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ABSTRACT
Kinesthetic teaching is an approach to providing demonstra-
tions to a robot in Learning from Demonstration whereby a
human physically guides a robot to perform a skill. In the
common usage of kinesthetic teaching, the robot’s trajectory
during a demonstration is recorded from start to end. In this
paper we consider an alternative, keyframe demonstrations,
in which the human provides a sparse set of consecutive
keyframes that can be connected to perform the skill. We
present a user-study (n = 34) comparing the two approaches
and highlighting their complementary nature. The study
also tests and shows the potential benefits of iterative and
adaptive versions of keyframe demonstrations. Finally, we
introduce a hybrid method that combines trajectories and
keyframes in a single demonstration.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; H.1.2 [Models
and Principles]: User/Machine Systems

General Terms
Experimentation, Design

Keywords
Learning from Interaction

1. INTRODUCTION
The goal of Learning from Demonstration (LfD) is to en-

able humans to program robot skills by showing successful
examples [4]. There are various ways that this demonstra-
tion can take place. In this work we focus on “kinesthetic
teaching” whereby a human teacher physically guides the
robot in performing the skill, as in Fig. 1.

Kinesthetic teaching has several advantages for LfD. Since
the teacher is directly manipulating the robot there is no
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Figure 1: Simon interacting with a teacher.

correspondence problem and demonstrations are restricted
to the kinematic limits (e.g. workspace, joint limits) of the
robot. Moreover, extra hardware/instrumentation, such as
motion capture or teleoperation devices, is not necessary.

While there has been much work on representations and
learning algorithms, the usability of kinesthetic teaching has
not been explored in depth. Kinesthetic teaching may be
challenging for everyday users who do not have experience
manipulating a robot arm with many degrees of freedom.

In many practical LfD applications (e.g., homes, schools,
hospitals), the teacher will not be an expert in machine
learning or robotics. Our research identifies challenges that
everyday users face with common robot learning methods
and investigate improvements to these methods to increase
their effectiveness.

In the typical kinesthetic teaching interaction, and most
LfD interactions, each demonstration is an entire state tra-
jectory, which involves providing a continuous uninterrupted
demonstration of the skill. In this paper, we explore the al-
ternative of providing a sparse set of consecutive keyframes
that achieve the skill when connected together. We present
an experiment that compares these through quantitative
measures, survey results and expert evaluations. We find
that both are suitable to kinesthetic teaching from the user’s
perspective and both communicate different information.
We also present two modified keyframe interactions and eval-
uate their utility. Based on our findings, we introduce a way
to merge trajectory and keyframe demonstrations to take
advantage of their complementary nature.



2. RELATED WORK
There are several methods for learning skills, which mostly

fit into two groups: direct policy learning and cost/reward
learning. Dynamical system approaches such as Stable Es-
timator of Dynamical Systems (SEDS) [13] and Dynamic
Movement Primitives (DMP) [17] and mixture models (e.g.
Gaussian Mixture Models as in [10]) fall into the former and
inverse reinforcement learning (IRL) [1] or apprenticeship
learning fall into the latter. These methods are designed for
different skill types and all have their pros and cons. Apart
from GMMs and DMPs, most methods require many train-
ing samples which is not suitable for a short-duration HRI
study. However, DMPs and GMMs have either implicit or
explicit time dependency. Most of the methods either can-
not handle cyclic skills or they need to be reformulated. We
chose GMMs as our skill learning algorithm for the follow-
ing reasons: GMMs can be learned with a low-number of
demonstrations, can be trained in interaction time, can han-
dle cyclic skills as well as point to point skills, GMMs can
be modified slightly to handle keyframe demonstrations (see
Section 4.2.2), and the fact that we do not need temporal
robustness (e.g. the robot will not be stopped in the middle
of the motion) for our experiments.

In kinesthetic teaching, demonstrations are often repre-
sented as arm joint trajectories and/or end-effector path [9,
12]. Some also consider the position of the end-effector with
respect to the target object of the skill [5, 11]. Typically
start and end points of a demonstration are explicitly demar-
cated by the teacher. Most studies subsample the recorded
data with a fixed rate [3, 5]. Demonstrations are often time
warped such that a frame-by-frame correspondence can be
established between multiple demonstrations [12].

Keyframes have been used extensively in the computer
animation literature [16]. The animator creates important
frames in a scene and the software fills in-between. In the
LfD setting, an earlier work [15] utilizes via-points, which are
similar to keyframes. These are extracted from continuous
teacher demonstrations and updated to achieve the demon-
strated skill. A recent approach is to only record keyframes
and use them to learn a constraint manifold for the state
space in a reinforcement learning setting [6]. In this paper
we consider both trajectory and keyframe representations.

Human-robot interaction (HRI) has not been a focus of
prior work on kinesthetic teaching, but there are a few exam-
ples. In [18], kinesthetic teaching is embedded within a dia-
log system that lets the user start/end demonstrations and
trigger reproductions of the learned skill with verbal com-
mands. A modification to the kinesthetic teaching interface
is kinesthetic correction [7, 8], where the teacher corrects as-
pects of a learned skill in an incremental learning interaction
by using a subset of joints in subsequent demonstrations. In
another study [14], four types of force controllers that effect
the response to users are evaluated for kinesthetic teaching.
The study addressed human preferences on which controller
was the most natural.

While various learning methods for kinesthetic teaching
have been explored, there is a lack of studies with end-users
testing the effectiveness of these techniques in terms of HRI.
This is the focus of our work.

3. PLATFORM
Our robotic platform in this work is “Simon,” an upper-

torso humanoid social robot with two 7-DoF arms, two 4-
DoF hands, and a socially expressive head and neck, includ-
ing two 2-DoF ears with full RGB spectrum LEDs (Fig. 1).
Simon is designed for face-to-face human-robot interaction.
Simon’s arms have compliant series-elastic actuators with
stiffness that can be dynamically changed. We use Microsoft
Windows 7 Speech API for speech recognition.

4. DEMONSTRATION METHODS
We explore three different ways for teachers to demon-

strate skills: trajectory demonstrations, keyframe demon-
strations, and keyframe iterations. In all three, users physi-
cally manipulate the robot’s right arm, which is gravity com-
pensated, to teach it skills (Fig.1). In this section we detail
the implementation of each kinesthetic teaching mode.

4.1 Trajectory Demonstrations

4.1.1 Interaction
The teacher is informed that the robot will record all the

movement they make with its right arm. The teacher ini-
tiates the demonstration by saying “New demonstration”,
moves the arm to make the robot perform the skill and fin-
ishes by saying “End of demonstration.” This process is
repeated to give as many demonstrations as the person de-
sires. After a demonstration, the teacher can use the speech
command “Can you perform the skill?” to have the robot
perform the current state of the learned skill and adjust
his/her demonstrations to attend to any errors.

4.1.2 Learning
Joint angle trajectories are recorded as the teacher moves

the robot’s arm to perform the skill. As mentioned previ-
ously, we use GMMs as our skill learning algorithm [10].

The data is subsampled in the time dimension to a con-
stant length before being input to the learning algorithm.
In our case, learning is done in an eight dimensional space
(7 joint angles over time). First, we use the K-means al-
gorithm with a constant k. The resulting clusters are used
to calculate initial mean vectors and covariance matrices for
the expectation-maximization (EM) algorithm. The EM al-
gorithm is run to extract a Gaussian-Mixture Model (GMM)
from the data. The resulting GMM has k sub-populations
which is kept constant during our experiments. Gaussian-
Mixture Regression (GMR) is used to generate a trajectory
to perform the learned skill. The desired time dimension
vector is given to GMR which in turn generates the joint
positions. Note that the algorithm can learn from either a
single or multiple demonstrations.

4.2 Keyframe Demonstrations

4.2.1 Interaction
The teacher is informed that the robot will only record the

arm configuration when they say “Record frame”, and it will
not record any movements between these keyframes. The
teacher can use the speech commands “New demonstration”,
“End of demonstration” and “Can you perform the skill?” in
the same way as trajectory mode.

4.2.2 Learning
The resulting data from this interaction is a sparse trajec-

tory of joint angles. If the teacher forgets to give keyframes



for the start or the end position, these are added automati-
cally. We generate time information for each keyframe using
the inter-frame distance and a constant average velocity.

Learning is slightly different than the previous case, but
the space is the same. Again K-means is the first step, but
now the number k is chosen to be the maximum number
of keyframes across all demonstrations provided for a skill.
Then a GMM is learned in the same way as the trajectory
version. To generate the skill, the GMM sub-population
means are traversed by splining between them. We took such
an approach since the GMM sub-population means obtained
from the keyframe version will be of different nature than the
ones obtained from the trajectory version. With keyframes,
it is more likely to be a transition between two trajectory
segments whereas with trajectories it is more likely to be a
mid-point of a trajectory segment [10]. Thus, we need to
control the velocity at each keyframe.

4.3 Keyframe Iterations
We implemented an augmented version of keyframe demon-

strations, in which a new demonstration is an iteration of the
current learned skill.

4.3.1 Interaction
In this mode, an initial demonstration is provided using

keyframe demonstrations. Then the teacher can navigate
through and edit the frames of this demonstration to cre-
ate additional demonstrations. The teacher uses the speech
command “Next frame”, and “Previous frame” to navigate
through the keyframe demonstration. At any keyframe,
“Modify this frame” can be used to modify the arm con-
figuration of the keyframe. “Add new frame” adds a new
frame after the current frame. “Delete this frame” deletes
the current frame. Also, the teacher can say “Play current
demonstration” to see the modified demonstration before
submitting it to the learning set. “Record this demonstra-
tion” submits the current demonstration to the learning set.
As in the previous modes, the teacher can play the learned
skill with “Can you perform the skill?”

4.3.2 Learning
Learning is the same as in keyframe demonstrations. We

implemented iterations only for keyframes since implement-
ing a similar extension for trajectory demonstrations is non-
trivial. It is difficult to tie partial trajectories together.
Moreover, speech commands might not give the necessary
precision for navigating through a trajectory and modifying
it. This is an interesting topic for future work.

5. EXPERIMENTS
Our experiments address three research questions: (Q1)

When everyday people teach the robot, what are the ef-
fects of each demonstration type? (Q2) Does the teaching
method have any effect on learning different types of skills?
(Q3) Can simple extensions to keyframe demonstrations (it-
eration and adaptation) increase performance/preference?

5.1 Experimental Design

5.1.1 Skills
We differentiate between two types of skills. Goal-oriented

skills are related with achieving a particular world state

(a) Insert (b) Stack (c) Touch (d) Close

(e) Salute (f) Beckon (g) Raise (h) Throw

Figure 2: Goal-oriented (a-d) and means-oriented
(e-h) skills.

(e.g., finger tip on a point while avoiding obstacles.) Means-
oriented skills, on the other hand, include a gesture or com-
municative intent. We use four skills of each type, see Fig.2.

The goal-oriented skills are as follows. (Fig. 2(a-d)). In-
sert: insert the block in hand through the hole without
touching other blocks. Stack: stack the block in hand on
top of another block on the table. Touch: touch a certain
point with the finger tip. Close: close the lid of a box
without moving it.

There is a single goal position per skill for the ease of
the experiment. Multiple goal positions would prolong the
experiment and our aim is not to analyze the generalization
properties of the methods but rather to analyze the utility
of the keyframe demonstrations from a user’s perspective.

The means-oriented skills are as follows. (Fig. 2(e-h)).
Salute: perform a soldier’s salute. Beckon: perform a
gesture asking someone to come closer. Raise-hand: raise
the robot’s hand as if it is asking for permission. Throw:
perform a throwing gesture with a ball (without actually
releasing the ball).

5.1.2 Conditions
Our experiment has four conditions, and we use a within-

subject design. Three conditions correspond to the teaching
methods in Sec.4. In addition, a fourth condition tests the
effect of the initial demonstration in keyframe iterations.

• Trajectory Demonstrations (TD): Participants give one
or more trajectory demonstrations for each skill.

• Keyframe Demonstrations (KD): Participants give one
or more keyframe demonstrations for each skill.

• Keyframe Iterations (KI): Participants give keyframe
iterations to teach the skills.

• Keyframe Adaptation (KA): Participants start with a
predefined, slightly failing skill (e.g. touch is off by a
few centimeters), instead of giving her/his own initial
demonstration. They use the KI interaction to navi-
gate and edit the frames to improve this skill.
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Figure 3: Histogram of number of demonstrations
provided by participants in KD and TD conditions.

For Q1, effect of demonstration type, we compare TD and
KD conditions. For Q2, learning of different skill types, we
compare, goal-oriented and means-oriented skills in TD and
KD conditions. For Q3, effect of extensions to keyframes,
we first compare KD and KI, then compare KI and KA.

5.2 Experimental Protocol
The participants first teach the robot in the TD and KD

conditions. The order of these two is counterbalanced. Af-
ter these two conditions, KI and KA conditions followed.
Thus the order was (TD | KD)→KI→KA. This ordering
is to prevent biasing a participant in the KI condition with
the predefined skill we use in the KA condition. We var-
ied the type of skill taught to the robot across the TD and
KD conditions, each participant taught one means-oriented
skill, and one goal-oriented skill in these modes. Only goal-
oriented skills were used in KI and KA conditions, to reduce
experiment duration.

At the beginning of each condition, participants taught a
pointing skill to the robot for familiarization with the con-
dition. Participants were also allowed to move the robot’s
arm to practice before recording demonstrations.

5.3 Measures
We asked 7-point Likert-scale questions, administered af-

ter each condition, about Feel, Naturalness, Ease, and En-
joyability. We also asked open-ended questions after the first
two conditions and at the end of the experiment.

Two different methods were used to measure the quality
of the different types of learned skills. We evaluated the
goal-oriented skills with three levels of success criteria, and
the means-oriented skills with expert ratings.

The performance of goal-oriented skills were scored sepa-
rately by the two of the authors, using three levels of success
criteria Success-PartialSuccess-Fail. The scoring was based
both on the recoded videos of the experiment and on the
skill performances recreated on the robot. In the few cases
where there was disagreement, the two coders revisited the
example and reached a consensus on the scoring.

Unlike the goal-oriented skills, success for means-oriented
skills is subjective. Therefore, we used expert ratings of
the recreated movements to evaluate the performance. The
experts, whose specialities are in computer animation, are
asked to answer three 7-point Likert-scale questions for all
means-oriented skills taught by all participants. The ques-
tions are about appropriate emphasis, communicating intent,
and closeness to perfection.

Figure 4: An example, in the KD condition, of
forgetting obstacle avoidance keyframes in a first
demonstrations (dashed line), and providing them in
a second (solid line) while teaching the Touch skill.

We also measured the number of demonstrations, the num-
ber of keyframes, the time stamps for every event, and all
trajectories of the joint movement during demonstrations.

6. RESULTS
We conducted a study with 34 participants (6 females, 28

males between the ages of 19-47), who were undergraduate
and graduate Georgia Institute of Technology students with
no previous machine learning and robotics experience. 22 of
the participants taught Simon in all four conditions, while 12
only performed the first two conditions. The means-oriented
skills were rated by two animation experts.

6.1 Trajectory vs Keyframe Demonstrations
First we compare the TD and KD experimental condi-

tions, making five observations. 1

6.1.1 Single demonstrations are common
Users were able to see what the robot has learned after

each demonstration and either decide to move on or give
another demonstration. Fig. 3 shows the number of demon-
strations provided by participants in TD and KD. We see
that teaching with a single demonstration was common in
both modes. For goal-oriented skills, a larger portion of the
participants provided a single demonstration in the TD con-
dition than in the KD condition (19 versus 10). It was com-
mon in the KD condition to forget to provide keyframes that
allow the robot to avoid obstacles while trying to achieve the
goal. These frames were provided by participants in sub-
sequent demonstrations after observing the performed skill
colliding with obstacles (e.g. see Fig. 4). For means-oriented
skills, teaching with a single demonstration was more com-
mon in the KD condition than in TD (31 versus 26).

6.1.2 Trajectory demonstrations may be better at teach-
ing goal skills in a single demonstration.

Table 1 provides the distribution of participants according
to the success of the goal-oriented skills they taught2. More
participants achieved success in TD as opposed to KD (15
versus 5) when they taught with a single demonstration.

The large number of single demonstration instances is an
artifact of our experimental design. The skills used in our
experiments were chosen to be fairly easy to achieve, there
was only a single goal location and participants were al-
lowed to practice a particular skill before providing an actual

1We note that all of our observations reported in this section
did not vary across particular skills.
2We treat success levels of skills as ordinal data.



Table 1: Number of participants who achieved dif-
ferent levels of success for goal-oriented skills.

Cond. # of demo. Success Partial Success Fail

TD
Single 15 4 1

Multiple 1 5 8
Total (%) 16 (46) 9 (27) 9 (27)

KD
Single 5 5 1

Multiple 4 9 10
Total (%) 9 (27) 14 (41) 11 (32)

KI
Single 4 0 2

Multiple 6 4 6
Total (%) 10 (46) 4 (18) 8 (36)

KA
Single 6 2 1

Multiple 8 4 1
Total (%) 14 (64) 6 (27) 2 (9)

demonstration of the skill. We observed that this practice
opportunity was used more in the TD condition, where peo-
ple often practiced enough to be able to teach the skill in a
single demonstration. To quantify this observation we an-
alyzed the total movement of the arm during the practice
sessions measured in the 7DOF joints space. We designate
“minimal practice” to mean that movement in the practice
session is less than 10% of average movement of all practice
sessions. We observed that 17 practice sessions in the KD
condition can be classified as minimal under this definition,
while only 4 of the TD sessions are minimal. This supports
our anecdotal observation that practice is more likely to be
skipped in the KD condition.

Secondly, as mentioned earlier, participants often do not
think of providing keyframes for obstacle avoidance in their
first demonstrations. In some cases this does not effect skill
success in terms of achieving the goal (i.e. partial success)
and participants could be satisfied by this since they were
not explicitly told to avoid collisions. A large portion of the
participants who provided a single demonstration in the KD
condition at least achieved partial success.

6.1.3 Keyframe demonstrations may result in prefer-
able means-oriented skills

Table 2 summarizes the expert ratings for the means-
oriented skills taught by participants. Both experts rated
the means-oriented skills learned in KD condition higher in
all three dimensions on average. The difference was only
significant for closeness to perfection, and the difference is
marginally significant when the three scales are averaged
(Z=2740, p=0.06 on Wilcoxon signed rank test). This dis-
tinction is partly related to the difficulty of moving a 7-DOF
arm smoothly in the TD condition.

6.1.4 Participants like both trajectory and keyframe
Analyzing participant’s Likert responses, we found all rat-

ings were biased towards higher values, and none of the mea-
sures showed a statistical difference between TD and KD
(based on paired Wilcoxon signed rank tests). We observe
that participants’ ratings are correlated with their success
in teaching the goal-oriented skills (r=.31, p<.001 in Spear-
man’s rank correlation test, assuming Fail:1, Partial:2 and
Success:3). As a result, when the participants are grouped

Table 2: Expert ratings of means-oriented skills:
Median and Coefficient of Dispersion

Cond. Expert Emphasis Intent Perfection

TD
1 5.5 (0.27) 5 (0.33) 5 (0.35)
2 3 (0.29) 3.5 (0.38) 4 (0.3)

KD
1 6 (0.21) 6 (0.17) 6 (0.2)
2 4 (0.21) 4 (0.24) 5 (0.22)

TD versus KD Z=2679, Z=2677, Z=2796,
(Wilcox s.r. test) p=0.10 p=0.11 p=0.03
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Figure 5: Subjective ratings of TD and KD condi-
tions for goal-oriented skills separated by the num-
ber of demonstrations provided by the participant.

into ones that provide a single demonstration and ones that
provide multiple demonstrations, we find that participants
who provided multiple demonstrations felt more comfortable
with keyframe demonstrations (V=98, p < 0.05 in unpaired
Wilcoxon signed-rank test). This difference is not seen in
participants who provided single demonstrations.

6.1.5 Trajectory demonstrations require less time
Providing one demonstration in the TD condition took

participants on average 19.34sec (SD=7.65), while it took
34.37sec (SD=12.79) in the KD condition. There are two
reasons for this difference. First one is that participants
could freely move the arm before providing a keyframe in
the KD condition. Thus, they used more time during the
demonstration to think about the next keyframe that they
wanted to provide and adjust the arm for it. This is sup-
ported by the comparison of all arm movements in the KD
condition between keyframes (which was recorded for refer-
ence) and arm movements in the trajectory demonstrations
provided in the TD condition. We find that the average arm
movement per demonstration per person in the TD condi-
tion is about 82% of that of the KD condition, although this
difference is not statistically significant (t(112)=1.54, p=.13
on t-test). The second reason is that the overhead of the
speech commands to record keyframes in the KD condition.
Given that the average number of keyframes is 6.71 (see sec-
tion 6.3) and assuming giving a record keyframe command
takes a second, both reasons seem to be valid.

In the TD condition, since all movements are recorded,
participants must constantly progress and cannot pause or
adjust as in the KD condition. As mentioned earlier, one
manifestation of this was a more thorough practice session
prior to TD, as compared to KD. Additionally, while not



shown in this experiment, we expect that TD has a higher
mental workload than KD.

6.2 Goal- vs. Means-oriented Skills

6.2.1 Different objective functions for each skill type
As seen in Fig 3, a much larger fraction of participants

provide a single demonstration for teaching means-oriented
skills, in both TD and KD. Across both conditions, the av-
erage number of demonstrations provided for goal-oriented
skills (2.37, SD=1.45) is significantly larger than the number
of demonstrations provided for means-oriented skills (1.22,
SD=0.53) (t(84)=6.18, p<0.001 on t-test). This highlights a
fundamental difference between the skill types: while goal-
oriented skills have a well defined objective function, means-
oriented skills are subjective and under-specified. Means-
oriented skills can vary a lot and were often satisfactory for
the participants after a single demonstration.

Open ended questions in our survey reveal more about
the difference in the objective functions for the two types
of skills. We asked participants to indicate their criteria of
success for each skill that they taught. We observe that 15
participants mentioned achieving the goal as their criteria
for goal-oriented skills (e.g. “The action would most accu-
rately meet its end goal”, “Performing the task correctly”,
“Touching the point perfectly”) while 11 participants men-
tioned at least one style-related criteria for means-oriented
skills. 4 participants mentioned naturalness (e.g. “more
fluid and natural performance”, “how naturally Simon emu-
late the demonstration”), 4 participants mentioned human-
likeness (e.g. “with human characteristics”, “seeming less
robot-like”) and 6 participants mentioned smoothness (e.g.
“how smooth and liquid the motion of the arm is”, “more
fluid motion”, “no choppy movements”).

6.2.2 Characteristics of provided keyframes are dif-
ferent for each skill type

The average distance between keyframes in the 7DOF
joint space for goal-oriented skills is much smaller (around
47%) than the average distance for means-oriented skills
(t(38)=-3.94, p<.001 on t-test). We hypothesize that par-
ticipants are providing different types of keyframes within
a single demonstration. For goal-oriented skills we see a
distinction between keyframes that are instrumental to the
goal of the skill, and the keyframes that lets the robot avoid
obstacles. Similarly in means-oriented skills we see a dis-
tinction between keyframes that actually give the skill its
meaning and make it recognizable and keyframes that are
waypoints. Participants provide a large number of frames
that are close to one another around the goal of goal-oriented
skills. For means-oriented skills, they provide less frames
that are separated by a larger distance. For both types of
skills the waypoint keyframes or obstacle avoidance keyframes
tend to be further apart. We do not observe a statisti-
cal difference in the average number of keyframes for goal-
oriented skills (6.75, SD=1.89) and means-oriented skills
(6.21, SD=2.17) (t(65)=1.11, p=.27 on t-test).

6.3 Keyframe demonstrations vs. Iterations
A larger fraction of the participants achieve success in the

KI condition as compared to the KD condition (Table 1).
Since we did not counter-balance the order of these two con-
ditions, this difference partially involves the improvement
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Figure 6: Histogram of number of iterations pro-
vided by participants in KI and KA conditions. For
the KI condition “0” indicates the participants who
only provided an initial demonstration and did not
provide any iterations.

that comes with more experience in teaching. However these
results show that the iteration process was effectively used
by the participants, despite the increased number of com-
mands and the complex interaction cycle. Note that 6 out
of the 22 participants in the KI condition did not use the
iteration process, i.e. they were satisfied the skill perfor-
mance after the initial demonstrations, which is provided in
exactly the same way as in the KD condition (Fig. 6). From
the participants who used the iteration process, 10 partici-
pants provided a single iteration, however the iteration often
involved several editing commands.

An interesting observation is that the number of keyframes
in the demonstrations given by a participant varies less in
the KI condition. The average number of keyframes pro-
vided within a demonstration for each participant is not very
different in the KI (7.62, SD=1.48) and KD (6.71, SD=1.91)
conditions. However the standard deviation in the number
of provided keyframes across demonstrations of a participant
seems larger in the KD condition (1.26, SD=0.94) as com-
pared to the KI condition (0.46, SD=0.58). By starting from
the previous learned skill, the iteration process limits the
number of keyframes in the provided demonstrations which
can be an advantage while learning from keyframe demon-
strations if the initial demonstration is relatively good.

6.4 Effects of the Starting Skill for Iteration
The fraction of participants who achieve success is largest

for the KA condition with 64% among all the others (TD:
46%, KD: 27%, KI: 46%, Table 1). As in the KI condition,
experience in teaching the robot might be contributing to
this improvement. However, this result indicates that an
iterative process starting from a rough, often failing skill is
potentially the best option in terms of achieving successful
goal-oriented skills.

Our survey involved a question asking whether having a
rough skill to start from in the KA condition made it easier
or harder, or whether it did not matter in comparison with
providing the initial demonstration themselves as in the KI
condition. 12 participants responded that it made it easier,
while 5 said “harder” and 5 said “did not matter”.

7. DISCUSSION

7.1 Benefits of Demonstration Methods
The results of our experiment show that both trajectory

and keyframe demonstrations are viable methods of inter-



action for kinesthetic teaching in LfD. Each has advantages
and users seem positive towards both of them.

Trajectory demonstrations are clearly intuitive for a näıve
user, and there is the benefit that many existing LfD meth-
ods are designed for learning skills from trajectory data.
Trajectories allow complicated skills to be taught, and are
particularly appropriate when speed information is a key
component. However, it might be hard for users to ma-
nipulate a high-degree of freedom robot or sustain smooth
trajectories over the course of a demonstration. In our ex-
periment, this resulted in longer practice sessions for trajec-
tory demonstrations, as well as means-oriented skills that
achieved lower expert ratings.

Keyframe demonstrations are robust to these noisy and
unintended motions during a demonstration. Their sparse
nature result in a modular representation, which may be
useful in generalizing a skill to new situations. For example,
existing motion planning methods can easily be used to navi-
gate between keyframes to execute salient aspects of the skill
while avoiding obstacles. Additionally, it may be easier to
deal with time alignment between multiple demonstrations.

A drawback of keyframes is the lack of timing informa-
tion. We observed that some participants tried to achieve
slower movements or stops by providing a large number of
very close or overlapping keyframes. Several participants
mentioned wanting speed related commands.

7.2 Skill Types and Demonstration Methods
Our experiment reveals the different nature of goal-oriented

and means-oriented skills. The former is defined by success
while the latter by style. Moreover, in the goal-oriented
skills, only a portion of the skill’s motion contributes to
success whereas in means-oriented skills the entire motion
contributes to the style.

People gave more demonstrations for goal-oriented skills.
Since means-oriented skills can vary a lot, they were often
satisfactory after a single demonstration. This was particu-
larly true for keyframe demonstrations, since some users had
a hard time manipulating the robot’s arm, especially during
the start of a skill. In goal-oriented skills, this usually did
not impact task success (e.g. initial motion of the arm was
not that important for pointing). However, this does have
an impact when style is the objective. Thus, users often
needed to correct the style by giving multiple demonstra-
tions for the means-oriented skills in trajectory mode.

For goal-oriented skills, participants often gave multiple
demonstrations due to the lack of fine control with keyframes,
most notable being the timing (velocity) information. The
robot often did not perform a skill as intended after the first
demonstration in keyframe interactions, prompting users to
improve the skill with more demonstrations.

We also observed that skill types have an effect of types of
keyframes that are provided by the user. Waypoint keyframes
are common in both of the skill types. Goal keyframes
(keyframes that are closer together near a goal) and style
keyframes (keyframes that are placed strategically to do the
gesture, more apart) can clearly be seen respectively for goal-
oriented and means-oriented skills.

7.3 Designing Keyframe Interactions
We explored different interaction mechanisms for a key-

frame approach. Since keyframes temporally segment the
demonstration, it is easy to apply an iterative interaction

mechanism, and our experiment showed that people were
able to use this to achieve greater skill success. We also saw
that in an iterative interaction, people do not stray too far
from their initial demonstration, thus emphasizing the im-
portance of the starting skill. Our experiment showed that
people were even able to use the iterative process to adapt
a starting skill that was not their own, and many said that
this made the teaching process easier.

As mentioned above, all keyframes are not equal, people
think about them in different ways (e.g., goal frames, via
points, etc.). A future extension would be to devise inter-
action mechanisms that are specific to each keyframe type.
The distinction between these types of keyframes is impor-
tant information for the underlying learning algorithm that
human partners can easily provide.

7.4 A Hybrid Mode of Interaction
From this study, we found kinesthetic teaching is a viable

method for teaching a humanoid robot, and that both key-
frame and trajectory demonstrations have their advantages.

We think that the ability to provide both keyframe and
trajectory information in the context of a single demonstra-
tion will be useful and intuitive for a variety of skills and
even combination of skills (e.g. scooping and then serving).
Hence, we are developing a new interface for LfD which
merges trajectory and keyframe demonstrations in a sin-
gle interaction. This hybrid interaction scheme allows the
teacher to give both keyframes and trajectory segments in
their demonstration (see in Figure 7). During a demonstra-
tion, the teacher can provide a keyframe by moving the arm
to a desired position and saying “Go Here”. At any point,
the user can say “Like this” to initiate a trajectory demon-
stration and “That’s it” to finish the segment. The teacher
can combine these in any order resulting in four different
kinds of demonstration: pure keyframe, single trajectory,
segmented trajectory, and hybrid demonstrations.

We recently demonstrated this approach at the AAAI
2011 LfD challenge [2], on the PR2 robot, where anecdo-
tal evidence3 shows that this hybrid-mode was intuitive for
conference goers. We have preliminary results with hybrid
mode from a pilot study where three users tested the method
in a scoop and pour task. These users gave positive com-
ments about the interaction and their skills were successful.

We think the hybrid approach will give users more tools at
their disposal to program robots in ways they find intuitive.
Our future work will focus on the experimental validation of
the hybrid mode of interaction, both with näıve and expert
users and for LfD methods other than kinesthetic teaching.

7.5 Other Considerations
As mentioned previously, our aim was not to assess the

generalization properties of the methods. One way to achieve
generalization is to represent state as end-effector coordi-
nates with respect to the goal. A more elaborate method
is presented in [10]. This can be applied to trajectories,
keyframes and hybrid demonstrations.

The presented tasks were simple but these interaction ap-
proaches may be even more beneficial for more complex
tasks. For example in the case of a bi-manual LfD task, the
user can position the arms individually and proceed with
keyframes, which is usually impossible for trajectories.

3http://www.youtube.com/watch?v=Ng7SYetzkXI
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Figure 7: The possible interaction flows of the hybrid mode. The dots correspond to start/end points or
keyframes, the solid lines to user demonstrated trajectories and the dashed lines to splines between keyframes.

8. CONCLUSIONS
We compared different methods of interaction for kines-

thetic teaching in LfD with everyday people. Our study
focused on the effects of different demonstrations, and we
showed that trajectory and keyframe demonstrations have
their relative advantages. We also explored different inter-
action schemes that a keyframe representation makes possi-
ble (iterations and adaption) and showed their success with
human teachers. Finally, based on these observations, we
introduced a hybrid mode of interaction in which the user
can chain together keyframe and trajectory segments.
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