functions

efficient computation of convolutions

Algorithm extensions

reachability analysis in continuous space?

Representation of Continuous Functions

flat discretisation

costly!

piecewise constant

models deadline problems

piecewise linear

models minimise make-span problems

phase type distributions

approximates arbitrary probability density functions

piecewise gamma function

value

time

50

value

time

50

80

Convolution

Engine

probability

80 duration

Convolutions

Result of convolutions

discrete constant linear

discrete discrete constant linear

constant constant linear quadratic

linear linear quadratic cubic

value function

pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

discrete-discrete

constant-discrete

constant-constant

Convolutions

Analytical solution to convolutions

probability function approximated one time

as phase-type distribution p(N)= ee-- NN

value function is piecewise gamma

convolutions can be computed analytically!

Hybrid AO*

search in discrete state space.

associate piecewise constant value functions
with each discrete node.

employ sophisticated continuous reachability.

TakePic(R1)

0.75 0.25

Navigate(Start, R1)

Q

H

V

V

Q
Q

V

$10

: convolution

: max

Hybrid AO*

0.75 0.25

Navigate(Start, R1)

0.25 0.75

Navigate(Start, R2)

V
R1

R2

Q Q

Hybrid AO*

many greedy
successors

0.75 0.25

Navigate(Start, R1)

0.25 0.75

Navigate(Start, R2)

V
R1

R2

Q

Hybrid AO*

P

P
P

Q

convolve value
functions (backward)

convolve probability
functions (forward)

References

Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Martin Puterman. John Wiley and Sons 1994.

Dynamic Programming and Optimal Control. Dmitri Bertsekas.
Athena Scientific 1995.

Exact Solutions to Time-Dependent MDPs. Justin Boyan and
Micheal Littman. NIPS 2000.

Dynamic Programming for Structured Continuous Markov Decision
Problems. Zhengzhu Feng, Richard Dearden, Nicolas Meuleau,
and Richard Washington. UAI 2004.

Lazy approximation for solving continuous finite-horizon MDPs.
Lihong Li and Michael L. Littman. AAAI 2005.

Planning with Continuous Resources in Stochastic Domains.
Mausam, Emmanuelle Benazara, Ronen Brafman, Nicolas
Meuleau, Eric Hansen. IJCAI 2005.

A Fast Analytical Algorithm for Solving Markov Decision Processes
with Real-Valued Resources. J. Marecki, Sven Koenig and Milind
Tambe. IJCAI 2007.

Probabilistic Temporal Planning

PART IV: Concurrency w/o Durative Actions

Mausam, David E. Smith, Sylvie Thiébaux

Stochastic Planning

Plan for Part IV

Concurrent MDP (CoMDP) Model
Value-Based Algorithms
Planning Graph Approaches
Policy Gradient Approaches
Related Models

Concurrent MDPs (CoMDPs)

formally introduced by Mausam & Weld [AAAI-04]
MDP that allows simultaneous execution of action sets
�= semi-MDPs where time is explicit but concurrency is lacking
cost of an action set accounts for time and resources

notion of concurrency (mutex), generalising independence
(deterministic actions a and b are independent iff a; b ≡ b; a):

restrictive: all executions of the actions are independent
permissive: some execution is independent; requires failure states

Concrete Independence Example

Probabilistic STRIPS:
each action has a set of preconditions and a probability
distribution over a set of outcomes

each outcome has sets of positive and negative effects
an outcome set is consistent when no outcome deletes a positive
effect or the precondition of another(’s action)

a set of actions is independent when:
restrictive: all joint outcomes of the actions are consistent

permissive: at least one joint outcome is consistent

Concurrent MDPs (CoMDPs)

MDP equivalent to a CoMDP
A CoMDP 〈S,A,Pr ,C,G,s0〉 translates into the MDP 〈S,A||,Pr||,C||,G,s0〉:

A||(s): mutex-free subsets of actions A = {a1, . . . , ak} ⊆ A(s)

due to independence
Pr||(s

′ | s, A) =
X

s1∈S

X

s2∈S
. . .

X

sk∈S
Pr(s1 | s, a1)Pr(s2 | s1, a2) . . .Pr(s′ | sk−1, ak)

C||(A) =
kX

i=1

res(ai) +
k

max
i=1

dur(ai)

Plan for Part IV

Concurrent MDP (CoMDP) Model
Value-Based Algorithms
Planning Graph Approaches
Policy Gradient Approaches
Related Models

Value-Based Algorithms

compute a proper optimal policy for the CoMDP
dynamic programming, e.g., RTDP applies:

J||n(s) = min
A∈A||(s)

Q||n(s, A)

need to mitigate the exponential blowup in A||

1. pruning Bellman backups
2. sampling Bellman backups

s

a1,a2,a3

a1,a2

a1

a2

a3

a1,a3

a2,a3

Pruning Bellman Backups

Theorem (Mausam & Weld AAAI-04)
Let Un be an upper bound on J||n(s). If

Un <
k

max
i=1

Q||n(s, {ai}) + C||(A) −
k∑

i=1

C||({ai})

then combination A is not optimal for state s in this iteration.

Combo-skipping pruning rule:
1. compute Q||n(s, {a}) for all applicable single actions
2. set Un ← Q||n(s, A∗

n−1), using the optimal combination A∗
n−1 at

the previous iteration
3. apply the theorem

Pruning Bellman Backups

Theorem (Bertsekas (1995))
Let L be a lower bound on Q∗

||(s, A) and U be an upper bound
on J∗

||(s). If L > U then A is not optimal for s.

Combo-elimination pruning rule:
1. initialise RTDP estimates with an admissible heuristic;

Q||n(s, A) remain lower bounds
2. set U to the optimal cost of the serial MDP
3. apply the theorem

combo skipping: cheap but short-term benefits (try it first)
combo elimination: expensive but pruning is definitive

Sampling Bellman Backups

Backup random combinations
bias towards action sets with previously best Q-values
bias towards action sets built from best individual actions

Loss of optimality; J||n(s) might not monotonically increase
do full backup when convergence is asserted for a state
use (scaled down) result as heuristic to pruned RTDP

Plan for Part IV

Concurrent MDP (CoMDP) Model
Value-Based Algorithms
Planning Graph Approaches
Policy Gradient Approaches
Related Models

Planning Graph Approaches

Motivated by the need to compress the state space

The planning graph data structure facilitates this by:
exploiting a probabilistic STRIPS representation
using problem relaxations to find cost lower bounds
enabling goal-regression

History

Graphplan [Blum & First IJCAI-95]

classical, concurrent, optimal
uses the graph as a heuristic and for goal regression search

TGraphplan [Blum & Langford ECP-99]

replanner, concurrent, non-optimal
returns the most-likely trajectory to the goal

PGraphplan [Blum & Langford ECP-99]

probabilistic contingent, non-concurrent, optimal
probabilistic graph yields a heuristic for DP

Paragraph [Little & Thiébaux ICAPS-06]

probabilistic contingent, concurrent, optimal
extends the full Graphplan framework

Paragraph

solves concurrent probabilistic STRIPS planning problems
finds a concurrent contingency plan with smallest failure
probability within a time horizon

⇒ goal-directed, finite horizon, prob. maximisation CoMDP
has a cyclic version

Paragraph

Builds the probabilistic planning graph
until G ⊆ Pi and G is mutex-free

Attempts plan extraction
use goal regression search to find all trajectories that
Graphplan would find
some of those will link naturally
additionally link other trajectories using forward simulation

Alternates graph expansion and plan extraction
until the time horizon is exceeded or a plan of cost 0 is
found (or goal unreachability can be proven)

Planning Graph (Probabilistic)

action, propositions, and outcome levels and mutexes

s

r

s

r

t

q

p

a1

nr

o1

os
or

A1

ns

P0 P1

o2

100%

100%

80%

20%

O1

Goal-Regression Search (Probabilistic)

{a1,a2}

{g1,g2,g3}

o11, o21

o12, o22

o12, o21 o11, o22

{s1,s2}

{s3}

{s4}

{s5,s6}

{g1,g6}

{g7}

s1

{g4,g1}

{a3,a2}

nodes: goal set, action sets, world states set, cost, (time)
arcs: joint outcome, (world state for conditional arcs)
requires extra linking via forward simulation

Why do we need extra linking?

a2a1

o3 o4

p1 p2

pg p2

o2 o1

p1

npg
opg

o3 o1

a2 a1

p1

a1 a2

p2

o1 o3o2 o4

t: 0 p1

p2

pg

t: 1 pg

t: 2

a1

p1pg

pg

a1

p1

a2

p2

{p1,p2}{p1,p2}

{p2,pg}

o2 o1 o3 o4

{p1,pg}{p2} {p1}

t: 1

t: 2

t: 0

a2

p2

{pg}
o1

npg
opg

o3

{p1,p2} {p1,p2}

I = {p1, p2}, G = {pg}
optimal plan: execute one action; if it fails execute the other

Plan Extraction

ends with forward simulation and backward cost update
each node/world state pair yields a potential plan step
select pairs and action sets with optimal cost

Cost (prob. failure) of a node/world state pair
C(n, sn) =

0 if n is a goal node
min

A∈act(n)

∑

O∈Out(A)

Pr(O) × min
n′∈succ(n,O,sn)

C(n′, res(O, sn))

Plan for Part IV

Concurrent MDP (CoMDP) Model
Value-Based Algorithms
Planning Graph Approaches
Policy Gradient Approaches
Related Models

Policy Gradient Approaches
Minimise the expected cost of a parameterised policy by
gradient descent in the parameters space.

world / simulator

Reinforcement

Learner

Pr(a|o,w)

Pr(s’|a,s)

Pr(o|s)

observations o

cost c

action a

Pr(a=a1 | o,w) = 0.5

Pr(a=a3 | o,w) = 0.4

Pr(a=a2 | o,w) = 0.1

Factored policy gradient
need to mitigate the blowup caused by CoMDPs
factorise the CoMDP policy into individual action policies
[Peshkin et. al UAI-00, Aberdeen & Buffet ICAPS-07]

world / simulator

observations o

cost c

not eligible
choice disabled

Pr(a1=no | o1,w1) = 0.9

Pr(a3=yes | o2,w2) = 0.5

Pr(a3=no | o2,w2) = 0.5

a1

a3

a2

Pr(a2=no | o2,w2) = 1.0

Pr(a1=yes | o1,w1) = 0.1

action set A
Pr(s’|A,s)

world state
eligible actions

Factored policy gradient

Theorem (Peshkin et. al, UAI-00)
For factored policies, factored policy gradient is equivalent
to joint policy gradient.
Every strict Nash equilibrium is a local optimum for policy
gradient in the space of parameters of a factored policy, but
not vice versa.

FPG planner [Aberdeen & Buffet, 2007]

did well in the probabilistic planning competition
has a more efficient parallel version
cost function favors reaching the goal as soon as possible
individual policies are linear networks with prob. function:

Pr(ai t = yes | ot , wi) =
1

exp(o�
t wi) + 1

Plan for Part IV

Concurrent MDP (CoMDP) Model
Value-Based Algorithms
Planning Graph Approaches
Policy Gradient Approaches
Related Models

Related Models

range of decentralised MDP models [Goldman & Zilberstein AIJ-04]

Composite MDPs [Singh & Cohn NIPS-97]

n component MDPs 〈Si ,Ai ,Pri ,Ri , s0i〉
composite MDP 〈S,A,Pr ,R, s0〉 satisfies:

S =
∏n

i=1 Si , s0 =
∏n

i=1 s0 i
A(s) ⊆ ∏n

i=1 Ai(s) (constraints on simultaneous actions)
Pr(s′ | a, s) =

∏n
i=1 Pri(s′

i | ai , si) (transition independence)
R(s, a, s′) =

∑n
i=1 Ri(s, a, s′) (additive utility independence)

useful for resource allocation [Meuleau et. al UAI-98]

opt. solutions to component MDPs yield bounds for pruning
composite MDPs (as in combo-elimination) [Singh & Cohn NIPS-97]

composite value function can be approximated as a linear
combination of component value functions [Guestrin et. al NIPS-01]

References
How to Dynamically Merge Markov Decision Processes, S. Singh and
D. Cohn. NIPS-97.

Solving Very Large Weakly Coupled Markov Decision Processes, N.
Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin, L. Kaelbling, and T.
Dean. UAI-98.

Learning to Cooperate via Policy Search, L. Peshkin, K.-E. Kim, N.
Meuleau, L. Kaelbling. UAI-00.

Multi-Agent Planning with Factored MDPs, C. Guestrin, D Koller, and R.
Parr. NIPS-01.

Decentralized Control of Cooperative Systems: Categorization and
Complexity Analysis, C.V. Goldman and S. Zilberstein. JAIR, 2004.

Solving Concurrent Markov Decision Processes, Mausam and D. Weld.
AAAI-04.

Concurrent Probabilistic Planning in the Graphplan Framework, I. Little
and S. Thiébaux. ICAPS-06.

Concurrent Probabilistic Temporal Planning with Policy-Gradients, D.
Aberdeen and O. Buffet. ICAPS-07.

Probabilistic Temporal Planning

PART V: Durative Actions w/ Concurrency

Mausam, David E. Smith, Sylvie Thiébaux

Stochastic Planning

Plan for Part V

Concurrent Probabilistic Temporal Planning (CPTP)
CoMDP Model
Value-Based Algorithms
AND-OR Search Formulation
Policy Gradient Approach
Related Models

Concurrent Probabilistic Temporal Planning

concurrency, time
durative actions
timed effects
concurrency

and

uncertainty
about the effects
their timing
the action duration

Actions in CPTP
(:durative-action jump

:parameters (?p - person ?c - parachute)
:condition (and (at start (and (alive ?p)

(on ?p plane)
(flying plane)
(wearing ?p ?c)))

(over all (wearing ?p ?c)))

:effect (and (at start (not (on ?p plane)))
(at end (on ?p ground))
(at 5 (probabilistic

(0.8 (at 42 (standing ?p)))
(0.2 (at 13 (probabilistic

(0.1 (at 14 (bruised ?p)))
(0.9 (at 14 (not (alive ?p))))))))))) ?

&

e

?

&

e

e

e e

4

duration

simple effect

prob. effect

conj. effect

U(3,5)

25% 75%

N(4,1)

2

e

10%90%

Actions in CPTP: The Simplest Case

TGP-style action:
preconditions hold at start and over all
effects are only available at end
duration is fixed or probabilistic

Additionally:
effect-independent duration
monotonic continuation
(normal, uniform, exp.)

?

& &

ee
Soft Soil Found Need Blast Permit

e
Soil Test Done

e
Soil Test Done

&

25% 75%

N(10,2)

Plans in CPTP

Decision Points in CPTP

Definitions
Pivot: Time point at which an event might take place (effect,
condition being needed).
Happening: Time point at which an event actually takes place.

Completeness/Optimality Results [Mausam & Weld, AAAI-06]

1 With TGP actions, decision points may be restricted to pivots.
2 With TGP actions and deterministic durations, decision points

may be restricted to happenings.
3 Conjecture: idem with effect-independent durations and

monotonic continuations.
4 In general, restriction to pivots may cause incompleteness.

Plan for Part V

Concurrent Probabilistic Temporal Planning (CPTP)
CoMDP Model
Value-Based Algorithms
AND-OR Search Formulation
Policy Gradient Approach
Related Models

CoMDP in Interwoven Epoch State Space

Why Interwoven?

aligned epochs interwoven epochs

The traditional aligned CoMDP model is suboptimal for CPTP

CoMDP in Interwoven Epoch State Space

CoMDP state contains:
current world state w
event queue q, records advancement of executing actions
inspired from SAPA, TLPlan, HSP, etc

Event queue contains pairs:
event e (simple effect, prob effect, condition check . . .)
distribution for the duration remaining until e happens

? e?ee

00 14

c

3N(2,1) U(7,9)

Queue for TGP actions with fixed durations:
q = {〈a, δ〉 | a is executing and will terminate in δ time units}

CoMDP in Interwoven Epoch State Space

A(s) : as in standard CoMDP, but includes the empty set
(wait). Need to check interference with executing actions in
the queue.

Pr : tedious to formalise (even for restricted cases), see
[Mausam & Weld, JAIR-07]. Considers all possible states at all
pivots between the min. time an event could happen and
the max. time one is guaranteed to happen. → motivates
sampling!

? e?ee

00 14

c

3N(2,1) U(7,9)

C(s, A, s′) : time elapsed between s and s′.

Plan for Part V

Concurrent Probabilistic Temporal Planning (CPTP)
CoMDP Model
Value-Based Algorithms
AND-OR Search Formulation
Policy Gradient Approach
Related Models

Value-Based Algorithms

DUR family of planners [Mausam & Weld ICAPS-05, JAIR-07]

assumptions (to start with):
− TGP actions with fixed integer durations
⇒ decision points are happenings
⇒ event queue records remaining duration for each action

sampled RTDP applies
to cope with interwoven state space blow-up:

1 heuristics
2 hybridisation

Maximum Concurrency Heuristic

divide the optimal serial MDP cost by
max nb. actions executable concurrently in the domain

J∗-–(〈s, ∅〉) ≥ J∗(s)

m

J∗-–(〈s, q〉) ≥ Q∗(s, Aq)

m

a

b c

4

a b c

(4+1+2) = 7

7/2 < 4
serialisation

Eager Effects Heuristic

effects realised when the fastest started actions ends
time advances accordingly
CoMDP state:
〈 world state after effects, duration until last executing action ends 〉
relaxed problem:

− get information about effects ahead of time
− mutex action combinations are allowed (lost track of time)

a

b

c

s s’

8

2

4

(s’,6)

Hybridisation
Hybrid interwoven/aligned policy for probable/unprobable states

1 run RTDP interwoven for a number of trials
→ yields lower bound L = J(s0)

2 run RTDP aligned on low frequency states
3 clean up and evaluate hybrid policy π

→ yields upper bound u = Jπ(s0)

4 repeat until performance ratio r reached ((U−L)
L < r)

G

Gs

low prob.

Extensions of the DUR Planner

∆DUR [Mausam & Weld, AAAI-06, JAIR-07] extends DUR to TGP
actions with stochastic durations.

MC and hybrid: apply with minor variations.

∆DURexp, expected duration planner:
effect-independent durations & monotonic continuations
assigns an action its (fixed) mean duration
use DUR to generate policy and execute:
if action terminates early, extend policy from current state
if action is late to terminate, update mean, then extend.

∆DURarch, archetypal duration planner:
extends ∆DURexp to multimodal distributions
probabilistic outcomes with different mean durations

Plan for Part V

Concurrent Probabilistic Temporal Planning (CPTP)
CoMDP Model
Value-Based Algorithms
AND-OR Search Formulation
Policy Gradient Approach
Related Models

AND/OR Search Formulation

Prottle [Little et. al AAAI-05]

forward search planner, solves CPTP over finite horizon
not extremely different from DUR:

finer characterisation of the search space for CPTP
slightly different search algorithm (lower + upper bound)
planning graph heuristics

current implementation:
handles general CPTP actions with fixed durations on arcs
incomplete: only considers pivots
takes cost to be the probability of failure

Prottle’s Search Space

Interwoven epochs and-or graph
and-or graph: and = chance, or = choice
node purposes: action selection or time advancement
node contains: current state, current time, event queue

choice
advancement

selection

choice

selection

chance
advancement

chance

Prottle’s Search Space

a1

0

a2
?

5

42

a2

0

0

5

o6
o5

o2
o1

o6o5

5 5

5

5

5

5

0
0

o2

13

o3
o4

13
13

1414

o1

0

Prottle’s Algorithm
Trial based with lower and upper bound (BRTDP and FRTDP
are similar). Selection strategy quickly gets a likely path to the
goal and robustifies known paths thereafter.

a2
?

a2

0

0

5

o6
o5

o2
o1

o6o5

5 5

5

5

5

o2

13

o3
o4

13
13

1414

0

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �
0

a1

0
0

5

o1

5

42

[0.1, 1.0]

[0.0. 1.0]

[0.0, 0.0]

[0.0, 1.0]80% 20%

[0.0, 0.0]

[0.0, 0.0]

[0.1, 0.2]

[0.1, 0.2] [0.1, 0.2]

Prottle’s Algorithm (details)

node lower/upper cost bounds
cost = probability of failure
bounds initialised using heuristics

bound update rules
Lchoice(n) := max(L(n), minn′∈ S(n) L(n′))
Uchoice(n) := min(U(n), minn′∈ S(n) U(n′))
Lchance(n) := max(L(n),

∑
n′∈ S(n) Pr(n′) L(n′))

Uchance(n) := min(U(n),
∑

n′∈ S(n) Pr(n′) U(n′))

cost converges when U(n) − L(n) ≤ ε

node labels: solved, failure (solved with cost 1), unsolved
node selection: minimises P(n)U(n), uses P(n)L(n) to
break ties

Prottle’s Heuristic
Based on a probabilistic temporal planning graph

backward propagation rules

Co(n, i) :=
Q

n′∈S(n) Cp,o(n′, i)
Ca(n, i) :=

P
n′∈S(n) Pr(n′) Co(n′, i)

Cp(n, i) :=
Q

n′∈S(n) Ca(n′, i)

p2

o1 p3

p2
p1

a1

o2

p2 p3

p1

a1

a2

o3

p4

o4

p1

o1

o2

60% 40%20%
80%

20%

80%

a2
?

a2

0

0

5

o6
o5

o2
o1

o6o5

5 5

5

5

0
0

a1

0

Plan for Part V

Concurrent Probabilistic Temporal Planning (CPTP)
CoMDP Model
Value-Based Algorithms
AND-OR Search Formulation
Policy Gradient Approach
Related Models

Policy Gradient Approach
Minimises the expected cost of a factored parameterised policy
by factored gradient descent in the parameters space.

world / simulator

observations o

cost c

not eligible
choice disabled

Pr(a1=no | o1,w1) = 0.9

Pr(a3=yes | o2,w2) = 0.5

Pr(a3=no | o2,w2) = 0.5

a1

a3

a2

Pr(a2=no | o2,w2) = 1.0

Pr(a1=yes | o1,w1) = 0.1

action set A
Pr(s’|A,s)

world state
eligible actions

Factored Policy Gradient for CPTP
FPG handles continuous time dist. [Aberdeen & Buffet ICAPS-07].

1 simulator manages an event queue
2 cost function takes durations into account

world / simulator

observations o

not eligible
choice disabled

Pr(a1=no | o1,w1) = 0.9

Pr(a3=yes | o2,w2) = 0.5

Pr(a3=no | o2,w2) = 0.5

a1

a3

a2

Pr(a2=no | o2,w2) = 1.0

Pr(a1=yes | o1,w1) = 0.1

world state
eligible actions
event queue

action set A
Pr(s’|A,s)

cost c includes time

event queue

Plan for Part V

Concurrent Probabilistic Temporal Planning (CPTP)
CoMDP Model
Value-Based Algorithms
AND-OR Search Formulation
Policy Gradient Approach
Related Models

Related Models

Generalised Semi-MDP (GSMDP)[Younes & Simmons, AAAI-04]

set of states S
set of events E ; each event e is associated with:

Φe(s): enabling condition
Ge(t): probability that e remains enabled before it triggers
Pr(s′ | e, s) transition probability when e triggers in s

actions A ⊆ E are controllable events
rewards:

lump sum reward k(s, e, s′) for transitions
continuous reward rate c(a, s) for a ∈ A being enabled in s
disc. inf. horz. model; reward at time t counts as e−αt

policy: maps timed histories to set of enabled actions

Generalised Semi-Markov Decision Process

Parallel (asynchronous) composition of SMDPs is a GSMDP:
distribution of an enabled event may depend on history.

MDP

SMDP

GSMDPgeneral delays
probabilistic effects
concurrency

general delays
probabilistic effects

memoryless delays
probabilistic effects

not office office

not wet wet

U(0,6)

U(0,6)

W(2)

make−wet

move

W(2)

not office office

U(0,6)

U(0,6)

not wet not wet

not office office

U(0,6)

U(0,6)

wet wet

W(2)

SMDPS

GSMDP

Generalised Semi-Markov Decision Process

Specificities:
synchronous systems
discrete/continuous time

Solution methods:
approximate distributions with phase-type distributions and
solve the resulting MDP [younes & simmons AAAI-04]

→ to know more: attend Hakan’s Dissertation Award talk!
incremental generate - test (statistical sampling) - debug
[younes & simmons ICAPS-04]

→ covered by David

References

Policy Generation for Continuous Time Domains with Concurrency, H.
Younes and R. Simmons. ICAPS-04.

Solving Generalized Semi-Markov Processes using Continuous
Phase-Type Distributions, H. Younes and R. Simmons. AAAI-04.

Prottle: A Probabilistic Temporal Planner, I. Little, D. Aberdeen, and S.
Thiébaux. AAAI-05.

Concurrent Probabilistic Temporal Planning, Mausam and D. Weld.
ICAPS-05.

Probabilistic Temporal Planning with Uncertain Durations. Mausam and
D. Weld. AAAI-06

Concurrent Probabilistic Temporal Planning with Policy-Gradients, D.
Aberdeen and O. Buffet. ICAPS-07.

Planning with Durative Actions in Uncertain Domains, Mausam and D.
Weld. JAIR, to appear, 2007.

Probabilistic Temporal Planning

PART 6: Practical Considerations

Incremental approaches
When is contingency planning really needed ?
Combining contingency planning & replanning
Applications

Outline

Problem Dimensions

What action
next?

Percepts Actions

Environment

Static vs. Dynamic

Full vs. Partial satisfaction

Fully
vs.

 Partially
Observable

Perfect
vs.

Noisy

Deterministic
vs.

 Stochastic

Instantaneous
vs.

 Durative

Sequential
vs.

Concurrent

Discrete
vs.

 Continuous
Outcomes

Predictable vs. Unpredictable

Problem Dimensions

What action
next?

Percepts Actions

Environment

Static vs. Dynamic

Full vs. Partial satisfaction

Fully
vs.

 Partially
Observable

Perfect
vs.

Noisy

Deterministic
vs.

 Stochastic

Instantaneous
vs.

 Durative

Sequential
vs.

Concurrent

Discrete
vs.

 Continuous
Outcomes

Predictable vs. Unpredictable

Can We Make it Discrete?

O1: left of nominal

O2: nominal

O3: right of nominal

.2

.6

.2

Drive (30, 52)

What does “nominal” mean?

Drive (30, 52)

Collect

What does “nominal” mean?

Drive (30, 52)

Picture

Depends on Objective

O1: left of nominal

O2: nominal

O3: right of nominal

.2

.6

.2

Drive (30, 52)

Incremental approaches
JIC
ICP
Tempastic

When is contingency planning needed ?
Combining contingency planning & replanning
Applications

Outline

Incremental Approaches

Deterministic planner

deterministic relaxation

Stochastic simulation

Identify weakness

plan

Solve/Merge

Differences

Deterministic planner

deterministic relaxation

Stochastic simulation

Identify weakness

plan

Solve/Merge

JIC
ICP
Tempastic
Opportunistic (Long/Fox)
TCP (Foss/Onder)

Di
ffe

re
nc

es
, D

iff
er

en
ce

s,
 D

iff
er

en
ce

s,
 D

iff
er

en
ce

s

Incremental approaches
JIC
ICP
Tempastic

When is contingency planning needed ?
Combining contingency planning & replanning
Applications

Outline

Just in Case (JIC) Scheduling

Obs44

Obs17Obs2Obs23 Obs9

Observation Scheduling
many observations
priority 1–5

time window
stochastic duration

[1:30, 2:20]

:40

sky conditions
time constraints

Ref: Drummond, Bresina, & Swanson, AAAI-94

1. Seed schedule
2. Identify most likely failure
3. Generate a contingency branch
4. Incorporate the branch

Advantages:
Tractability
Simple schedules
Anytime

.1 .4 .2

The JIC Algorithm

Ref: Drummond, Bresina, & Swanson, AAAI-94

Dig(60)Visual servo (.2, -.15)

Lo res Rock finder LIB

µ = 120s
σ = 60s

µ = 300s
σ = 5s

µ = 1000s
σ = 500s

t ∈ [9:00, 16:00]
µ = 5s
σ = 1s

µ = 120s
σ = 20s V = 50

HiRes

V = 10

t ∈ [10:00, 13:50]
µ = 600s
σ = 60s

t ∈ [9:00, 14:30]
µ = 5s
σ = 1s

V = 5

Warmup LIB

µ = 1200s
σ = 20s

Most probable failure points may
not be the best branch-points:

It is often too late to attempt other
goals when the plan is about to
fail.

Μ : most probable failures
$: most useful branch point

Expected
Utility

Power
Start time

10
15

20

5

13:20

14:40
14:20

14:00
13:40

Μ Μ
Drive (-2) NIR

ΜV = 100

t ∈ [10:00, 14:00]
µ = 600s
σ = 60s

$

Limits of JIC Heuristic

Incremental approaches
JIC
ICP
Tempastic

When is contingency planning needed ?
Combining contingency planning & replanning
Applications

Outline

1. Seed plan

2. Identify best branch point

3. Generate a contingency branch

4. Evaluate & integrate the branch

? ?? ?

r
Vb

Vm

Construct plangraph

Back-propagate value tables

Compute gain

Incremental Contingency Planning

g1

g2

g3

g4

V1

V2

V3

V4

r

r

r

r

v

r

v

r

v

r

Back-Propagate Value Tables

p

r
5 15

.1

V

p

r
5 10

.2

v

r

v

r
5 15

v

r
10 25

V(r’) = ∫ Pc(r) V(r’-r) dr
∞

0

Simple Back-Propagation

p

r
5 15

.1

V

p

r
5 10

.2 v

r
5 15

v

r
10 25

p q

ts

v

r
5 15

v

r

{t}

p

r
5

{q}v

r
10 20

{q}

{t}

Conjunctions

V1

V2

V3

V4

V

r

V

r

V

r

V

r

Max

Estimating Branch Value

r

V1

V2

V3

V4

Vb

r

P

r

Gain = ∫ P(r) max{0,Vb(r) - Vm(r)} dr
∞

0

Vm

Vb

Expected Branch Gain

branch
condition

1. Seed plan

2. Identify best branch point

3. Generate a contingency branch

4. Evaluate & integrate the branch

? ?? ?

r
Vb

Vm

Construct plangraph

Back-propagate value tables

Compute gain

Identifying the Best Branch Point

1. Seed plan

2. Identify best branch point

3. Generate a contingency branch

4. Evaluate & integrate the branch

? ?? ?

r
Vb

Vm

Generating the Branch

Plan for the branch/condition

1. Seed plan

2. Identify best branch point

3. Generate a contingency branch

4. Evaluate & integrate the branch

? ?? ?

r
Vb

Vm Compute value function

Compute actual gain

Evaluating the Branch

Incremental approaches
JIC
ICP
Tempastic

When is contingency planning needed ?
Combining contingency planning & replanning
Applications

Outline

Generate initial policy

Test if policy is good

Debug and repair policy

good

badrepeat

Tempastic

Ref: Younes & Simmons, ICAPS-04

Generate initial policy

Test if policy is good

Debug and repair policy

good

badrepeat

Tempastic Details

Solve deterministic problem
Use as training data

to generate policy

Stochastic simulation

Rank bugs
Adapt deterministic
problem
Solve deterministic problem
Use as training data

to improve policy

Policy Generation

Split discrete outcomes
Relax continuous outcomes

Solve using VHPOP

Generate training data
by simulating plan

Decision tree learning

Probabilistic planning problem

Policy (decision tree)

Deterministic planning problem

Temporal plan

State-action pairs

O1

O2

.4

.6A

O1
A

O2
A

s0: A4

s1: A7

s2: A1

s3: A5
…

A1A7A4 A5

p7

p3

p18

p2

p9

p9

A7 A4

A5A2

A13A9

A2

Policy Tree

atpgh-taxi,cmu

atme,cmu

atmpls-taxi,mpls-airport

atplane,mpls-airport

atme,pgh-airport

inme,plane

movingpgh-taxi,cmu,pgh-airport

movingmpls-taxi,mpls-airport,honeywellatme,mpls-airport

enter-taxi depart-taxi

leave-taxi

check-in

enter-taxi depart-taxi leave-taxi

idle

idleidle

Generate initial policy

Test if policy is good

Debug and repair policy

good

badrepeat

Tempastic Details

Solve deterministic problem
Use as training data

to generate policy

Stochastic simulation

Rank bugs
Adapt deterministic
problem
Solve deterministic problem
Use as training data

to improve policy

Policy Debugging
Sample execution paths

Revised policy

Sample path analysis

Solve deterministic planning problem
taking failure scenario into account

Failure scenarios

Temporal plan

State-action pairs

Generate training data
by simulating plan

Incremental decision tree learning

Policy Debugging Details
Sample execution paths

Revised policy

Sample path analysis

Solve deterministic planning problem
taking failure scenario into account

Failure scenarios

Temporal plan

State-action pairs

Generate training data
by simulating plan

Incremental decision tree learning

s0 s1

s3 s4

s2

1/3

2/3 1/2

1/2
1

Construct Markov chain:

Bellman backups

Incorporate most important failure
& force planner to work around it

Sample Path Analysis: Example

s0 s1 s2
e1 e2

s0 s1 s4
e1 e4

s0 s3
e3

s2
e2

Sample paths:

γ = 0.9

s0 s1

s3 s4

s2

1/3

2/3 1/2

1/2
1

Markov chain:

V(s0) = –0.213

V(s1) = –0.855

V(s2) = –1

V(s3) = +1

V(s4) = –0.9

State values:

V(e1) = 2·(V(s1) – V(s0)) = –1.284

V(e2) = (V(s2) – V(s1)) + (V(s2) – V(s4)) = –0.245

V(e3) = V(s3) – V(s0) = +1.213

V(e4) = V(s4) – V(s1) = –0.045

Event values:

Revised Policy Tree

atpgh-taxi,cmu

atme,cmu

…

enter-taxi depart-taxi

has-reservationme,plane has-reservationme,plane

make-reservation leave-taxi

Generate initial policy

Test if policy is good

Debug and repair policy

good

badrepeat

Tempastic Summary

Solve deterministic problem
Use as training data

to generate policy

Stochastic simulation

Rank bugs
Adapt deterministic
problem
Solve deterministic problem
Use as training data

to improve policy

Sacrifice optimality
seed plan
repairs

Thrashing
Flaw Selection

particularly for oversubscription

Advantages & Drawbacks

Tractability
Anytime
Simple plans

Advantages

Drawbacks

Incremental approaches
When is contingency planning really needed ?
Combining contingency planning & replanning
Applications

Outline

Replanning

Improving robustness
Conservatism
Flexibility
Conformance
Conditionality

Alternative Approaches

Replanning

Improving robustness
Conservatism
Flexibility
Conformance
Conditionality

Alternative Approaches

Not mutually exclusive

Which one when?

Requirements Drawbacks

ComputationalModel outcomes
of outcomes small

Contingency

Weak
Computational

Limited uncertainty
Powerful actions

Conformant

Weak
Computational

Limited uncertainty
Sophisticated

rep., planner, exec

Flexibility

Lost opportunityResource usageConservatism

Improving robustness

Lost opportunity
Non-optimal
Failure

Adequate time,
computational power

Time not critical resource
No dead ends

Replanning
Approach

Requirements & Drawbacks

When ISS Examples

Only Critical situations

Simple forcing actions

Duration uncertainty
Event time uncertainty

Critical resource

Minor annoyances
reversible outcomes
low penalty

Rich opportunities
Highly stochastic

Power inverter failure
Pressure leak
Fire

Contingency

Computer resetConformant

Daily tasks
Communication

Flexibility

O2, H2O, food, powerConservatism

Improving robustness

Misplaced supplies
Loading, storage
Job jar
Obstacle avoidance

Replanning
Approach

When?

Considered within larger context
replanning

Different emphasis
unrecoverable outcomes

(not just high probability/low value outcomes)

\start{soapbox}

Point?

Considered within larger context
replanning

Different emphasis
unrecoverable outcomes

(not just high probability/low value outcomes)

1. Don’t care about having a complete policy
2. Policy must cover critical outcomes

\end{soapbox}

Impacts for Policy Search

Incremental approaches
When is contingency planning really needed ?
Combining contingency planning & replanning
Applications

Outline

Precautionary Planning

Generate high probability
deterministic seed plan

Identify & repair
unrecoverable outcomes

Replan from current state

Execute next step

re
pa

ir
im

po
ss

ib
le

successful

unexpected
outcome

su
cc

es
sf

ul

Ref: Foss, Onder & Smith, ICAPS-07 Wkshp

Seed Plan Generation

Generate high probability
deterministic seed plan

Identify & repair
unrecoverable outcomes

Replan from current state

Execute next step

re
pa

ir
im

po
ss

ib
le

successful

unexpected
outcome

su
cc

es
sf

ul

O1

O2

.4

.6A

O1A

O2A

-log(.6)

-log(.4)

Split discrete outcomes
Expectations
Assign costs
Invoke LPG-TD

Unrecoverable Outcomes

Generate high probability
deterministic seed plan

Identify & repair
unrecoverable outcomes

Replan from current state

Execute next step

re
pa

ir
im

po
ss

ib
le

successful

unexpected
outcome

su
cc

es
sf

ul

O1

O2

.4

.6A

O1A

O2A

-log(.6)

-log(.4)

Split discrete outcomes
Assign costs
Invoke LPG-TD

?
Evaluate goal

reachability in PG

A

G’

?

A’
R

Regress conditions

G’
Forcing goal

Create new action

Invoke LPG-TD

1

2

3

Execution

Generate high probability
deterministic seed plan

Identify & repair
unrecoverable outcomes

Replan from current state

Execute next step

re
pa

ir
im

po
ss

ib
le

successful

unexpected
outcome

su
cc

es
sf

ul

O1

O2

.4

.6A

O1A

O2A

-log(.6)

-log(.4)

Split discrete outcomes
Assign costs
Invoke LPG-TD

? Evaluate goal
reachability in PG

A

G’
?

A’
R

Regress conditions

G’
Forcing goal

Create new action

Invoke LPG-TD

1

2

3

limited horizon

Unplanned Outcomes

Generate high probability
deterministic seed plan

Identify & repair
unrecoverable outcomes

Replan from current state

Execute next step

re
pa

ir
im

po
ss

ib
le

successful

unexpected
outcome

su
cc

es
sf

ul

O1

O2

.4

.6A

O1A

O2A

-log(.6)

-log(.4)

Split discrete outcomes
Assign costs
Invoke LPG-TD

? Evaluate goal
reachability in PG

A

G’
?

A’
R

Regress conditions

G’
Forcing goal

Create new action

Invoke LPG-TD

1

2

3

Split discrete outcomes
Assign costs
Invoke LPG-TD

Main Points

Generate high probability
deterministic seed plan

Identify & repair
unrecoverable outcomes

Replan from current state

Execute next step

re
pa

ir
im

po
ss

ib
le

successful

unexpected
outcome

su
cc

es
sf

ul

Ref: Foss, Onder & Smith, ICAPS-07 Wkshp

ICP combined with replanning

Deterministic planner

Repair unrecoverable outcomes

Incremental approaches
When is contingency planning really needed ?
Combining contingency planning & replanning
Applications

Military air campaign planning [Meuleau et al AAAI-98]

Military operations planning [Aberdeen et al ICAPS-04]

Rover planning [Pedersen et al IEEEaero-05]
[Meuleau et al AAAI-04 Wkshp]

Outline

Customer: DARPA
Problem:

military targets with time windows
limited number of weapons (bombs) & aircraft
strike outcomes uncertain, but observable
objective – allocate aircraft & bombs to targets at each time step

Approach
Markov Task Decomposition (MTD)

offline: solve parameterized MDPs for each target
at each time step, allocate weapons across targets

Results
Synthetic problems: 1000 targets, 10,000 weapons, 100 planes
35 minutes
quality close to DP

Military Air Campaign Planning
[Meuleau et al AAAI-98]

Concurrency (1000)
Unit time actions
Discrete outcomes

Customer: Australian Defence Science & Technology Organisation
Problem:

set of military objectives (propositions)
tasks (durative actions) make propositions true/false
objective - achieve goals

minimize failure, makespan, resource cost
Approach

LRTDP
admissible heuristics – probability, makespan, resource usage
pruning of states not recently visited (LRU)

Results
synthetic problems (85) & military scenarios (2)
biggest: 41 tasks, 51 facts, 19 resource types

10 minutes

Military Operations Planning
[Aberdeen et al ICAPS-04]

Concurrency (8)
Durative actions
Discrete outcomes

Customer: NASA
Problem:

set of science goals w/utilities, time constraints
time & energy limitations
duration & resource usage uncertain (driving)
objective - maximize scientific reward

Approach
ICP w/EUROPA planner
heuristics

branch selection – utility drop
goal selection – orienteering

Results
simulator problems w/upto 20 objectives
K9 rover - small problems (5 objectives)

Rover Planning
[Pedersen et al IEEEaero-05]

Durative actions
Continuous outcomes
Oversubscription
Minor concurrency

Contingency Planner

EUROPA

M
o

n
te C

arlo
 S

im
u

l at o
r

Constraints Constraints

Plan fragment

Evaluation

P

r
r

V

β–planner

Constraint Engine

Branch selection
Condition selection
Goal selection

Planner Architecture

Contingency Plan

Customer: NASA
Problem:

set of science goals w/utilities
objective - maximize scientific reward

Approach
Plangraph construction
DP regression of utility tables through PG

Results
synthetic problems w/upto 5 objectives, 75 paths
40s

Rover Planning
[Meuleau et al AAAI-04 Wkshp]

Oversubscription
Concurrency

g1

g2

g3

g4

V1

V2

V3

V4

r

r

r

r

v
r

v
r

v
r

Incremental approaches
When is contingency planning really needed ?
Combining contingency planning & replanning
Applications

Outline

The End.

References – Incremental Approaches

Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and Washington, R.
Incremental contingency planning. ICAPS-03 Wkshp on Planning under Uncertainty
and Incomplete Information.

Drummond, M.; Bresina, J.; and Swanson, K. Just In-Case scheduling. AAAI-94.

Foss, J., and Onder, N. A hill-climbing approach to planning with temporal
uncertainty. FLAIRS-06.
Foss, J.; Onder, N.; and Smith, D. Preventing unrecoverable failures through
precautionary planning. ICAPS-07 Wkshp on Moving Planning and Scheduling
Systems into the Real World.
Long, D., and Fox, M. Singe-trajectory opportunistic planning under uncertainty. 2002
UK Planning and Scheduling SIG.
Younes, H., and Simmons, R. Policy generation for continuous-time stochastic
domains with concurrency. ICAPS-04.

References – Applications

Aberdeen, D.; Thiébaux, S.; and Zhang, L. Decision theoretic military operations
planning. ICAPS-04.

Meuleau, N.; Dearden, R.; and Washington, R. Scaling up decision theoretic planning
to planetary rover problems. AAAI-04 Workshop on Learning and Planning in Markov
Processes: Advances and Challenges.
Meuleau, N.; Hauskrecht, M.; Kim, K.; Peshkin, L.; Kaelbling, L.; Dean, T.; and
Boutilier, C. 1998. Solving very large weakly coupled Markov Decision Processes.
AAAI-98.

Pedersen, L.; D.Smith; Dean, M.; Sargent, R.; Kunz, C.; Lees, D.; and Rajagopalan, S.
Mission planning and target tracking for autonomous instrument placement. 2005
IEEE Aerospace Conf.

