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Abstract— Social learning in robotics has largely focused
on imitation learning. Here we take a broader view and
are interested in the multifaceted ways that a social partner
can influence the learning process. We implement four social
learning mechanisms on a robot: stimulus enhancement, emula-
tion, mimicking, and imitation, and illustrate the computational
benefits of each. In particular, we illustrate that some strategies
are about directing the attention of the learner to objects and
others are about actions. Taken together these strategies form
a rich repertoire allowing social learners to use a social partner
to greatly impact their learning process. We demonstrate these
results in simulation and with physical robot ‘playmates’.

I. INTRODUCTION

Social partners can guide a learning process by directing
the learner’s attention to informative parts of the environment
or by suggesting informative actions for the learner. Humans
and some animals are equipped with various mechanisms
that take advantage of social partners. Understanding these
mechanisms and their role in learning will be useful in
building robots with similar abilities to benefit from other
agents (humans or robots) in their environment, and explicit
teaching attempts by these agents.

We are motivated by four social learning mecha-
nisms identified in biological systems [Tomasello, 2001],
[Call and Carpenter, 2002]:

o Stimulus (local) enhancement is a mechanism through
which an observer (child, novice) is drawn to objects
others interact with. This facilitates learning by focusing
the observer’s exploration on interesting objects—ones
useful to other social group members.

o Emulation is a process where the observer witnesses
someone produce a goal or particular result on an object,
but then employs its own action repertoire to produce
the result. Learning is facilitated both by attention
direction to an object of interest and by observing the
goal.

e Mimicking corresponds to the observer copying the ac-
tions of others without an appreciation of their purpose.
The observer later comes to discover the effects of the
action in various situations. Mimicking suggests, to the
observer, actions that can produce useful results.

o Imitation refers to reproducing the actions of others to
obtain the same results with the same goal.

Robotics research has often focused on the last and

most complex of these four mechanisms—imitation; working
towards robots capable of reproducing demonstrated
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Fig. 1. Robot playmates Jimmy and Jenny in the playground.
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actions [Shaal, 2002], learning generalized
representations [Pardowitz and Dillmann, 2007],
policies  [Chernova and Veloso, 2007] or a  proto-
language about actions [Billard, 2002]. A body of
research is devoted to finding ways to learn the
imitative behavior itself [Nehaniv and Dautenhahn, 2002],
[Demiris and Hayes, 2002]. Some focus on task-
or goal-level imitation, reproducing the task not
through imitative behavior, but with the robot’s own
actions [Kuniyoshi et al., 1994], [Montesano et al., 2008],

[Jansen, 2005].  This resembles emulation.  Other
work focuses on adjusting a robot’s actions while
imitating a human demonstration. This can involve

extracting trajectory representations in joint and task
space [Calinon and Billard, 2008], dynamical equations to
control the robot’s movements [Pastor et al., 2009] or a
sequence of primitive actions [Amit and Mataric, 2002].

As in previous work [Cakmak et al., 2009], we are inter-
ested in the variety of ways that a social partner influences
learning. In this paper we analyze the impact of stimulus en-
hancement, emulation, mimicking and imitation, articulating
the distinct computational benefits of each mechanism.

We show that all four social strategies provide learning
benefits over self exploration, particularly when the target
goal of learning is a rare occurrence in the environment. We
characterize differences between the four strategies, showing
that the best strategy depends on both the nature of the
problem space and the current behavior of the social partner.

II. APPROACH

In this work, we have a social learning situation composed
of two robot playmates with similar action and perception
capabilities. Our experiments focus on learning the sound-
making affordance for different objects in the environment.



A. Robot Platform

Jimmy and Jenny (Fig. 1) are upper torso humanoids on
wheels built from Bioloid kits and Webcams. Their 8 degrees
of freedom enable arm movements, torso rotation and neck
tilt. The wheels are used to navigate the workspace.

The behavior system is implemented in C6, a branch of
the latest revision of the Creatures architecture for interactive
characters [Blumberg et al., 2002]. This controls the real
robots with percepts from sensors, as well as a simulated
version of the robots with virtual sensors and objects.

The behavior system implements a finite state machine
to control the exploration for collecting experiences. In
individual exploration the robot (i) observes the environment,
(ii) approaches the most salient object, (iii) performs the
selected action, (iv) observes the outcome (sound or no
sound), (v) goes back to its initial position and (vi) updates
the saliency of objects and actions based on its exploration
strategy. In social exploration, after each object interaction
the robot goes into an observing state and performs the same
updates, of object saliency and action desirability, based on
its observation of the other agent’s interaction. Observation
is based on perception and network communication.

B. Learning Task

Our experiments focus on the task of affordance learning—
learning a relation between a context in which an action
produces a certain outcome. This is learned from interaction
experiences consisting of context-action-outcome
tuples [Sahin et al., 2007]. We use a 2-class Support Vector
Machine (SVM) classifier' to predict an action’s effect in
a given environmental context. The SVM inputs are the
perceived features of the interacted object and the parameters
of the action performed on that object. The prediction target
is whether or not this context-action produces sound.
In this framework the robot is simultaneously learning the
object features and action parameters required to produce a
desired effect in the environment.

Our goal is to compare social and individual exploration
strategies, i.e. rules for interacting with the environment
to collect experience tuples. For robot learning, the social
learning mechanisms are ways of guiding the robot’s ex-
ploration of the space. While stimulus enhancement and
emulation direct the learner’s attention to informative parts of
the object space [Cakmak et al., 2009], mimicking guides the
learner in the action space. Imitation combines the benefits
of both types of strategies. The alternative to social learning
is individual learning, in which a robot can use various
exploration strategies.

An exploration strategy is implemented as an attention
mechanism, where each object attribute and action parameter
has a corresponding saliency. The robot always performs
the most salient action on the most salient object. Each
strategy has a different rule for updating saliencies after
every interaction. While individual exploration can take into

IThe choice of classifier is not crucial for the results of this study. SVMs
are widely used discriminative classifiers.

account past experiences, social exploration can also benefit
from observed interactions of the other robot.

C. Objects

The learning environment involves objects with three
discrete perceived attributes: color, size and shape, and one
hidden property of sound-maker. Different environments are
composed of objects with different combinations of these
properties. For instance, all green objects could be sound
makers in one environment, while in another all objects with
a particular shape and size are sound-makers.

Based on prior work [Thomaz and Cakmak, 2009], we
hypothesize that social learning will be especially beneficial
in the case of rare sound-makers; thus, we systematically
vary the frequency of sound-makers in the environment to
compare various individual and social exploration strategies.

The simulation environment has 24 objects with different
attributes (one of 4 colors, 3 sizes and 2 shapes). We control
the percentage of objects in the environment that produce
sound, resulting in six learning environments with 75%,
50%, 25%, 17%, 8%, and 4% sound-makers. The physical
experiments have 4 objects (2 colors, 2 sizes), in one of two
learning environments where (i) all small objects make sound
(50%) and (ii) only one object makes sound (25%).

D. Actions

The playmates’ action set has two actions: poke—a single
arm swing (e.g., for pushing objects) and grasp—a coordi-
nated swing of both arms. Both involve an initial approach to
an object of interest, and are parametrized with the following
discrete parameters (i) acting distances and (ii) grasp width
or (iii) poking speed. In simulation we use 24 different
actions (poke or grasp, 3 grasp widths, 3 poke speeds and 3
acting distances). On the physical robots there are 18 possible
actions (3 action parameters per distance).

As with objects, we vary the frequency of sound-producing
interactions by tuning the actions to have different effects on
the objects, yielding different learning problems (i.e., sound-
making rareness); for example, by making only one or both
of the actions able produce sound and by varying the range of
grasp width, poking speed and acting distance within which
an action produces sound.

In the simulation experiments, we have six cases in which
75%, 50%, 25%, 17%, 8%, and 4% of the action set are able
to produce sound when executed on a sound-maker object. In
the physical experiment we consider only two cases in which
(1) poke always produces a sound (50%) and (ii) only one
particular set of parameters for the grasp produces a sound
and poke does not produce a sound (3%).

III. EXPERIMENTS

We conducted a series of experiments, each collects one
data set of experience which is then used to train a sound-
maker SVM classifier. In each experiment the learner uses a
particular exploration strategy, given an environmental con-
text (object/action sound-maker frequency), and the social
partner has a pre-defined behavior. This section describes
the exploration strategies and social partner behaviors.



A. Individual Learning

As a baseline for comparison with social learning, three
individual exploration strategies are implemented.

1) Random: In each interaction, the saliency of each
object attribute and action parameter is randomized, and the
robot selects the most salient object and action.

2) Goal-directed: In this strategy, the robot interacts with
objects similar to ones that have given the desired effect
previously using actions similar to those that previously pro-
duced sound. If an interaction produces sound, the saliency
of attributes and action parameters used in that interaction
are increased and the saliency of others are decreased. When
there is no sound, the random strategy is used.

3) Novelty-based: The third strategy is based on a pref-
erence for novel objects and actions. After every interaction
the saliency of attributes of the object that was interacted
with is decreased, while the saliency of different attributes
is increased. Actions and action parameters are altered sim-
ilarly.

B. Social Learning

We implement four social exploration strategies.

1) Stimulus Enhancement: The robot prefers to interact
with objects that its playmate has interacted with. After every
observed interaction, the learner increases the saliency of
attributes of the object that the social partner has interacted
with and decreases others.

2) Emulation: The robot prefers objects seen to have
given the desired effect. If an observed interaction produces
sound, the saliencies of the attributes of the object used are
increased. Otherwise, the saliencies are randomly increased
or decreased.

3) Mimicking: This strategy involves copying the actions
of the social partner. We implement two versions:

e Blind: The learner mimics every action of its partner.
e Goal-based: The learner mimics actions only after it
observes the goal.

Use of the term ‘mimicking’ in animal behavior literature
is closer to blind, but this distinction is useful in illustrating
computational differences between the social mechanisms.

4) Imitation: In imitation, the learner focuses on the
objects used by its social partner and copies the actions of
the social partner. Again, there are two versions:

e Blind: The learner always imitates its social partner.

e Goal-based: It imitates after it observes the goal.

Both stimulus enhancement and emulation influence object
attribute saliencies, but do not imply anything about actions.
Action selection is random in these strategies. On the other
hand, mimicking influences action saliencies while having
no implication on objects. Object saliencies are updated
randomly in mimicking. Imitation combines the strength of
both, varying both the object and action saliencies based on
the observation of the social partner. The implementation of
the mechanisms and their use of object, action and result
components of the demonstration are summarized in Fig. 2.

DEMONSTRATION

[object; ; result] Social partner
SOCIAL EXPLORATION Learner
OBJECT ATTENTION ACTION SELECTION
Stimulus Enhancement Mimicking (blind)
increase object saliency increase saliency

Emulation Mimicking (goal-based)
if (result = goal) if (result = goal)
increase object saliency increase saliency
else else
randomize object saliency randomize saliency

BOTH \ /

Imitation (blind)
increase object and

saliency

Imitation (goal-based)
if (result = goal)
increase object and
else
randomize object and

saliency

saliency

Fig. 2. Implementation of the social learning mechanisms and their use of
object, action and result information from the social partner’s demonstration.

C. Social Partner Behavior

The behavior of the social partner has a crucial effect on
the learner. With particular social partner behaviors, these
strategies can become equivalent. For instance if the partner
produces a sound with every interaction, stimulus enhance-
ment and emulation behave very similarly. If the partner
explores objects and actions randomly, a learner that blindly
imitates will learn as if it was exploring randomly itself.
Therefore to compare the strategies fairly, we systematically
vary the behavior of the social partner.

There are four possible types of demonstrations in terms
of the useful information communicated to the learner:

o Goal-demonstration: The learner’s target goal (sound)
is shown with an appropriate action (a sound-producing
action) and appropriate object (a sound-maker object).

e Action-demonstration: A sound-producing action is
demonstrated on a non-sound-maker object.

o Object-demonstration: A non-sound-producing action is
performed on a sound-maker object.

o Negative-demonstration: A non-sound-producing action
is performed on a non-sound-maker object.

Social partner behaviors emerge as a result of different
demonstration preferences. We consider three behaviors,
summarized in Table I:

a) Social partner with same goal: In this case, the goal
of the social partner largely overlaps with that of the learner.
The partner spends a lot of time demonstrating the goal.

b) Social partner with different goal: Here, the goal of
the partner has a small overlap with the learner and it spends
little time demonstrating the goal.

¢) Social partner with focused demonstration: In the
third case the partner spends most of its time focusing either
on the target action or object, without producing the goal.



TABLE I
DEMONSTRATION TYPE PREFERENCES FOR THREE SOCIAL PARTNER

BEHAVIORS.
Demo. Type Same-goal | Different-goal | Focused-demo.
Goal-demo. 60% 20% 20%
Action-demo. 20% 20% 80/0%
Object-demo. 20% 20% 0/80%
Neg.-demo. 0% 40% 0%
IV. RESULTS

We first present results from simulation for all environ-
ments, exploration strategies and social partner behaviors.
Different environments have different frequencies of sound
producing interactions. We first keep the percentage of sound
producing actions constant at 25% and vary the sound-maker
object rareness; and then keep the object percentage constant
at 25% and vary the percentage of sound producing actions.
We compare all of the individual and social exploration
strategies described in Sec. III-A and III-B with each social
partner behavior described in Sec. III-C. Then we present
results from the physical robots in a simplified environment.

Our performance measure is recall rate’ in prediction
of the effect for all object—-action combinations. This
involves 576 (24x24) test cases in simulation and 72 (4x18)
test cases in the physical experiment. The classifiers are
trained in a batch mode after 28 interactions in simula-
tion and 8 interactions in the physical robot experiment.
These numbers correspond to a small subset of all possible
interactions (5% and 10% respectively for simulation and
physical experiments). The experiments are repeated 200
times in simulation and 5 times on the physical robots
with random initialization for each environment. We report
average performance across these experiments.

Fig. 3 gives a comparison of individual and social learning
mechanisms in environments with different sound-maker fre-
quencies (the social partner for the social learning strategies
has the same goal). Performance of social learning with a
same goal social partner is presented again in Fig. 4 for
environments with different sound-maker object frequencies
and different sound producing action frequencies. Similarly,
performance for learning with a different goal social partner
is given in Fig. 5; and for learning with a focused demon-
strations social partner is given in Fig. 6. In this section,
we analyze these results with respect to the environments in
which each strategy is preferable. The effect of sound-maker
rareness on learning performance, as determined by one-way
ANOVA tests, are reported on each graph. Additionally, the
significance level of the difference between the two strategies
plotted in each graph according to a T-test are indicated (* for
p < .05, ** for p < .005). The T-tests indicate the difference
between the blind and goal-directed versions of the strategies
that focus on a particular aspect of the learning space (object
space, action space or both).

2Recall corresponds to the ratio of true positives and the sum of true
positives and false negatives. Due to space limitations, in this paper we
restrict our analysis to effects on recall rate.
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Fig. 3. Comparison of individual and social learning mechanisms for
different sound-maker object frequencies. The social partner has the same
goal as the learner.

A. Individual exploration

In Fig. 3 we observe that social learning usually out-
performs individual learning. However, when the learned
affordance is not rare, random and novelty-based exploration
have comparably high performance. Individual learning in
such cases has two advantages: (1) it does not require social
partners and (2) it is less perceptually demanding on the
learner in terms of identifying social partners and perceiving
actions performed and objects used.

Additionally, individual strategies can do better in en-
vironments with high sound-maker frequency when they
are allowed to interact for a longer duration. For in-
stance doubling the number of training interactions raises
the performance of random and novelty-based exploration
to 90-100% in environments with 75% and 50% sound-
makers [Cakmak et al., 2009]. Since there’s no requirement
of a social partner, it’s acceptable to perform individual
exploration for longer durations to collect more interaction
samples.

B. Social exploration: Paying attention to objects

As observed in Fig. 4(a), increasing object rareness does
not affect the performance of object focused strategies (stim-
ulus enhancement and emulation) but it significantly reduces
the performance of action focused strategies (mimicking).
This suggests that when the object with the desired affor-
dance is very rare, it is useful to let the social partner point
it out. By randomly exploring actions on the right object the
learner can discover affordances.

C. Social exploration: Paying attention to actions

Similarly, when the sound producing actions are rare,
doing the right action becomes crucial. Performance of
mimicking stays high over reducing sound-producing action
frequencies (Fig. 4(b)).
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Fig. 4. Comparison of social learning mechanisms for (a) different
sound-maker object frequencies and (b) different sound producing action
frequencies. The social partner has the same goal as the learner.

Practically, mimicking will often be more powerful than
the object-focused strategies since action spaces are usually
larger than object spaces (which are naturally restricted
by the environment). For instance, the most salient feature
combination may be large-red-square, but if there’s no such
object the robot may end up choosing small-red-square.
Generally, all feature combinations are not available in
the environment, but all actions are. In these experiments,
action and object spaces had the same number of possible
configurations, thus having similar rareness effects.

D. Social exploration: Imitation

Following from the previous two cases when everything
is rare the most powerful strategy is imitation. As observed
from Fig. 4 imitation performs well in all environments.
This raises a question as to why imitation should not be
the default strategy. There are two main disadvantages to
always using imitation. First, it is the most computationally
demanding for the learner; it requires paying attention to
the context and and the action. Second it is also demanding
of the demonstrator. For instance in the case where sound-
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Fig. 5. Comparison of social learning mechanisms for (a) different
sound-maker object frequencies and (b) different sound producing action
frequencies when the social partner has a different goal.

maker objects are rare but the sound producing action is not,
the demonstrator can just perform an object-demonstration
rather than a goal-demonstration (Sec. III-C). A robot could
be equipped with other means for directing the attention
of the learner to the right object without a demonstration.
Examples include pointing to the object, pushing the object
towards the learner, shaking the object, gazing at the object
or putting away all other objects.

E. Social exploration: Paying attention to the goal

The performance of stimulus enhancement and emulation
are very similar in Fig. 4. Likewise there are very few signif-
icant differences between goal-based and blind strategies for
mimicking or imitation. This suggests that when interacting
with a social partner with the same goal as the learner, paying
attention to the effect of demonstrations is less important.
The attention of the learner is already attracted to the object
that was interacted with, which happened to also produce
sound since a high fraction of the demonstrations do so.
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Fig. 6. Comparison of social learning mechanisms for (a) different sound-
maker object frequencies when the social partner demonstrates the sound-
maker objects and (b) different sound producing action frequencies when
the social partner demonstrates the sound producing actions without actually
producing sound—focused demonstration

If the social partner has a different goal we observe
that the performance of blind strategies is lower than that
of goal-based strategies as shown in Fig. 5. In this case,
blindly copying aspects of the demonstration results in an
exploration focused on the wrong objects or actions. In
other words they are misled to uninformative parts of the
context and action spaces. Goal-based strategies, on the
other hand, only pay attention to the social partner’s useful
demonstrations. The rest of the time they randomly explore
based on this useful information and thus have a higher
chance to discover and gain experience with sound-makers.

In Fig. 6 we observe that the performance of the blind
strategies are better than those of the goal-based strategies
when the social partner performs focused demonstrations of
objects or actions without producing the desired effect. The
blind strategies benefit from these demonstrations by being
directed to the right parts of their action or context space
while the goal-based strategies ignore these demonstrations.

Focused demonstration can be considered a typical kind

of teaching behavior. A teacher who is trying to teach a
particular action might demonstrate it on a different object.
Similarly, a teacher might present objects that are known
to have useful affordances to the learner but let the learner
discover what actions produce the desired effects on the
object. In such cases it is useful to trust the teacher even
if the goal has not been observed. By trusting the teacher
the learner later comes to uncover the use of copied actions
or objects.

FE. Asymmetry between object and action spaces

It can be noticed that the performance in similar parts
of the object and action space are not exactly symmetric for
similar behaviors. For instance in Fig. 5, in (a) at high sound-
maker object frequencies the performance of emulation is as
high as 90-100%, whereas in (b) at high sound-producing ac-
tion frequencies the performance of goal-directed mimicking
is about 70%. This is due to a subtle difference between the
representation of object and action spaces. The action space
consists of two independent smaller subspaces corresponding
to each action. Learning about the parameters of one action
does not provide any information for the other action and
therefore both actions need to be explored sufficiently. For
instance if the robot is performing a grasp, the values of
poking parameters are meaningless. Additionally the robot
needs to simultaneously learn which action is useful in a
given situation, as well as its parameters. On the other hand
interaction with one object provides information about all
attributes in the object space since all objects are represented
with a value for each attribute. This makes the action space
harder to explore than the object space. As a result the
performance of object focused strategies in the object space,
is better than the performance of action focused strategies in
the action space.

G. Validation on the Physical Robots

A simplified version of the simulation experiments were
run on the physical robots as described in Section III. Table II
gives the results of learning in four different environments for
two strategies: stimulus enhancement and blind mimicking.
The social partner in this experiment always demonstrates
the goal. The given results are the averages over five runs of
ten world interactions. The results support our findings from
the simulation experiment that the performance of stimulus
enhancement is less affected by decreasing sound-maker
percentage, while the performance of mimicking is less
affected by the decreasing sound-producing action frequency.
Furthermore, due to the asymmetry in the action and context
spaces we observe that the reduction in the performance of
mimicking is less severe.

V. DISCUSSION

As expected from prior work, social learning is better than
individual learning, particularly when the learned affordance
is rare. In this work we’ve shown the computational benefits



TABLE I
RECALL RATE IN PHYSICAL ROBOT EXPERIMENTS.

Environment Stim. | Mimi.
Act.:50%, Obj.:50% | 70% 100%
Act.:50%, Obj.:25% | 86% 60%
Act.:3%, Obj.:50% 0% 100%
Act.:3%, Obj.:25% 20% 100%

of four biologically inspired mechanisms: stimulus enhance-
ment, emulation, mimicking, and imitation. We find that
each social learning mechanism has benefits over the others
depending on the environment and the partner’s behavior.
If the learner is in an environment where the objects
that produce the goal are rare, then the mechanisms related
to object saliency (stimulus enhancement, emulation, and
imitation) perform best. Furthermore, all are equally good
if the partner is actively demonstrating the goal. However, if
the social partner is demonstrating other goals, or only one
aspect of the goal (either action or object), then emulation
and goal-based imitation outperform stimulus enhancement.
Alternatively, in an environment where only a few specific
actions produce the goal, then action oriented mechanisms
(mimicking and imitation) are best. Again, when the social
partner is demonstrating the goal, both do equally well;
otherwise, goal-based mimicking and imitation are preferred.
Not surprisingly, goal-based imitation is robust across test
scenarios. However, what we have shown is that in various
environmental and social contexts, simpler mechanisms can
provide benefits on par with imitation. This is an important
point for the robot learning community since these alterna-
tives may be easier to implement and less computationally
intensive; for example, not requiring full activity recognition.
Additionally, in some scenarios goal-based imitation may
not be possible. When the agents have different action
repertoires emulation is most useful because the learner may
not be able to understand/perform the demonstrated action.
Thus, we argue that to best take advantage of a social
environment robots need a repertoire of social learning
mechanisms inspired by those seen in biological systems. An
interesting area for our future work is to devise a framework
in which all four mechanisms can operate simultaneously; the
challenge becomes appropriately switching between strate-
gies. A naive approach could adopt a new strategy when the
current one ceases to be informative. A more sophisticated
approach might look for social or environmental “cues” that
indicate what “kind” of social partner is present.

VI. CONCLUSION

We presented a series of experiments on four social learn-
ing mechanisms: stimulus enhancement, emulation, mimick-
ing, and imitation. We looked at the task of a robot learning a
sound-making affordance of different objects, while another

robot (a social partner) interacts with the same objects.
The contribution of this work is the articulation of the
computational benefit of these four social learning strategies

for a robot learner. The fact that each strategy has benefits
over others in different situations indicates the importance of

a social learner having all of these strategies available.
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