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ABSTRACT

This paper introduces Code3, a system for user-friendly,
rapid programming of mobile manipulator robots. The sys-
tem is designed to let non-roboticists and roboticists alike
program end-to-end manipulation tasks. To accomplish this,
Code8 provides three integrated components for perception,
manipulation, and high-level programming. The perception
component helps users define a library of object and scene
parts that the robot can later detect. The manipulation
component lets users define actions for manipulating ob-
jects or scene parts through programming by demonstration.
Finally, the high-level programming component provides a
drag-and-drop interface with which users can program the
logic and control flow to accomplish a task using their pre-
viously specified perception and manipulation capabilities.
We present findings from an observational user study with
non-roboticist programmers (N=10) that demonstrate their
ability to quickly learn Code& and program a PR2 robot to
do manipulation tasks. We also demonstrate how the sys-
tem is expressive enough for an expert to rapidly program
highly complex manipulation tasks like playing tic-tac-toe
and reconfiguring an object to be graspable.
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1. INTRODUCTION

Programming mobile manipulator robots such as the PR2
or Fetch robots can be challenging to learn and take a long
time, even for expert roboticists. Not only does it require
learning a robot programming system such as ROS [33], it
also requires specialized knowledge of robot perception and
manipulation. These factors make robot programming in-
accessible to general programmers who do not have specific
skills in robotics, potentially slowing progress in the field of
mobile manipulators. As an example of how long it can take,
one course teaching senior computer science undergraduate
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Figure 1: Overview of the Code3 system.

students to program the PR2 with ROS required over 17
hours of lab time spread across 10 weeks . Even a group
of professional robotics engineers had to spend five days to
program the PR2 to fetch beers from a kitchen refrigera-
tor . And, several teams of roboticists took months pro-
gramming the PR2 to pick items from warehouse shelves for
the Amazon Picking Challenge . Our goal is to make pro-
gramming mobile manipulators to do similar tasks easy for
general programmers while still allowing experienced users
to program more complex tasks.

This paper introduces Code3, a robot programming sys-
tem that integrates three core components that are neces-
sary for end-to-end programming of mobile manipulation
tasks. The first, CustomLandmarks, lets users create a li-
brary of perceptual landmarks (objects or scene elements)
by annotating the robot’s sensor stream, which the robot
can detect in new scenes. The second, CustomActions, is
a kinesthetic programming by demonstration (PbD) system
that lets users create a library of manipulation actions. The
third component, Codelt, is a drag-and-drop programming
interface that lets users define control flow logic for their task
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using the perception and action capabilities they developed
with the other two components.

Through a user study with 10 participants, we demon-
strate that non-roboticist programmers, who were novices
to Code3, were able to program useful manipulation tasks
on the PR2 robot in under an hour, after only 90 minutes
of training. To achieve this rapid training and implemen-
tation time, we did not have to trade off expressivity by
making Code3 overly simplistic. In contrast, we illustrate
how we can use Code3 to program complex manipulation
tasks like playing tic-tac-toe with a human player and re-
configuring an object to make it graspable. Ultimately, we
envision non-roboticist programmers of all skill levels using
Code8 to rapidly prototype and program task behaviors for
mobile manipulators in semi-structured environments such
as retail stores, warehouses, and office buildings.

2. RELATED WORK

Code3 builds upon previous research in PbD and end-user
programming for robotics, which we discuss below.

Programming by Demonstration: PbD is a commonly-
used technique for programming robots by guiding the robot
through an example of a manipulation action |5} |9} {14} |27].
Researchers have studied many different aspects of PbD,
including how to represent actions |2 |13, |30, |36], learn
high-level task structures [17, [28, |31], use PbD to train
policies in a reinforcement learning framework |6} [35], and
resolve design issues when interacting with human teach-
ers |12} [24} |37]. User studies have shown that end-users can
learn and use PbD systems to program various manipulation
actions |2} |3]. Our system adds more flexible perception ca-
pabilities compared to previous PbD systems and integrates
with a coding interface that enables logic and control flow.

User programming for robots: Code3 is designed to let
a broader group of people (those with general programming
experience) program robots. Other systems have been de-
veloped with similar goals. The code interface for Code3
is based on the CustomPrograms [23| system. CustomPro-
grams enables programmers to rapidly write programs for a
mobile delivery robot using a visual programming interface.
However, their system does not address the challenge of pro-
gramming perception capabilities or manipulation actions.

Two related systems include ROS Commander [29] and
RoboFlow [4], which integrate robot actions, including those
programmed by demonstration, with a visual programming
language using a data flow model [21]. Interaction Com-
poser [19, |20] is a system that also combines robot actions
(coded in C++) with a flow-based interface. The authors
of [4}20] point out that, in some cases, flow-based interfaces
do not scale well, especially when the state space is large.
In contrast, our system uses a general-purpose language for
developing control flow, which roboticists and programming
language experts interviewed in [4] said they would prefer
to use over a data flow model.

Others have designed robot programming interfaces for
creating social interactions. These include the TiViPE [25|
26], Choregraphe [32], and Interaction Blocks [34] interfaces
for programming the Nao robot. They combine flow-based
programming interfaces with support for timing, social di-
alogue, and libraries of gestures. RoboStudio [16] is a sys-
tem for authoring Ul and control flow for healthcare robots.
Although Code3 has some human interaction features, it fo-

cuses on programming manipulation tasks, such as fetching
and carrying, delivering objects, and manipulating the en-
vironment.

3. SYSTEM DESCRIPTION

Code8 allows end-to-end programming of mobile manip-
ulation tasks through three components: (1) CustomLand-
marks for developing perceptual capabilities, (2) CustomAc-
tions for programming manipulation actions, and (3) Codelt
for combining the two in a high-level program that captures
task requirements. This section describes these components
and how they are integrated together. Our system was im-
plemented on a PR2 robot; however, all components are
easily portable to a different robot.

3.1 CustomLandmarks

Many robot programs involve detecting and locating ob-
jects. However, developing these capabilities requires exper-
tise in robot perception or requires using automatic systems
that recognize a limited set of objects. CustomLandmarks
is a system that lets users create partial 3D models of task-
relevant objects or scene parts, called landmarks, which the
robot can locate in new scenes. This section describes how
landmarks are created, represented, and searched for in new
scenes. Internal evaluations, pseudocode, and other details
of CustomLandmarks are provided in [22].

3.1.1 Landmark representation

To create a custom landmark, the user positions the robot
in the task scene and points its RGBD sensor (e.g., a Kinect)
at the landmark of interest. The user views a 3D visualiza-
tion of the data and segments the landmark by setting a 3D
box around the landmark, shown in Figure a), The user
then gives the landmark a name, and the system records
the RGBD point cloud inside the box as well as the box’s
position and dimensions to a database.

Custom landmarks are represented with the point cloud
and the box used to segment it from the scene. The sys-
tem uses the box to explictly model regions of empty space
around the landmark. This adds specificity to the repre-
sentation. For example, the point cloud of the corner of
a tabletop does not look different from an empty patch in
the middle of the table: both landmarks are flat and rect-
angular. By modeling empty space, the user can create a
landmark that explicitly represents the corner of the table
as opposed to any part of the table. Such a landmark could
be used to place or align items with the corner.

This representation is flexible and allows users to create
a variety of landmarks. Examples include simple objects
(e.g., a cup on a table), parts of objects (e.g., the handle of
a Tide bottle), or arbitrary parts of a task scene (e.g., the
front left corner of a laundry machine).

3.1.2  Search algorithm

CustomLandmarks implements an algorithm to locate a
landmark in a scene. The algorithm takes a custom land-
mark and a point cloud representation of a scene as input,
and it returns a list of locations where the landmark was
found. If the algorithm does not find the landmark in the
scene, it returns an empty list.

The algorithm first randomly samples points in the scene.
For each sampled point, it attempts to align the landmark to
the scene geometry at that point using the Iterative Closest



Point algorithm [8]. It then computes an error score for
the alignment by summing two sources of error. Informally,
the first source of error measures how well the shape of the
landmark matches with the shape of the scene, while the
second measures how much the scene intrudes on the empty
space of the landmark. More formally, the first source of
error is the sum of the distances between the points in the
landmark’s point cloud and each of their nearest points in
the scene. The second is the sum of the distances between
the scene points inside the landmark’s box and their nearest
points on the landmark. The errors are averaged to provide
a single error score for the alignment. If the error score is
below a certain threshold, the location of the alignment gets
added to the output list. Note that the error metric does
not use color information, although doing so is an area for
future work.

3.1.3 Limitations

Because the landmark’s shape is captured from a single
RGBD point cloud, CustomLandmarks is sensitive to view-
point differences, such as when an asymmetric landmark is
rotated 90 degrees. To avoid this issue, users can create addi-
tional landmarks for rotated versions of the same object and
search for all of those landmarks. We envision using Custom-
Landmarks (and Code3 more generally) in semi-structured
environments in which objects have known locations and a
finite set of orientations.

3.2 CustomActions

Programming robot manipulation actions can also be chal-
lenging for developers, because it involves modeling the spa-
tial positions of objects, planning arm motions, and adjust-
ing these motions depending on the location of objects. As
discussed in Section [2 PbD is a technique for defining ma-
nipulation actions that is accessible to novice users. Custom-
Actions is a PbD system that builds upon the work of [3].
The main difference between the two systems is that the
system of 3] uses a tabletop segmentation system to detect
objects, while CustomActions uses CustomLandmarks.

Although it sounds like a minor change, using Custom-
Landmarks instead of tabletop segmentation allows users to
create a much wider variety of manipulation actions than
before. Tabletop segmentation searches for a nearby table-
top using the RANSAC algorithm [18]. Clusters of RGBD
data points above the table are then considered to be ob-
jects. This only works in tabletop scenes and assumes that
objects on the table are the only perceptual landmarks that
need to be located. In contrast, using CustomLandmarks
lets CustomActions locate non-tabletop objects like door-
knobs and non-objects like the corner of a table.

Below, we describe the workflow for creating, represent-
ing, and executing PbD actions.

3.2.1 Action representation

Actions are represented as a sequence of poses for the
robot’s end-effector(s). The system also stores whether the
end-effector is open or closed at each pose (for a gripper).
The locations of the poses can be defined relative to either
the base of the robot or to a landmark. If the user defines
an end-effector pose relative to a landmark, then the system
will adjust the end-effector pose whenever it detects that
the pose of the landmark has changed. A simple example
of an action is to pick up an object, whose position could

vary, and put it into a box at a fixed position relative to
the robot. The user would first create a custom landmark of
the object. Then, the user would demonstrate grasping the
object, moving the end-effector over the box, and letting go
of the object. The end-effector poses involved in grasping
the object would be defined relative to the location of the
object, while the poses to drop the object in the box would
be relative to the robot’s base.

3.2.2 Programming an action

To specify an action, users first use the CustomLandmarks
box interface to define the landmarks that will be involved
in the action. They then hold the robot’s arms and move
them to the desired poses. Users save the poses by using
voice commands or by clicking a button in a GUIL In the
GUI, pictured in Figure users can define some poses to be
relative to one of the landmarks they defined earlier. When
done, users give the action a name, which Codelt uses later.

3.2.3 Action execution

To execute an action, the robot first points its head to lo-
cate each of the landmarks referenced in the action. Because
the landmarks are not necessarily on a tabletop, CustomAc-
tions looks for each landmark near the location where it was
last found. If the landmark has never been located before,
the robot looks where the landmark was during the action
demonstration. If the system locates more than one instance
of a landmark, it uses the one that was detected with the
lowest error score. Next, the system adjusts any poses that
were defined relative to those landmarks. Finally, the robot
moves its arms through the poses, opening or closing its
grippers as programmed.

3.3 Codelt

CustomActions helps users specify simple actions, but it
is not expressive enough to represent complex task structure
and logic like looping or branching. Our system uses Codelt
(an open-source and extended version of the system intro-
duced in |23]) to enable programming of such high-level task
structures. Codelt implements a visual programming inter-
face that lets users write code by connecting puzzle shaped
blocks instead of typing (Fig. [[[c)). The interface provides
general-purpose programming language features, including
loops, conditionals, string manipulation, lists, functions, and
variables. To control the robot, Codelt makes calls to a high-
level API that operates the robot. An example of an API
method, which we call a primitive, is to move the robot’s
head to a certain pose. System developers must design and
implement this API for their robot before using Codelt.

The Codelt interface is implemented in a web browser,
enabling users to start programming the robot without hav-
ing to set up a development environment. After writing a
program, users click a “Run” button to execute their pro-
gram on the robot. Once the program is running, the “Run”
button turns into a “Stop” button that halts the program.

3.3.1 Integration of Code3 components

Codelt provides APIs to use CustomLandmarks and Cus-
tomActions. The integration of Codelt and CustomLand-
marks occurs via a primitive that searches for a landmark
in the current scene: findCustomLandmark(landmarkName).
The argument of this primitive is the name of a previously
created custom landmark. When called, the robot searches



for the landmark in the current scene and returns a (possi-
bly empty) list of locations where the landmark was found.
The user’s program can examine the length of the list and
iterate through it. Codelt also allows users to read the x, y,
and z positions of the detected landmarks, in the coordinate
frame of the robot’s base.

The integration of CustomActions with Codelt occurs via
a primitive that executes a previously programmed action:
runPbdAction(actionName). The argument of this primi-
tive is the name of the action to run. The primitive returns
true if the action executes successfully and false otherwise.
An action fails if a needed landmark cannot be found in the
scene or if an arm pose relative to a landmark is unreachable.

Codelt also implements a feature that we call preregistra-
tion. Suppose there are three identical cans in the scene
and the user has created a custom action to pick up a can
and put it in a box. As described earlier, CustomActions
will execute the action with the can that was detected with
the lowest error score, which can be an arbitrary choice in
practice. Preregistration allows users to specify a partic-
ular landmark to execute an action with in this situation.
First, users call findCustomLandmark in their Codelt pro-
gram, which returns a list of detected landmark locations.
Then, users can iterate through the list of locations and
select whichever one their task needs. Finally, the land-
mark location can be passed as an optional argument to the
runPbdAction primitive. This causes the robot to execute
the action using the landmark that was passed in. In the
above example, the user could use preregistration to have
the robot put the three cans into the box in right to left or-
der. In Section [f] we describe how we used preregistration
to pick a game piece from the top of a stack. Fig. C) illus-
trates how preregistration looks in Codelt. The first block
finds a custom landmark of a game piece. The user iterates
through the list of game pieces and selects the highest one
through a function called “get highest piece.” Finally, that
piece is passed into a custom action to pick a game piece.

3.3.2  Other primitives for the PR2

The work described in 23| was designed for the Savioke
Relay, a mobile robot with no arms. We designed and imple-
mented a new API to support the manipulation capabilities
of the PR2 robot. We also added a touchscreen tablet to the
PR2, so that the robot could display messages and receive
touch input. Below, we briefly list the primitives we added
to the PR2.

e Tablet interaction: displayMessage(text), askMul-
tipleChoice(question, choiceList)

e Head control: lookAt (upDegrees, leftDegrees)

e Gripper control: setGripper(leftOrRight, openOr-
Closed), isGripper (leftOrRight, openOrClosed)

e Pre-programmed tucking or deploying of arms: tuck-
OrDeployArms(leftAction, rightAction)

e Pausing: waitFor (numSeconds)
e Text-to-speech: say(text)

Although we could have easily implemented the ability
to autonomously navigate to named locations—as with the
goTo primitive in [23]—our PR2 was immobile due to hard-
ware issues.

3.4 Open-source code

We implemented Code3 for the PR2 and Turtlebot robots.
Open-source code and documentation for using Code3 can
be found at https://github.com/hcrlab/code3.

4. NOVICE USER PROGRAMMING

This section describes an observational user study of Code3
that we conducted. Our goal was to assess the system’s
learnability and usability for programmers with little or no
robotics experience. To study this, we trained users to pro-
gram the PR2 using Code8 and asked them to program ma-
nipulation tasks.

4.1 Procedure

The study consisted of a 60-minute training session and
a 90-minute programming session. The sessions could be
scheduled back-to-back or up to 3 days apart. At the begin-
ning of the training session, users were told to imagine start-
ing a new job at a company that programmed the PR2 robot.
An experimenter read from a script to train participants
on: (a) how to create actions in CustomActions, (b) how to
use CustomLandmarks, and (c) how to use Codelt, includ-
ing how to run custom actions from code. Users were not
trained on preregistration because the user study tasks did
not require it.

During the first 30 minutes of the programming session,
participants worked on a familiarization task, with proactive
guidance from the experimenter when needed. Next, partic-
ipants received a description of the program that they would
be asked to create. We assigned participants to program one
of two tasks (described below in Sec. [£.1.1). We alternated
the order in which we assigned tasks to participants. They
filled out a pre-task questionnaire, which asked users to de-
scribe the actions and landmarks that would be needed and
to outline the overall program. This was included to help
participants organize their thoughts.

Participants were given 50 minutes to program the task.
They could test their programs on the robot at any time.
We considered a task finished once the robot was able to
successfully execute the task. If a participant finished their
task before the end of the study, they were asked to program
the other task as well. Once the user finished or ran out of
time, they were asked to stop working and fill out a final
questionnaire.

The experiment took place in a laboratory setting with
a PR2 robot and a nearby desktop computer. Code8 inter-
faces were pre-loaded on the computer. Participants used
a wireless microphone to send voice commands to the PR2
when using CustomActions. The experimenter was located
in the same room near the robot and was available to answer
questions. We established the following guidelines for when
the experimenter could proactively help the participant. For
technical issues with the robot or the system, including is-
sues with the voice recognition system mishearing partici-
pants, the experimenter helped right away. For other issues,
when the experimenter suspected the participant was going
down an unproductive path, the experimenter took note of
the time and intervened after a one-minute wait. We felt
these were reasonable expectations for a programmer’s first
day on the job. We took note of the questions asked by
participants and the interventions performed by the experi-
menter.
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Figure 2: (a) In the snack-bot program, the robot fetches a user-requested snack. Users made landmarks
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Codelt. (b) In the waiter-bot program, the robot places bowls into a basket and picks up the basket.

Participants were recruited from computer science mailing
lists at the authors’ university. They could not be robotics
researchers and needed to have two or more years of pro-
gramming experience. They were offered a $30 gift card for
participating and a $5 bonus for each completed task.

4.1.1 Tasks

Familiarization task - Grocery-bot: Users were asked
to program the robot to put all cans found on a table into a
box. The positions and the number of cans could vary, but
the box was in a fixed location on the table. To accomplish
this task, users needed to create a custom landmark of a can
and program an action to pick it up and drop it into the box.
They also needed to write a Codelt program that repeated
the action until the the robot put all the cans away.

Snack-bot: In this task, the robot had to ask the user
which of two snacks to retrieve: an energy bar or a bag of
chips. The robot would then traveﬂ to a snack area and pick
up the appropriate snack. The exact positions of the snacks
could vary. The robot would then travel back to the user
and wait for the user to press a button on the tablet before
opening its gripper. This required the user to program two
actions with different custom landmarks (one for each snack)
and choose which to execute. The snacks were elevated off
the table with small pedestals to make them easier to grasp.

Waiter-bot: In this task, the robot started at a table with
plastic bowls and cups on it. Users had to program the
robot to remove all the bowls from the table and put them
in a basket on the floor. Once all the bowls were in the
basket, the robot had to pick up the basket and “travel” to
the kitchen to deliver the bowls. As in the familiarization
task, the exact number and position of the bowls could vary.
This task required users to repeat an action until there were
no more bowls. It also required users to program an action to
pick up the basket before the robot traveled to the kitchen.

! Because our robot was immobile at the time of the study,
users were told to simulate traveling by displaying a message
on the touchscreen interface and waiting for a few seconds.

4.2 Measures

During the study, the experimenter recorded data on what
questions participants asked and what help was given. Ad-
ditionally, we recorded data on when participants used the
CustomLandmarks, CustomActions, and Codelt interfaces.
We also gathered video data and screen recordings.

In our final questionnaire, we first administered the Sys-
tem Usability Scale (SUS) survey [10]. This widely used
survey asks a series of ten 5-point Likert scale questions
with alternating polarities, such as “I think that I would like
to use this system frequently” and “I found the system un-
necessarily complex.” Scores from the SUS survey can range
from 0 (worst) to 100 (best); a meta-study of 2,324 SUS sur-
veys administered in published research found that the av-
erage score was 70.14 with a standard deviation of 21.71 .
Our questionnaire also asked users to qualitatively describe
what was difficult about using CustomLandmarks, Custom-
Actions, Codelt, and the Code3 system as a whole.

Finally, we asked users to specify their age and gender and
to rate, on a 5-point Likert scale, their prior programming
experience in general and with the programming of robots.

4.3 Results

Ten users participated in the study, 6 male and 4 female.
Their ages ranged between 19-37, with an average of 26.6
(SD=6.2). On a 5-point Likert scale, users gave their prior
programming experience a mean rating of 3.9 (SD=0.74,
min=3, max=>5) but only 1.6 (SD=0.84, min=1, max=3)
in terms of prior experience with programming robots.

4.3.1 Task performance

In the 50 minutes given to them, all 10 users successfully
completed at least one task, and 3 users completed both
tasks. Seven participants completed the snack-bot task, and
6 completed the waiter-bot task. On average, participants
spent 31:38 minutes programming a task (SD=13:40 min-
utes, min=15:40, max=>50:50). They asked 1.38 questions
(SD=1.56) and were proactively helped by an experimenter
1.92 times (SD=1.93) per task.



Measure Result

# participants who completed exactly 1 task 7/10
# participants who completed 2 tasks 3/10
Mean general programming experience rating (1-5) 3.9
Mean robot programming experience rating (1-5) 1.6
Mean SUS score  66.75

Mean task completion time 31m 38s
Mean time spent in CustomActions 7m 56s
Mean time spent in CustomLandmarks 3m 41s
Mean time spent in Codelt 5m 31s

Mean time spent testing solution  5m 29s

Mean questions asked per task 1.38

Mean instances of proactive help given 1.92

Table 1: High-level summary of user study results.

4.3.2  Perceived usability and usefulness

On the System Usability Survey, users scored the system
an average of 66.75, with a low of 35, a high of 87.5, and
a standard deviation of 16.95. This is below average com-
pared to other systems evaluated with the SUS, and some
researchers would interpret this to mean that the system’s
usability is “marginally acceptable” [7].

4.3.3 Characterization of system usage

Across all tasks, users spent an average of 3:41 minutes
using the CustomLandmarks interface, 7:56 minutes using
CustomActions, and 5:31 minutes using Codelt. Addition-
ally, they spent an average of 5:29 minutes testing their so-
lutions. Fig. [ presents a visualization of which components
were in use by the users for each task. The visualization
shows that generally, users created custom landmarks and
actions first, then built their Codelt programs, and then
tested their solutions last. We found that users switched
between using CustomActions and CustomLandmarks fre-
quently. This is because the workflow for creating a cus-
tom landmark is embedded in the CustomActions workflow.
However, some users sketched out their Codelt programs
earlier or conducted small scale tests of custom actions. We
also note that users used CustomActions many times even
though both tasks only required 2 actions each. This reflects
the fact that users edited or remade actions after testing or
after receiving experimenter guidance.

4.3.4 Challenges in system usage

We assessed challenges participants had using the system
through survey questions, questions users asked, and proac-
tive guidance provided by the experimenter. Below, we de-
scribe the main challenges users experienced.

CustomLandmarks/ CustomActions integration: Two
conceptual issues came up regarding the integration of Cus-
tomLandmarks in the CustomActions system. First, many
users assumed that they needed to create custom landmarks
for all objects in the scene, even when the objects were in
a fixed position or were not going to be manipulated. The
second issue arose from the fact that creating custom land-
marks was embedded in the workflow of creating a custom
action. There was no way to create a landmark and use it
across multiple actions or to create a landmark and retroac-

tively apply it to an action. Users told us that the system’s
behavior was unexpected in this respect:

User 10: 1 placed all the landmarks I would
need for all actions at the beginning of one task,
and had to place one landmark again because 1
needed it for a separate action.

User 3: It would have been nice if I could have
created a landmark after I already did the ac-
tions.

We could resolve these issues by having a separate work-
flow for creating a custom landmark, which could be im-
ported into CustomActions through its GUI.

Remembering the steps of the workflow: Five users
said that they had difficulty recalling the steps for program-
ming an action. However, three users also said that it be-
came easier to remember with greater experience:

User 5: Getting accustomed to the workflow. . . was
something to get used to, but it started coming a
lot more naturally after the first couple of tasks.
User 9: [What was difficult about CustomAc-
tions was| making sure not to skip any steps or
commands.

Users also needed help with small, but important, details
of the workflow. For example, one user got proactive guid-
ance to program the arm to move to the side at the end of
a custom action. This was so the arm would not block the
robot’s view of the workspace in subsequent tasks.

Editing and GUI interface for CustomActions: Two
users said that the GUI interface for CustomActions was
hard to interpret. The CustomActions GUI overlaid all the
steps of an action in a single view while it was being cre-
ated (see Fig. a)). The GUI also dynamically updated to
show actions that were being executed. One user suggested
that there should be separate GUI modes for running vs.
editing. Additionally, three users had issues with steps be-
ing accidentally added or deleted from their action due to
misinterpreted voice commands.

User 5: The overlapping opaque graphics made
it difficult to see...what was anchored to what
reference frame.

User 10: 1 didn’t realize that I had added one
last action that released the basket at the end of
the program.

Three users received guidance on how to use the GUI to
tweak the steps of a programmed action without reprogram-
ming from the beginning. Based on this feedback, we believe
it would be valuable to have a “filmstrip” view of a PbD ac-
tion, in which each step can be visualized and edited individ-
ually. Such an interface would also make it more obvious to
the user if the system accidentally added or deleted a step.

CustomLandmarks box interface: In the CustomLand-
marks interface, users had to individually specify the po-
sitions of the 6 sides of the box (Fig. [[] and [2). Four of
the 10 users said they had some trouble using this interface,
although two of them said that it was not a major issue.

User 10: Placing the box in 3D space was sur-
prisingly difficult. I needed to move the cam-
era around a lot before I could place it correctly.
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Figure 3: A visualization of which Code3 components participants used while programming each of the user
study tasks. For each row, the z-axis represents time that a participant spent working on a user study task.
The color of the bars indicate which activity the user was doing; the length of the bars indicate the amount of
time spent. The “Other” category includes time when users asked questions, were given help, or were paused
and not using any particular interface. The length of the bars in the legend represent 1 minute of time.

User 9: 1 wish I could just drag that box in-
stead of having to expand the edges. . . Otherwise
I think it was pretty simple.

4.4 Discussion

Overall, the study found that non-roboticist programmers
could learn to use Code3 to program useful tasks on the PR2.
The user study tasks required perceiving and manipulating
different objects, and would be, in our view, non-trivial tasks
even for professional roboticists. However, all of the partici-
pants, 4 of whom were undergraduate computer science stu-
dents, were able to program the robot to do at least one of
the tasks in under 1 hour after just 90 minutes of training.

The study also revealed various usability issues with the
current interface. The workflow of our system was optimized
for users to create landmarks, actions, and Codelt programs
in a linear order. However, we saw that users often deviated
from this workflow and needed to edit and remake custom
actions and landmarks. The feedback we received suggests a
need for a specialized editing GUI for CustomActions. This
interface would need to make it easy to preview, adjust, and
delete poses, and to import previously created landmarks.

5. EXPERT USER PROGRAMMING

This section describes how an expert user (the first au-
thor) used Code3 to program two complex tasks. These tasks
demonstrate the system’s unique perception and flow control
capabilities and show that Code3 is not limited to program-
ming simple manipulation tasks. Below, we describe the
tasks, how we programmed them, and how they exercised
the unique features of Code3.

5.1 Tic-tac-toe

The first task we programmed was to play a game of tic-
tac-toe with a human player (Fig.[d[a)). The robot plays the
game on a board with red and yellow cylindrical pieces. The
robot must pick a game piece from a stack and place it on an
empty square on the board. Then, the human player makes a

move and presses a button on the robot’s touchscreen when
done. After that, the robot must examine the board and
make another move. The robot must also recognize if the
game is over and ask to play again.

We created a custom landmark of the game piece and pro-
grammed a custom action for the robot to pick a piece. To
pick from the stack, the program used findCustomLandmark
to locate all the pieces, then it identified the piece with the
highest z position and passed it to the picking action (an ex-
ample of preregistration). We created nine separate custom
actions to place the piece in each of the nine squares on the
board. For the robot to know the locations of the squares,
we stuck a uniquely shaped foam block in the corner of the
board. This foam block became a landmark; to place a piece
in a particular square, the robot would position its gripper
to locations relative to the block.

We took advantage of Codelt’s expressivity to program
the flow control logic to play the game. To read the board,
the robot first searched for the custom landmark of the game
piece and the custom landmark of the foam block. It then
checked which squares were occupied by comparing the po-
sitions of the pieces with the position of the block. The
robot used this procedure to infer which previously empty
square the human player moved to on their turn. We repre-
sented the board with a list of nine strings, which were either
“empty,” “red,” or “yellow.” Because CustomLandmarks does
not use color information, the robot tracked which pieces
were red or yellow based on whose turn it was when the
piece was placed on the board. The robot played to empty
squares at random.

It took the author 3 hours and 23 minutes to program and
test this task, with actions, landmarks, and game-playing
logic created from scratch.

5.2 Picking challenge

For the second task, the author programmed the robot to
pick a box of crayons from a shelf (Fig. [4(b)). The box was
easy to grasp while standing upright, but impossible for the



Figure 4:

robot to directly grasp while lying flat. We used Code3 to
program a maneuver with a tool to make the box graspable.

We built a simple tool, a 25cm wooden ruler with a handle
on one end and a high-friction tip on the other, to drag the
box over the edge of the shelf if the box was lying flat. We
used CustomActions to program actions to get the tool from
a shoulder holster and to place it back.

For this action to work robustly, the robot had to drag the
box the right distance over the shelf edge. If dragged too
far, the box would fall out of the shelf, but if not dragged far
enough, the box would remain ungraspable. Pulling the box
a fixed distance would not work since the box’s distance from
the shelf edge could vary. To address this, we created two
custom landmarks: one for the box and another representing
a segment of the shelf edge. We used the box landmark
to know where to make contact between the tool and the
box. However, when pulling the box, we used the shelf edge
as the landmark so that the pulling action would end at a
consistent distance to the shelf edge.

This action illustrated an interesting use of the preregis-
tration feature. We wanted to, as much as possible, drag the
box perpendicular to the shelf edge. To accomplish this, we
made the landmark of the shelf edge represent a small, 6 cm
segment, which CustomLandmarks would find at multiple lo-
cations along the shelf edge. We then iterated through the
list of segment locations and selected the segment that was
closest to the box’s location. Dragging towards the closest
shelf edge segment ensured that the box was dragged per-
pindicular to the shelf edge.

We programmed the robot to grasp the crayon box di-
rectly if it was standing upright. If the box was lying flat,
then the robot got the tool, dragged the box as described
above, replaced the tool, and finally grasped the box.

This task took us 2 hours and 28 minutes to program and
test. To test the program, the robot had to successfully pick
the crayon box five times in a row: twice with it standing
upright and three times with it laying flat on the shelf. A
first draft of the program was finished within 90 minutes, but

(a) We programmed the robot to play tic-tac-toe. The touchscreen interface facilitated turn-
taking. Cell positions were known as offsets (top row, yellow arrows) from a corner landmark (green box).
The robot could read the board and determine if someone had won. (b) The robot used a tool (bottom row,
1st and 2nd images) to pull a crayon box to a graspable position. The crayon box was used as a landmark to
make contact with it but the edge of the shelf was used to know how far to pull (bottom row, third image).

we spent the remainder of the time testing and refining the
dragging action. It took time to refine the program because
for each refinement we made, we had to test the program by
running it from the beginning. An improved, step-by-step
editing interface for CustomActions could make developers
more efficient for tasks like these in the future.

6. CONCLUSION

This paper introduced Code3, a system that enables roboti-
cists and non-roboticist programmers alike to program a mo-
bile manipulator to do complex tasks. We described how
the system is divided into tightly integrated components for
perception, manipulation, and control flow. In particular,
the CustomLandmarks and CustomActions components ab-
stract the process of programming perceptual detectors and
manipulation tasks in a user-friendly way. Our user study
showed that non-roboticist programmers could quickly cre-
ate useful programs—such as a snack-retrieving robot or a
robot that cleared a table—after just 90 minutes of training
with the system. The study also revealed usability issues
with our interface, which we want to improve in the future.
For example, we want to improve the design of the Custom-
Actions user interface to make actions easier to visualize and
edit, and we want to make custom landmarks reusable across
multiple actions. Finally, we showed how an expert user of
Code8 could rapidly program a PR2 to perform highly com-
plex tasks, such as playing tic-tac-toe with a human player.
In the future, we want to investigate how more advanced
perception and manipulation systems can be integrated into
Code8d while remaining intuitive to use. Finally, we want to
add support for more robots to our open-source release.
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