
Always-Available Static and Dynamic Feedback

Michael Bayne Richard Cook Michael D. Ernst
University of Washington

{mdb,rcook,mernst}@cs.washington.edu

ABSTRACT
Developers who write code in a statically typed language are denied
the ability to obtain dynamic feedback by executing their code during
periods when it fails the static type checker. They are further confined
to the static typing discipline during times in the development process
where it does not yield the highest productivity. If they opt instead to
use a dynamic language, they forgo the many benefits of static typing,
including machine-checked documentation, improved correctness and
reliability, tool support (such as for refactoring), and better runtime
performance.

We present a novel approach to giving developers the benefits of both
static and dynamic typing, throughout the development process, and
without the burden of manually separating their program into statically-
and dynamically-typed parts. Our approach, which is intended for tem-
porary use during the development process, relaxes the static type system
and provides a semantics for many type-incorrect programs. It defers
type errors to run time, or suppresses them if they do not affect runtime
semantics.

We implemented our approach in a publicly available tool, DuctileJ,
for the Java language. In case studies, DuctileJ conferred benefits both
during prototyping and during the evolution of existing code.

Categories and Subject Descriptors: D.2 software engineering, D.3.3
language constructs and features
General Terms: Design, Languages, Experimentation
Keywords: dynamic typing, gradual typing, hybrid typing, productivity,
prototyping, refactoring, static typing, type error

1. INTRODUCTION
Developers rely on both static and dynamic feedback when creating

software. They obtain static feedback, in the form of syntax and type
checking, by running the compiler. They obtain dynamic feedback by
executing the software and its tests. Only the developer knows what
form of feedback is most useful at any given moment during software
development, yet the developer is constrained by current tools and cannot
always get the feedback they need.

A developer who chooses a dynamically-typed language forgoes the
many benefits of static types entirely. A developer who chooses a
statically-typed language is denied the ability to obtain dynamic feed-
back during the periods when their program fails to type-check. Most
statically-typed languages embody the philosophy that an ill-typed pro-
gram is of zero value—the compiler simply rejects it. We consider
such programs to have value, in that a developer may be interested in
execution paths that do not traverse the type-incorrect code or that are
not affected by the inaccuracies in the source code’s type annotations.

For what are sometimes technical and sometimes ideological reasons,
programmers are denied the benefits of having static and dynamic feed-
back any time they deem it useful. This state of affairs leads to frustration

This research was supported by NSF grant CCF-1016701.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
ICSE ’11, May 21–28, 2011, Honolulu, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

and wasted effort. We believe that the programmer should be in charge,
and should be able to do either form of checking at any time during the
development process, and with minimal extra effort on their part [28].

We posit that a developer should write code in a statically-typed
language, making a best-faith effort to get the types right and obtaining
sound feedback from the type checker. But, even at moments when the
program is not globally type-correct, the developer should be able to run
the code to test it or to increase insight.

We seek to streamline the process of creating code that will ultimately
be type-correct, while recognizing that type-correctness is not always the
developer’s highest priority. During development, code often temporarily
exists in a state of partial type-correctness while the developer focuses on
non-type-related aspects of the code. Eventually the code will be made
type-correct, but in the order deemed most efficient by the developer.
In our system, type annotations are not optional in the source code,
so it is unlikely that a user will ignore them or think in a “non-typed”
mindset during development. Furthermore, at any moment the developer
can obtain complete, sound type-checking feedback by running the
standard compiler. Developers can switch seamlessly between the typed
and untyped views of their program, since sometimes it is best to fix
compiler errors and sometimes it is best to run the program. DuctileJ
does not provide all the benefits of a dynamically-typed language: it
focuses on the ability to execute the code at any time.

Our goals and approach differ from research that aims to mix static
and dynamic types in the same program. The two main approaches are:
adding optional static type checking to a dynamically-typed language,
or relaxing the type system of a statically-typed language. We briefly
describe each in turn (also see the related work in Section 5).

Using a dynamically-typed language with an added static type checker,
the developer can obtain dynamic feedback at any time, per usual for
a dynamic language, and can obtain static feedback when desired by
running the type checker. However, most dynamically-typed languages
do not afford the easy addition of a static type system. Dynamically-
typed programs tend to explicitly leverage highly-dynamic features like
late binding of names, meta-programming, and “monkey patching”, the
ability to arbitrarily modify the program’s AST. Most attempts to layer a
static type system atop a dynamic language [3, 19, 34] support only a sub-
set of the language, excluding many dynamic features and compromising
the programming model and/or the type-checking guarantee.

The most common approach to relaxing a static type system is to
introduce some form of Dynamic type (also known as Object, any,
void*, etc.), allowing the developer to mix statically-typed and dynamic-
ally-typed code in the same program. Such an approach does not meet our
goals of providing always-available static and dynamic feedback. Such
a program can have static type errors and be rejected by the compiler,
thereby preventing the programmer from executing the program. Even if
the type checker passes, the program may still fail at runtime because
Dynamic was used to mask behavior from the type checker: the user did
not get comprehensive, effective static feedback. Another disadvantage
of this approach is programmer effort: the programmer must explicitly
specify which parts of the program are to be statically-typed and which
are to be dynamically-typed.

We propose a new approach to relaxing a static type system. Rather
than extend an existing language with dynamic elements, we provide an
alternative semantics for the language in which the compiler warns about
errors in the declared types but always generates code, which performs
all type checking at runtime. By providing a semantics that defers static

type errors until runtime and masks them whenever possible, we allow
the developer to obtain dynamic feedback on part of their program, even
if other parts contain type errors.

Our semantics for the Java programming language, which allows for
the execution of many type-incorrect programs, adheres to the following
principles:
1. Where correct static types exist, use them to provide behavior equiv-

alent to the original semantics. (In Java, static types affect runtime
semantics, such as resolution of overloading.)

2. Where correct static types are lacking, use runtime type information
to resolve ambiguity in the same manner that static types would be
used.

3. Where correct static types are lacking and runtime type information
is either incorrect or insufficient to resolve ambiguity, terminate
execution with a runtime error.

We implemented this semantics in a tool called DuctileJ. It uses a de-
typing transformation (Section 3) to convert a potentially type-incorrect
program into one that is trivially statically type-correct, and which per-
forms all type checking at runtime. Section 4 evaluates DuctileJ: the
correctness of its transformation, its usefulness during prototyping and
refactoring, and its runtime performance.

In summary, our contributions are:
• A new perspective on delivering the benefits of both static and dy-

namic typing, which focuses on temporary relaxation of static types.
• An informal semantics and publicly-available tool [14] for the exe-

cution of type-incorrect Java programs based on a detyping transfor-
mation.

• An evaluation of the benefits conferred by our approach in both
prototyping and software evolution scenarios.

2. MOTIVATION
Our proposal is motivated by a simple idea: a developer should

always be able to execute their code, regardless of whether the code
type-checks. This section describes scenarios where such a capability is
useful. Section 4.2 describes case studies that evaluate each of the two
scenarios.

2.1 Software Evolution
During the evolution of a software system, global enforcement of

static type-correctness can be burdensome to a programmer. It forces
changes to be made in an order preferred by the type checker rather
than the order preferred by the programmer. Often, the programmer
would benefit from the ability to incrementally test changes as they
are made—when feedback on changed behavior is most useful—but
the programmer is prevented from executing those tests until the entire
program is type-correct.

Delaying discovery of a failed test until long after a change has been
made forces the programmer to “page in” the code again when investigat-
ing the failure, increasing the effort needed to fix the error. Furthermore,
if the test failure shows that the change needs to be implemented differ-
ently, the developer may have wasted effort performing similar changes
in the same inappropriate way elsewhere in the codebase. By testing as
they go, the developer can repair errors while the failing code is fresh
in their mind, and they can leverage knowledge gained from validating
earlier changes to avoid repeating the same mistakes when making later
changes.
Representation or interface changes One common evolution task is to
change the data representation or interface of a program component. Take
as a concrete example an instant messenger (IM) program that initially
supports only a single network and is now being expanded to support
multiple networks. A user was initially identified by a string: their user
name on the single supported IM network. Now the programmer needs
to replace all uses of the string type in this context with a record or object
type that additionally indicates their network.

Such a transformation—identifying particular uses of a general-purpose
type like String and converting them to a user-defined type—cannot
easily be automated with refactoring tools. The developer must make
the change manually, and would prefer to make and test the change
incrementally for the reasons stated above. Unfortunately, in a statically-
typed language, this is often not possible. One must transform the whole
program before type-correctness—and hence testability—is restored.

Even in a well-modularized program, where one might hope to trans-
form and test one module at a time, such changes can impact the inter-
faces between modules. Once the changes are begun on one module, the
other modules are type-incorrect for as long as they reference the old rep-
resentation. This is true even if they do not depend on the representation,
such as a data structure that stores user information. The programmer
must either expend effort to specialize their build system to isolate one
module at a time for compilation and testing, or concede to the demands
of the type system and reinstate total type-correctness before testing.

Exploratory changes When making exploratory changes that include
changes to types, a developer will often make the type changes first,
preserving the original behavior of the program and stubbing out new
functionality. They then go back and make the behavioral changes. This
minimizes the period during which they are unable to execute and test
their program. However, this also results in a greater time investment in
exploratory changes before they are evaluated for viability.

The programmer may discover, shortly after beginning the behavioral
changes, that their approach is infeasible. The time spent making the up-
front type changes was wasted. With always-available static and dynamic
feedback, they can implement and test their type and behavior changes
simultaneously. If they determine that they need to take a different
approach, they will have done so sooner and with less effort.

Ad-hoc testing Not every aspect of a software system is amenable to
automated testing. In some cases developers opt not to use automated
testing, even where it is possible, for reasons of expedience. For example,
a developer may choose to test their user interface by interacting with
it directly. Our approach can benefit these developers by enabling them
to perform ad-hoc tests as they make changes. In cases where the type
checker forces them to delay this ad-hoc testing until the software is
totally type-correct, they may forget exactly which parts of the program’s
functionality were impacted by their changes and omit ad-hoc tests that
are needed.

2.2 Software Creation
Prototyping—creating a rough first draft of functionality—is a low-

cost way to evaluate the feasibility of a design or approach. It can reveal
hidden assumptions, and it permits rapid iteration and experimentation
to hone in on desired behavior.

A certain amount of static typing is beneficial during prototyping.
Thinking about types up front, and having them automatically checked,
helps the developer to organize the code and the design. This is especially
important during prototyping, when a system’s foundations are put in
place.

But, too much static typing can be detrimental. During prototyping,
the structure of the program changes rapidly and code may be quickly
written and thrown away. Expending the extra effort to add type annota-
tions, or to create abstractions with separate interfaces and implementa-
tions, can be wasteful given the transient nature of the code. Because of
this, dynamically-typed languages are considered to be very effective for
prototyping.

Prototypes often contain temporary or partially-implemented func-
tionality that falls out of date with the rest of the program. If the code
is statically-typed, the programmer has two undesirable and wasteful
options. One option is to expend effort to keep the unused (and possibly
irrelevant) code type-consistent with the rest of the program. Another
option is to comment out the code, which forces the developer to chase
down any other bits of code that reference the commented code, and
painstakingly identify the precise boundary between what code is used

and what code must be commented out.
In a language that distinguishes between static and dynamic constructs

(such as the Dynamic type), the static parts of the code may fall out of
date as the prototype rapidly evolves. These parts of the code then cause
the program to fail to compile and require the developer to fix them
before they can once again execute their code, just as they would in a
completely statically-typed language.

Furthermore, any use of the Dynamic type requires the programmer to
later revisit the code, perhaps having forgotten their precise intentions in
the meantime. Recalling those intentions, particularly in the absence of
the helpful documentation of type declarations, then manually updating
the types, is a time-consuming process.

A developer should be able to write down the types they think are ap-
propriate, but should not be required to maintain perfect type-correctness
while they are prototyping. By having both static and dynamic feedback
available at all times, the developer can focus on type-correctness or
behavioral-correctness as they see fit, and not be forced to prioritize one
over the other. By using the types they think are appropriate, they express
their intentions concretely in the code and reduce the effort needed to
later make the code type-correct.

Prototypes eventually give way to production code, where static typing
can help greatly with code evolution and maintenance. It is possible
for developers to create a prototype in a dynamically-typed language,
and then rewrite everything in a statically-typed language once the ex-
ploratory prototyping phase is complete. Fred Brooks once said to “plan
to throw one away; you will, anyhow” [11]. But he now acknowledges
that a better practice is to “build a minimal thing—get it out in the field
and start getting feedback” [35]. It is quite common for prototypes to
evolve into production systems. In such circumstances, there is no good
point at which to rewrite the entire project in a new language. The
language chosen for the prototype is often the one that is used for the
final product. It should be one that supports the dual benefits of dynamic
and static typing during prototyping.

3. IMPLEMENTATION
We have implemented our approach for the Java language in a tool

called DuctileJ [14]. DuctileJ consists of a plugin to the Java compiler
and a run-time library. The compiler plugin performs a detyping trans-
formation that converts a normal Java program to one in which type
checking is deferred until runtime. The plugin operates on the abstract
syntax tree (AST) during compilation, before generation of Java byte-
codes. The runtime library uses Java’s runtime type information and
its reflection mechanism for dynamically accessing object fields and
invoking methods.

For nearly all well-typed programs, the detyping transformation yields
code with semantically-equivalent runtime behavior (specific deviations
are described in Section 3.8). For type-incorrect programs, execution will
terminate with a runtime type error roughly only when the program exe-
cutes a statement that performs a dynamic cast to an incompatible value,
calls a method not supported by the receiver, accesses a non-existent field,
or performs a built-in operation (like arithmetic multiplication) on a value
of invalid type. Further details on execution-terminating runtime errors
are provided in the detailed explanation of the transform that follows.

An inconsistency between a declared type and a runtime value does
not terminate the program, because the runtime value might provide all
the methods and fields that are necessary for this particular execution. If
the execution completes normally, then the type inconsistency was not
important. (Recall that the programmer only runs the code at moments
when they have decided that observing a test execution is more valuable
than reviewing type checker warnings.) If the execution fails, then the
type inconsistency may yield insight into the failure. Therefore, we pro-
pose that the declared types be checked at each (pseudo-)assignment, and
any inconsistencies be logged. If the program fails with a runtime type
error, then it is reported along with relevant declared type inconsistencies.
These could be determined, for example, via dynamic slicing from the

runtime type error. This approach contrasts with other approaches that
halt the program as soon as a declared type is inconsistent with a runtime
value. The error logging and slicing are not yet supported in our DuctileJ
implementation.

Space limitations prevent us from providing complete details of the
transformation in this paper, so we describe the basic transformation and
a few language constructs, and summarize the remainder in Section 3.6.
Space limitations also prevent us from describing the prototype imple-
mentations of the Ductile approach for C# (http://code.google.com/
p/ductilesharp/) and for Scala (http://www.cs.washington.edu/
education/courses/cse501/10au/ductilescala.pdf)— languages
that present a different set of design challenges.

3.1 Basic Transformation
Variable Declarations The transformation replaces all declared types
with Object. This includes local variables, method parameters, and class
fields. An example of such a transformation follows:

class Foo {
int bar;
int compute (int baz) {

String qux = ...;
}

} ⇓
class Foo {

Object bar;
Object compute (Object baz) {

Object qux = ...;
}

}

In certain circumstances, variable declarations are not transformed.
The exception declaration in a catch clause is not transformed. The
declared type of the exception defines the runtime semantics of the
program and thus must be preserved. However, catch clauses that
reference an unknown type—which would result in compilation failure
if preserved in detyped code—are removed as they cannot impact the
behavior of the program.

Variables that are declared as final and are initialized by a constant
expression are not transformed. Such constant declarations must remain
typed to preserve correct use in annotations, and in situations where
constant boolean expressions impact definite assignment analysis.
Method Invocation and Field Access Object construction, method
invocation, and field reads and updates are transformed into calls to the
DuctileJ runtime library, which performs these actions via reflection.
Such calls in the example code take the form RT.action.

The behavior of the RT calls is generally a runtime equivalent of the
pre-transformed static code, along with more informative error handling
than that provided by Java’s reflection library.

The following example shows object construction, field read and
update, and method invocation:

Foo foo = new Foo();
foo.bar = 3;
int r = foo.compute(foo.bar)

⇓
Object foo = RT.newInstance("Foo");
RT.assign(foo, "bar", 3);
Object r = RT.invoke("compute", foo, RT.select(foo, "bar"));

The RT.newInstance call raises an error at runtime if the supplied class
does not exist or lacks a public constructor that accepts the appropri-
ate number of arguments. Similarly, RT.invoke raises an error if the
receiver lacks a method of the specified name and arity. RT.select
and RT.assign raise an error if the supplied object lacks a field of the
specified name.

Note that the types of the arguments to constructors and methods and
the types of the values stored in object fields need not be compatible with
the declared types in the original code. While method invocation and

http://code.google.com/p/ductilesharp/
http://code.google.com/p/ductilesharp/
http://www.cs.washington.edu/education/courses/cse501/10au/ductilescala.pdf
http://www.cs.washington.edu/education/courses/cse501/10au/ductilescala.pdf

field access may raise message not understood errors, runtime type errors
are generally only raised when a value of incorrect type is used as an
operand of an arithmetic or boolean operator, or in language constructs
like if or while statements, which require a specific primitive type.
Section 3.4 discusses the interaction between detyped and undetyped
code and describes how method invocation and field assignment can
result in runtime type errors in those cases.

Operators Built-in unary and binary operators are transformed into calls
into the runtime library that check the types of the operator arguments
and then perform the appropriate computation. Numeric promotion
is performed by RT.binop at runtime, per the rules described in Java
Language Specification §5.6. If either operand is of incompatible type, a
runtime exception will be raised.

3.2 Exception Wrapping
When method invocations are converted into reflective calls, infor-

mation about checked exceptions is lost. The following transformation
results in invalid Java code:

int readChar (InputStream in) {
try { return in.read(); }
catch (IOException e) { return -1; }

}
⇓

Object readChar (Object in) {
try { return RT.invoke("read", in); }
catch (IOException e) { return -1; }

}

The call to in.read() is declared to throw an IOException but the
call to RT.invoke is declared to throw no checked exceptions. The Java
compiler rejects any catch clause for a checked exception that cannot
be thrown in the enclosed code.

Furthermore, when invoking a method via reflection, Java wraps
any exceptions thrown by the invoked method in InvocationTarget-
Exception instances. Thus, even if the compiler did not reject the
transformed code above, it would have a semantics that differs from
the original code: the IOException would not be correctly caught, if
thrown.

To ensure both a correct semantics and legal Java code, the runtime
library catches and re-wraps any exceptions thrown as a result of its
reflective calls into the new exception type WrappedException. This
new exception type is used in lieu of InvocationTargetException to
avoid conflicting with direct uses of reflection by the untransformed code.
All try/catch blocks are then transformed as follows:

Object readChar (Object in) {
try {
try { return RT.invoke("read", in); }
catch (WrappedException e$W) {
if (e$W.getCause() instanceof IOException)
throw (IOException)e$W.getCause();

else throw e$W;
}

} catch (IOException e) { return -1; }
}

This ensures that checked (and unchecked) exceptions are caught in
the same manner as the untransformed code, and that the Java compiler
sees the static possibility that the appropriate checked exception is thrown
inside a given try/catch block.

Note that this transformation is done regardless of whether the try/
catch block originally contained code that threw the exception in ques-
tion. We see this as another beneficial relaxation of the static type system.
A programmer can remove a checked exception from the throws clause
of a method and defer the additional effort of removing any try/catch
blocks that would normally become invalid as a result of that method no
longer throwing the checked exception.

3.3 Method Overloading
Java allows multiple methods with the same name and arity to be

declared as long as they differ in their argument types. At compilation
time, the static types of the arguments are used to select the appropriate
overloaded method. As the detyping transformation converts the types
of all method arguments to Object, this can result in collisions in
overloaded method declarations. In addition to the need to prevent these
collisions, transformed well-typed code must make the same choice in
resolving overloaded methods dynamically at run time as would have
been made statically at compile time.

Name mangling cannot be used in this circumstance, as construc-
tors cannot be name-mangled. Instead we use signature mangling.
A method’s arguments are replicated into value-carrying arguments
and type-carrying arguments. The value-carrying arguments have type
Object and are used at runtime to pass values to the method. The type-
carrying arguments have the original declared types and their values
are not used at runtime. This ensures that every method has a unique
non-colliding signature. An example of signature mangling is:

class Printer {
void print (String value) {...}
void print (int value) {...}

}
Printer p = new Printer();
int val = 3;
p.print(val);

⇓
class Printer {

void print (Object value, String value$T) {...}
void print (Object value, int value$T) {...}

}
Object p = new Printer();
Object val = 3;
// 2nd argument is declared type of argument expressions
RT.invoke("print", new Class<?>[]{int.class}, p, val);

During the transformation of call sites, overloaded methods are re-
solved based on the declared types of their arguments. If sufficient
compile-time type information exists to unambiguously select a most-
specific overloaded method, the argument types identifying that method
are injected into the program to communicate to the runtime which
method to execute. If no most-specific overload can be determined, no
type information is injected. In that case, RT.invoke will attempt to
resolve the overload using the runtime type of the method arguments.
If that type information is also insufficient to resolve the overload, a
runtime error is raised.

During runtime method invocation, RT.invoke inserts default values
(null, boolean, or the appropriate 0 value) into the argument array at
the type-carrying positions.

3.4 Library Code
DuctileJ’s transformation differentiates between code that is being

transformed and code that remains statically-typed. The user can make
this choice; by default, DuctileJ detypes all source code available to it,
but not binaries such as platform code and third-party libraries. We refer
to untransformed code as library code. While a bytecode transformation
approach could allow third-party libraries to be detyped even without
access to their source code, we expect detyping to be most useful on
code that the developer is actively changing. Besides, only type-correct
code can be compiled into bytecodes, and DuctileJ is intended to help
programmers to run type-incorrect code.

Detyped code need not use libraries in a type-checkable manner. At
run time, when detyped code makes a call into library code, if the
arguments do not have the parameter types required by the library call, a
type error is raised. This is analogous to DuctileJ’s handling of primitive
operations.

Type signatures are preserved for any method in detyped code that
overrides/implements a method defined in a library class/interface. This
ensures that if a reference to a detyped instance is passed into library

code, the untransformed library code will operate correctly. An example
of a detyped library overrider is shown below:

class Person implements Comparable<Person> {
public int compareTo (Person p1, Person p2) {

int rv = ...;
return rv;

}
}

⇓
class Person implements Comparable<Person> {

// type signature unchanged
public int compareTo (Person p1$P, Person p2$P) {

Object p1 = p1$P, p2 = p2$P;
Object rv = ...;
return RT.cast(int.class, rv);

}
}

Detyped local variables use the same names as the original parameters.
This allows the detyped method bodies to use the arguments as l-values
in assignments whose r-values are themselves detyped. Also, the return
value of the method is dynamically cast back to the declared return type
of the method. If the body of the method computes a return value of the
wrong type, a type error will be raised by RT.cast.

This signature preservation reduces, in a small way, the flexibility of
the detyped code. Normal detyped methods can accept any argument
type and return a value of any type, regardless of their declared types.
Only if the bodies of those methods make use of the values in a manner
incompatible with their runtime types will an error be raised. Library
overriders must be called with type-correct arguments and return type-
correct values, regardless of whether those arguments are used in the
method body or the return value is used by the caller.

3.5 Type Resolution
Part of the detyping transformation is purely syntactic, and part re-

quires type resolution for names and expressions, such as when disam-
biguating overloaded methods (Section 3.3). Even in non-overloaded
method invocations, the detyping transformation must distinguish be-
tween static and non-static receivers to correctly transform the code.

DuctileJ implements a relaxed type resolver that performs normal type
resolution using the types declared in the code, and falls back to Object
for expressions that cannot be resolved. For a type-correct expression,
the resolver obtains the same type as the standard Java compiler, and for
type-incorrect expressions, the resolver can proceed in cases where the
Java compiler would terminate with a type error, by substituting Object
for the types of unresolvable sub-expressions.

3.6 Other Transformations
The Java language has grown large in its maturity, and achieving a cor-

rect semantics for detyped code required substantial effort. Some other
interesting challenges handled by DuctileJ’s detyping transformation [14]
include: handling of arrays, final fields and variables, arithmetic and
logical operators, control flow constructs, widening and narrowing con-
versions, annotation and enum classes, anonymous inner classes, definite
assignment analysis, variable-arity methods, partially implemented in-
terfaces, super and chained constructor calls, use of explicit outer this
pointers in inner class construction, security manager restrictions, and
primitive vs. object equality.

3.7 Debugging
The detyped code that is executed differs from the source code that

the user views in their IDE. This did not decrease productivity when
debugging in our case studies. The stack trace is identical, even down to
line numbers, except that between every pair of stack frames is a new
stack frame for the DuctileJ runtime library’s RT.invoke call. Users
should ignore those frames. All debugger features such as breakpoints
and watched variables work. The changed variable types and the extra
method arguments are visible.

Software SLOC CLOC Tests CLOT
Google Collections (1.0) 50,744 18 44,760 45
HSQLDB (1.8.1.2) 76,378 2 3,783 0
Joda-Time (2.0) 78,466 3 3,736 4

Figure 1: Correctness tests. SLOC is non-comment lines of code. CLOC is
changed lines of non-test code. Tests is the number reported by the test framework
(e.g., JUnit), plus the number of SQL commands (for HSQLDB). CLOT is
changed lines of test code.

3.8 Limitations
This section describes two Java language features that DuctileJ does

not yet support, and our plans for supporting them. DuctileJ does not
currently support separate compilation, but we do not have space to
explain our design.
Reflection The detyping transformation changes both the arity and type
signature of methods (including constructors). DuctileJ does not yet
support code that uses reflection to inspect or call methods that take
arguments.

One approach to supporting reflection is to intercept calls to Java’s
reflection routines and translate them such that they report metadata that
matches the original undetyped code. DuctileJ would also transparently
insert appropriate values for type-carrying arguments to method and
constructor calls made via reflection. This can be done by transparently
rewriting bytecode as it is loaded into the VM, which will ensure that
reflection use in both detyped and library code functions properly. The
feasibility of such an approach has been established by the EMPL [42]
and RuggedJ [26] tools, which hide program transformations from Java
reflection.
Serialization Java provides built-in support for converting objects to
and from a binary representation for network transmission or persistent
storage. Like reflection, this facility relies on metadata that is modified by
the detyping transformation. The Java serialization framework provides
hooks for custom object serialization, which can be used to automatically
generate custom serialization and deserialization routines that read and
write the standard serialized representation of the untransformed class.

4. EVALUATION
The goals of our evaluation are threefold. First, we wish to demon-

strate that our tool, DuctileJ, correctly performs the detyping transforma-
tion on a sufficiently large subset of the Java language in order to render
it usable on real-world programs. Second, we wish to understand the ben-
efits of always-available static and dynamic feedback during prototyping
and software evolution tasks. Third, we characterize the performance of
DuctileJ.

4.1 Semantic Correctness
Much of the challenge in implementing the detyping transformation

in Java stems from handling the complicated interplay of language
features like inner classes, variable-arity methods, generics, and auto-
boxing. Because such features, not to mention their interactions, are
generally omitted from formalizations of the Java language, we chose an
informal approach to demonstrating the semantic equivalence of detyped
to undetyped code.

We used DuctileJ to compile and run the unit test suites of a variety
of Java libraries and applications and confirmed that the suites reported
no failures. While this does not establish that there are no differences
between the detyped and standard Java semantics—indeed, Section 3.8
lists some—it does build confidence that there are no commonly used
language features, or interactions thereof, that are not handled correctly
by the detyping transformation.

Figure 1 summarizes the largest of the projects that we used in our
evaluation. All tests passed when run in detyped form. We made minor
modifications to work around the limitations described in Section 3.8.
Reflection The Google Collections test suite uses reflection to succinctly
express tests parameterized over all methods of a class, and over individ-

ual parameters to those methods. We modified the test drivers to ignore
the type-carrying parameter positions and to obtain the types of the value-
carrying positions from the type-carrying positions. These modifications
did not change the conditions for correctness. The Joda-Time test suite
uses reflection to invoke the constructors of two classes which do not
provide public constructors. HSQLDB uses reflection to fall back to a
simpler database metadata class if the construction of the newer class
results in failure. We manually inserted type-carrying arguments into
these calls.

Section 3.8 describes an approach to handling reflection in detyped
code, which would eliminate the need for these changes.

Serialization The detyping transformation inserts initializers for de-
typed primitive fields to emulate the initialization of said fields to their
default values (e.g., 0 for an int field). These injected initializers are
run as a part of an object’s constructor, but an object’s constructor is not
invoked during deserialization, which circumvents normal constructor
invocation. We manually inserted, into Google Collections, 3 custom
readObject methods that initialize detyped primitive fields to their
default values before triggering the normal deserialization process. Duc-
tileJ should synthesize this readObject method automatically during
the detyping process, but this is not yet implemented.

In the Joda-Time test suite, 48 tests consisted solely of deserializ-
ing objects from binary data stored with the project and validating the
resulting objects. Because detyping changes the serialized form of the ob-
jects in question, we used detyped instances to regenerate the binary data
against which the tests were run. DuctileJ should synthesize readObject
and writeObject methods to overcome this incompatibility, but this is
not yet implemented.

4.2 Case Studies
To evaluate the benefits of always-available static and dynamic feed-

back, we used DuctileJ to prototype new programs as well as to evolve
existing, type-correct programs. We were specifically interested in learn-
ing which of the many benefits conferred by the use of dynamically-typed
languages could be obtained by using DuctileJ. We also wished to inves-
tigate the benefits of fluidly switching between static and dynamic views
of the same code.

The developers were two of this paper’s authors. One has developed
commercial software for 14 years, chiefly in statically-typed languages
like Java and C++, though doing many smaller projects in scripting
languages (Perl, PHP, Ruby, and Python). The other is a senior engineer
at Microsoft with 11 years of professional software engineering experi-
ence, of which one year was using dynamically typed languages such
as Ruby and Python. Based on their experiences, both developers have
a preference for static typing. Thus, they began with skepticism about
DuctileJ, but strove to maintain an unbiased and objective viewpoint.

These initial studies are limited, so the conclusions might not general-
ize to other developers or tasks; future work should extend them.

4.2.1 Prototyping
Two developers each implemented a contact management application.

It was specified as follows: “Create a simple program for managing an
e-mail address book. Each entry in the address book has fields for first
and last name, e-mail address, and birthday. The software must support
entry creation, editing, browsing, and lookup, via a GUI or a command-
line tool. Structure the program in two parts: a database that stores
address book entries with separate interface and implementation, and the
application built atop that library.” The two completed applications were
668 and 702 lines long (including test code) and took 4 and 5.5 hours to
write, respectively.

We next describe the benefits of the Ductile approach that the devel-
opers leveraged. They worked independently, but their experiences were
similar, so the following text reports the experience of the first devel-
oper described above. In each case, statements reflect the developer’s
self-reported beliefs while performing the case study.

Duck typing Duck typing checks each individual field access or method
invocation at runtime and succeeds or fails based on whether the required
field or method is defined for the object. It is akin to structural typing
where structural conformance is checked at runtime.

In the prototype, the interface portion of the application made use of a
Database interface, which evolved as the prototype was developed. The
developer used the Database type name in code that he knew would
operate on the database abstraction, but he did not explicitly declare
which methods would be exported by the Database interface. Instead,
he developed a concrete implementation of the interface and deferred
decisions about which methods in the concrete implementation would
be exported via the interface and which would not. Once the prototype
was complete, he examined the type checking output, which had been
available all along but which he had been temporarily disregarding. He
immediately saw which implementation methods were needed in the
interface; all other methods could remain hidden as implementation
details. This saved him the effort of keeping interface declarations up
to date with the appropriate implementation definitions as the prototype
evolved.

Checked exceptions Java distinguishes between checked and unchecked
exceptions. For calls that might generate a checked exception, either the
call must occur in a try/catch block that handles the exception, or the
enclosing method must declare that it allows the exception to propagate.
The developer was able to defer the handling of checked exceptions until
his design had reached a point of stability.

This conferred multiple benefits. The main benefit was that, as the
design took shape, he was able to focus on whether the code effectively
provided the desired functionality, rather than be distracted by the minu-
tiae of failure handling. Some aspects of failure handling are important,
but if a potential design is deemed to be inappropriate, effort put into
handling specific error cases while prototyping that design is most likely
wasted. The developer reported that he was able to more cheaply experi-
ment with alternative designs, and only invest the effort in proper error
handling once he had reached a final design.

This saved the developer from the temptation of inserting placeholder
error handling code which he might have easily overlooked when later
finalizing the design. He did not want to insert dummy try/catch blocks
just to get his prototype working, because he would have had to later
manually find and repair all such temporary code without the help of
the compiler. Further, he feared that he may have placed his temporary
error handling at places that, after finalizing his design, he decided were
not appropriate. This would have added to his workload, to remove the
temporary error-handling code from those locations, add the necessary
throws clauses, and then add the real error-handling code in the desired
locations.

Finally, by delaying the declaration of the checked exceptions propa-
gated by a method, he was confident that he avoided polluting his method
signatures with vestigial exception declarations. Given the inability to
defer checked exception handling, developers often choose to propagate
checked exceptions while prototyping to avoid having to decide how
and where to handle errors. These exceptions then end up in method
signatures. The developer may subsequently change the implementation
such that it throws a different set of checked exceptions. The compiler,
unfortunately, does not report that he now has unnecessary checked
exception declarations in his methods since it is perfectly legal in Java
to declare that a method may throw checked exceptions that it does
not actually throw. Thus, these checked exceptions often linger in the
method declarations, complicating client code which must now handle
these phantom error conditions. By delaying the declaration and han-
dling of checked exceptions until the end of the prototyping process, the
developer reduced the likelihood of such signature pollution.

Access control An unexpected benefit the developer encountered was
the ability to defer the enforcement of access control. In converting his
prototypes to type-correct code, the developer discovered that he had
unintentionally called private or protected methods from code that did

not have access to those methods. He was glad that he was not using the
stock Java compiler, which he felt would have distracted him from his
prototyping task to determine the correct way to accomplish the desired
functionality.

Honoring access control restrictions is clearly something that should
be done eventually, but he felt it was beneficial to defer that effort until
after he knew that the code in question would make it into the final
design. Earlier versions of his code (that he later discarded) called other
inaccessible methods. He felt that, in such cases, he was able to avoid
wasting effort determining how to properly access functionality that was
eventually not needed.

Negatives The developer encountered some annoyances while perform-
ing the case study, but none of them delayed him more than a moment.
One was that he once mistyped a field name, and he discovered this fact
via testing rather than at compile time, when he would have preferred.
The other negatives have to do with limitations of our prototype imple-
mentation. The developer tried to use reflection to obtain the return type
of a method, but it returned Object instead (see Section 3.8). The devel-
oper was happy not to have to write import statements, but the import
statements were necessary to resolve certain constructor calls, which
was a surprise when he had been using the type in other contexts in the
same file. Finally, because he was using an early version of DuctileJ, he
encountered some bugs in it, which have since been fixed; interrupting
his thought process to report and work around these was his biggest
annoyance in the study.

Comparison with automated refactoring Modern IDEs support cer-
tain type-related code changes. To call these “automatic fixes”, however,
would be a misnomer. In our study, the developer recognized that
changing access modifiers, adding thrown exceptions, adding methods
to interfaces, etc.—just to satisfy the compiler at an intermediate point
in the program’s evolution—would degrade his design. It would require
human effort in the future to find places that needed to be corrected, and
to correct them. The Eclipse “fix” would make a developer more likely
to introduce undesired dependences that would linger unnoticed and be
difficult to fix later; with the Ductile approach, the regular compiler can
still find them. Eclipse’s refactorings are useful in certain circumstances,
but in this case Eclipse would have automated the code transformations
that the developer had already decided were ill-advised.

4.2.2 Software Evolution: Evaluating a Refactoring
We hypothesize that our approach confers benefit for software evo-

lution tasks by allowing design alternatives to be explored with less
effort. To investigate this hypothesis, the first developer described in
Section 4.2.1 refactored JHotDraw (http://www.jhotdraw.org/), a
GUI framework for technical and structured graphics.

JHotDraw defines a Figure interface, which serves as the root of a
rich hierarchy of classes that model geometric figures. Figure defines a
method containsPoint(int x, int y), which the developer wished
to refactor to containsPoint(Point p).

The developer’s goal was to expend as little effort as possible evaluat-
ing whether this refactoring was feasible and appropriate. One way to
make that evaluation is to perform a “vertical slice” of the refactoring:
change the interface, any necessary implementations, and one or more
test cases that invoke the refactored code. The developer selected one
concrete implementation TriangleFigure and its associated test case
TriangleFigureTest. Thus, the goal was to get TriangleFigure-
Test running against the refactored interface. Because he may determine
at that time that the refactoring is inappropriate, he would like to expend
as little effort as possible in doing so. After evaluating the refactoring,
the developer would either undo the changes or complete the refactoring.

The heart of the refactoring is three key changes: change the con-
tainsPoint method signature in the Figure interface; update the Tri-
angleFigure.containsPoint implementation accordingly; and change
the TriangleFigureTest code to supply Point arguments instead of
x- and y-coordinates.

The developer investigated three approaches. A type-driven manual
refactoring required 24 code changes to make the test case pass. A type-
driven refactoring with Eclipse support required one Eclipse refactoring,
then 16 manual edits (a few of them tricky, as described below) to make
the test case pass. A manual refactoring using DuctileJ required only the
3 key changes before the test case passed.

We now discuss each of the approaches in turn.
Type-driven manual refactoring The type checker can guide a devel-
oper through a refactoring. The programmer performed the three key
changes, then ran the compiler, which reported 30 errors.

Of the 30 errors, 9 stemmed from calls to containsPoint that had
not yet been updated to supply a Point instead of separate x- and
y-coordinates. The other 21 errors stemmed from concrete implemen-
tations of Figure that lacked an implementation of the new contains-
Point(Point), as their containsPoint(int,int) method had not yet
been converted.

The programmer performed minimal fixes for the 30 remaining er-
rors so that he could compile and execute TriangleFigureTest. This
required only 21 changes to the source, because updating the imple-
mentation of containsPoint in some abstract base classes resolved
errors for all of their children. After making those changes, he was able
to execute TriangleFigureTest and evaluate his refactoring. Those
21 changes represent substantial effort beyond the 3 changes that were
directly related to his evaluation.
Eclipse-supported semi-automated refactoring Eclipse provides a
Change Method Signature automated refactoring to assist with refactor-
ings like the one in this case study. The developer instructed Eclipse to
change the signature of the Figure.containsPoint method by remov-
ing the x and y parameters, adding a java.awt.Point p parameter, and
using new java.awt.Point(x, y) as the default argument for calls.
He would have preferred a default of new Point(x, y)—and, in fact,
tried that first—but Eclipse fails to insert necessary import statements.
Though the final Eclipse refactoring littered the code with undesirable
fully-qualified class names, which must be manually fixed later, it al-
lowed him to defer that effort until after he had evaluated his refactoring
by executing his desired tests.

After automated refactoring, the compiler reported 34 errors. 16 of
these errors stemmed from implementations of containsPoint that
were referencing the old formal parameters x and y rather than the new
parameter p. The other 18 errors resulted from Eclipse’s verbatim inser-
tion of new java.awt.Point(x, y) as the argument to existing calls to
containsPoint. Eclipse made transformations like the following:

public boolean test (Figure fig, int x1, int y2) {
return fig.containsPoint(x1, y1);

} ⇓
public boolean test (Figure fig, int x1, int y2) {

return fig.containsPoint(new Point(x, y));
}

The refactoring ought to substitute the previous actual arguments
for x and y in the default expression. Only a few calls to contains-
Point happened to use precisely the arguments x and y, and were
correspondingly correct after the naive verbatim text replacement.

Manually repairing the resulting errors required 16 changes to source
files. Most of those changes were straightforward, but two types of
changes presented more difficulty. First, because the automated refac-
toring erased the old parameters to the containsPoint call, there were
several situations where he had to make use of the version control system
to inspect the prior arguments to determine the correct values to use
in constructing the new Point. Second, in 3 cases, the original argu-
ments were not the variables x and y, yet other variables named x and
y, with correct types, happened to be in scope at the call. The verbatim
default argument insertion thus resulted in code that compiled but whose
behavior was inconsistent with the behavior prior to the refactoring.
DuctileJ-supported manual refactoring When using DuctileJ, the
developer made the desired change to Figure.containsPoint and

http://www.jhotdraw.org/

Software Stock (s) Detyped (s) Slowdown (×)
Google Collections 42.8 286.0 6.7
HSQLDB 15.0 16.3 1.1
Joda-Time 8.5 65.9 7.8

Figure 2: Average execution time of test suites.

updated the code in TriangleFigureTest. After just these 2 changes,
he was able execute the refactored code. DuctileJ reported that a runtime
type error was encountered in the TriangleFigure.containsPoint
implementation. He then converted that method to the new signature and
updated its body. At this point, he executed the unit test successfully and
was able to evaluate his refactoring.

DuctileJ allowed him to execute the desired tests without making any
changes unrelated to his immediate goal. It also guided him toward
exactly the changes that were needed to “bridge the gap” between the
updated Figure.containsPoint method and the updated Triangle-
FigureTest class, which made calls using the new signature.

While this case study is simple, and could be better supported by
improved refactoring tools in the Eclipse IDE, developers frequently
perform refactorings that are even more complex and must be done with
limited or no automated refactoring support [27]. It is impossible to
predict every kind of refactoring a developer may wish to perform and
support it with special-purpose machinery in the IDE. However, the
Ductile approach can simplify the process of evaluating any refactoring,
increasing confidence that it is appropriate before the developer commits
to the potentially substantial effort of applying that refactoring to the
entire codebase.

4.3 Performance
The detyping transformation degrades execution performance. Our

focus so far has been to establish the feasibility and utility of our ap-
proach, without undue concern for performance. In the case studies, the
developers observed no slowdown, perhaps because: GUI applications
are not compute-bound; untransformed libraries often dominate execu-
tion time; and test cases tend to execute quickly. Figure 2 summarizes
the slowdown exhibited on the unit test suites we used to evaluate se-
mantic correctness in Section 4.1. We have found the performance to be
acceptable for a development-time tool.

There are two major sources of slowdown in detyped code. The first is
the dynamic lookup and reflective invocation of methods, and the second
is the dynamic execution of arithmetic and logical operations.
Dynamic method dispatch Dynamic method dispatch incurs perfor-
mance penalties in two ways: the correct method to be called must be
resolved, and the method must then be invoked via Java’s reflection
mechanism. DuctileJ caches method resolution results.

Performance for calls with dynamically correct type information could
be improved by inserting a type check on the receiver, then performing a
normal inline method call if the type check succeeds.

Performance for calls without correct type information could be im-
proved by generating and loading shim classes, then invoking them
through a standard invokeinterface bytecode instruction, as in JRuby
[23]. An even more appealing approach uses the forthcoming invoke-
dynamic support in the Java 7 VM [33].
Arithmetic and logical operations Normal compiled Java code uses
special bytecode instructions for operations on primitives. In detyped
code, DuctileJ incurs the overheads from boxing, unboxing, dynamic
type tests, promotions, and conversions.

One approach to improving the performance of such operations is
to avoid detyping variables declared with primitive types. This would
improve runtime performance at the expense of reducing the flexibility
of detyped code—it would no longer be possible to carry arbitrary values
in variables declared with primitive types.

The approach could be taken further by not applying the detyping
transformation to any code that type-checks. However, if DuctileJ did so,
then a type-check and a cast would be required whenever calling such

code, just as with undetyped libraries (Section 3.4). It would no longer
be possible to run code in which a client passes an object that contains all
the methods that will ever be called at run time, and this is a major feature
of DuctileJ. Our goal in this research was to maximize development-time
flexibility, but it is possible that greater productivity may be achieved
via different performance/flexibility tradeoffs in different development
scenarios. Future work should investigate these tradeoffs.

5. RELATED WORK AND DISCUSSION
Our work aims to integrate dynamic and static type systems in a

single language. Previous work on this topic generally falls into two
categories: strengthening a dynamic type system without losing the
feel or expressiveness of the dynamic language, and adding a Dynamic
type to a statically-typed language while retaining as many guarantees
as possible about the statically-typed portion of a program. There is
significant variation within the two categories, and also some notable
outliers. Our approach differs from all of this previous work, both in
motivation and in technical details. This section provides an overview of
related work and then highlights differences.

5.1 Strengthening a Dynamic Type System
Adding types to a dynamically-typed language can improve perfor-

mance and detect some errors at compile time. In order to retain the feel
of the language, programmers are not required to write type annotations;
instead, type inference is used. This general approach is often called soft
typing [13]. First applied to Scheme, it has since been extended to other
languages [29, 25, 4, 12, 19].

Soft typing never rejects a program, but it does issue warnings. The
program can still fail due to a type mismatch at runtime. Such errors
do not corrupt the underlying runtime system, because a dynamically-
typed program performs checks before each operation that requires a
given type, such as primitive operations or field accesses. In addition
to issuing warnings, soft typing also improves efficiency by optimizing
away unnecessary runtime checks, when the type inference can statically
prove that the check is guaranteed to succeed at runtime.

This approach has also been applied in a more practical setting, in
the RPython (for “Reduced Python”) language [3]. RPython eliminates
enough of the dynamism of the full Python language that type inference
always succeeds, if the program has no errors. Its goal is to achieve
higher performance, enabled by type guarantees. DRuby [19] follows
this approach, but is focused on discovering type errors in existing Ruby
programs. The PRuby [19] extension gathers dynamic profiles in order
to reduce programmer annotation burden, and it also replaces untypable
dynamic features with statically-analyzable alternatives.

Researchers report that many programs written in dynamic languages
are nearly typable, because they don’t use much dynamism in practice [6,
34, 18, 22, 32]. However, practitioners have not adopted these restricted
dialects or type-inference mechanisms.

In practice, it is difficult to increase the amount of static typing in
any language. The largest-scale conversion was probably the addition
of const to C/C++ programs, an arduous process commonly referred
to as “const-correctness hell”. A close second is addition of generic
types [10] to Java programs. Years after the introduction of generics,
Sun/Oracle has not yet converted all of the signatures in the JDK to
use generic types, and they never intend to convert the bodies to be
generics-correct. Lisp programs have been retrofitted with declare and
proclaim for efficiency, and the authors of Typed Scheme [44, 45] have
rewritten part of their systems to use it. In each of these examples, the
conversion required hard thinking and program restructuring, though the
conversion generally did improve the code.

Our experience is that when programmers start out with a dynamic
mindset, they may choose a design that is not statically-typable, even
when a statically-typable design exists and is preferable. This leads to
painful program restructuring much later in the development process.
Thinking about and writing the types helps to prevent this problem, and

being able to run a type checker helps even more. This is why we
believe that types should be in the programmer’s mind and code, and
be supported by the toolset (but not enforced until the programmer is
ready), from the beginning of the development process.

5.2 Adding Dynamic to a Static Type System
Abadi et al. [1] first formalized adding a Dynamic type and a typecase

construct to a statically-typed language, though programmers had been
using such code (often without the benefit of static type-checking guar-
antees) for some time. This approach is known as incremental, gradual,
or hybrid typing.

The key idea is that part of the program is statically type-checked, and
part of the program uses a Dynamic type. Type errors cannot be the fault
of the statically-typed portion, but can be due to the dynamically-typed
portion or the boundary between them. The boundary between the parts
can be arbitrary—it may lie along module interfaces, or may separate
two arguments to an operation. The programmer explicitly decides
the boundary, and indicates it by writing type annotations. The key
challenge taken up by researchers is defining behavior at the boundary:
correctness (no type errors in the static portion), efficiency, and blame
control (finding the root cause of an error that arises dynamically in the
static portion).

Optional typing (sometimes called pluggable typing) offers no compile-
time or runtime guarantees [9, 8], but the types nonetheless offer software
engineering and performance benefits.

Gradual typing [21, 36, 38, 37] guarantees that in a fully-annotated
program, all type errors are caught at compile time and no dynamic
checks are needed. Otherwise, there are checks at the boundary, and
objects carry their types with them, at least for higher-order types. The
type system replaces type equality with type consistency, which permits
coercions that add and remove instances of ? (their name for Dynamic).
Quasi-Static Typing [43] is a similar idea, but type errors can occur at
runtime, even in a completely annotated program. Another precursor is
the BabyJ dialect of JavaScript, which focuses on nominal types.

Thorn’s “like types” [7, 47] are intermediate between statically-
checked types and Dynamic, and their benefits are also intermediate
between the two. A like type’s uses must be correct according to the
static type system, but any value may be assigned to a like type (and
must be checked at runtime). Introducing a like type can introduce both
compile-time and runtime errors, but does not guarantee the absence of
either. A Thorn programmer must manage boundaries between Dynamic,
like types, and concrete types, rather than just between Dynamic and
concrete types. Runtime checks at the boundaries guarantee that there
are no type errors in the statically-typed portion of the code, but Thorn
omits blame assignment, to avoid performance penalties.

Typed Scheme [44, 45] adds procedure declarations and contracts [15,
20] (runtime checks) at the boundary.

Hybrid typing [17, 24] (along with work in a similar spirit by Ou et
al. [31]) takes contracts even further. Its refinement types are arbitrary
assertions, and the static analysis does both type-checking and theorem-
proving to statically discharge as many as possible. A type-checking
error arises only from an assertion that can be proved to always fail. Any
assertion that cannot be discharged is left in the generated code, to be
checked at runtime. There is no guarantee that an assertion failure will
not halt the program at runtime.

Blame assignment [16, 44, 45, 18, 46] aims to help programmers
understand the root cause of a runtime error. The runtime error may arise
in type-checked code, but may be due to an earlier problem in unchecked
code, such as putting a value of incorrect type in a data structure. To
test higher-order values, blame assignment uses wrappers that test the
values at the point of use rather than at the boundary into typed code [15,
2]. Then, a challenge is to improve efficiency (for instance, using fewer
wrappers and retaining tail call optimization) [21, 38, 40].

5.3 Comparison to the Ductile Approach
Our work differs from the related work in supporting full, sound static

typing throughout a codebase, and permitting the entire codebase to be
treated as dynamically typed. Unlike the work of Section 5.1, DuctileJ
does no type inference, but requires explicit type annotations. Unlike
the work of Section 5.2, DuctileJ makes no guarantees that code in
which static types are written will suffer no type error at runtime (if the
whole codebase is statically type-correct, the guarantee holds). As a
result, DuctileJ can run more code, and the programmer is not forced to
explicitly identify and maintain the boundary between the statically and
dynamically typed code. We now identify some other differences.
Which types should be dynamic? Most of the related work assumes
that a programmer is able and willing to determine which parts of his
or her program should be dynamic, or that sound static typing is not a
requirement. DuctileJ automatically uses the Dynamic type everywhere,
even while permitting a programmer to write and check types.
When should dynamic typing be used? Some of the related work as-
sumes that a programmer will want to use dynamic typing indefinitely in
some parts of a program; the work seeks interoperability with statically-
typed code. Other work aims to evolve dynamically-typed programs into
statically-typed programs [5, 9, 39, 44, 45, 41, 7, 47]. But, once the
program has been converted, the benefits of dynamic typing are lost dur-
ing later maintenance stages (unless the programmer explicitly changes
types back to Dynamic). Our work is unique in its focus on transitioning
in both directions of the typing discipline, which supports important
software development needs. We also advocate writing (approximations
to) static types from the beginning. Even if they are imperfect (e.g., the
type used might not yet be defined), they convey intent and cause the
programmer to think about static types throughout the interactive design
process. They give incremental typing benefits without lock-in, and they
ease the final transition to types, making it more palatable and likely.
What is the starting point for the language design? Unlike most
related work, we start from the context of a statically-typed language
and seek to add the benefits of dynamic typing, rather than vice versa.
And, our work has a robust implementation in the context of a real
industrial-strength language, giving it the potential to yield practically
interesting questions and answers.
What are the scarce resources? Today, computation is plentiful and
cheap. Human effort and attention dominate the cost of most software
produced today, especially if one includes the costs of bugs and rework
that result from inadequate or poorly-focused human attention. Much of
the related work is motivated by efficiency, even to the point of removing
features like blame assignment [47]. By contrast, our primary focus is
on the programmer. We do not force the programmer to write perfect
type annotations before running the code. We could utilize optimization
approaches proposed by others, but they may be less necessary in our
context, since DuctileJ’s dynamic execution is used only in the context
of in-house testing: dynamism is removed before a release build is pro-
duced. We believe it is critical to first determine whether the approaches
proposed by us and others are useful. If so, then they can be optimized,
rather than the other way around.

5.4 Tolerating Inconsistencies
DuctileJ’s key idea is to provide feedback, despite the existence of

inconsistencies that will eventually be resolved. This is not a radical
idea; a similar approach has been independently proposed1, but not im-
plemented nor evaluated. The approach is in widespread use informally,
as programmers use static checkers (from lint to pluggable type systems)
that can be temporarily disabled or simply not run while the programmer
focuses on other issues.

Ossher et al. [30] take a similar approach to requirement engineering,
providing a single toolset that supports both checked and unchecked mod-
eling. They had found that current tools’ consistency checking got in the
way and caused users to abandon those tools, losing other features such
as change propagation and information migration to downstream tools.
1http://faculty.washington.edu/ajko/musings.shtml#typing,
http://steve-yegge.blogspot.com/2008/05/dynamic-languages-strike-back.html

DuctileJ relaxes a particular set of compiler requirements, making
it possible to run code that violates Java’s static type system. Perhaps
the sweet spot is to relax the static requirements even more, such as
by eliminating checks for uninitialized variables or by executing calls
with an incorrect number of arguments. Perhaps the sweet spot relaxes
fewer static requirements, such as by prohibiting misspelled identifiers,
which were the main annoyance in our case studies. (Smalltalk takes this
approach: it is dynamically typed, but when it encounters a symbol that is
not in scope, the IDE pops up an offer to declare it.) Or, perhaps the best
programming methodology requires stricter type-checking than current
languages, or even that code should be forbidden from being tested until
after it has been formally proved correct. The particular choices made
in our current DuctileJ implementation seem to be effective, based on
the case studies. Now that we have proposed the approach, future work
should determine whether other choices are even better, and whether
particular development styles or problem domains affect the choice.

6. CONCLUSION
We have proposed a novel approach to integrating features normally

found in dynamically-typed scripting languages into statically-typed
programming languages. The key idea is to permit a programmer to view
a program through the lens of completely dynamic typing or completely
static typing, and to switch between these views seamlessly, as often as
desired. This approach contrasts with other work that attempts to find a
middle ground, and that retains neither safety nor flexibility.

Our goal is to enable programmers to work faster than they can
with statically-typed languages, and to produce more reliable code than
they can with dynamically-typed languages. Our approach enables the
programmer to obtain either static or dynamic feedback whenever the
programmer chooses. This overturns current IDE paradigms, putting the
programmer in charge of the analysis tools rather than the analysis tools
in charge of the programmer.

Our experiments demonstrate that our approach is sufficiently correct
and performant, and that the benefits of dynamism aid programmers
during both prototyping and evolution. DuctileJ is publicly available,
including source code [14].

7. REFERENCES
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a

statically typed language. ACM TOPLAS, 13(2):237–268, Apr. 1991.
[2] A. Ahmed, R. B. Findler, J. Matthews, and P. Wadler. Blame for all. In STOP,

July 2009.
[3] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a step

towards reconciling dynamically and statically typed OO languages. In DLS,
pages 53–64, Oct. 2007.

[4] D. Ancona, G. Lagorio, and E. Zucca. Type inference for polymorphic
methods in Java-like languages. In Theoretical Computer Science:
Proceedings of the 10th Italian Conference on ICTCS ’07, 2007.

[5] C. Anderson and S. Drossopoulou. BabyJ: From object based to class based
programming via types. In WOOD, pages 53–81, Oct. 2003.

[6] J. Aycock. Aggressive type inference. In Int’l Python Conf., 2000.
[7] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strniša, J. Vitek,

and T. Wrigstad. Thorn: Robust, concurrent, extensible scripting on the JVM.
In OOPSLA, pages 117–136, Oct. 2009.

[8] G. Bracha. Pluggable type systems. In RDL, Oct. 2004.
[9] G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a

production environment. In OOPSLA, pages 215–230, Sep. 1993.
[10] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe

for the past: Adding genericity to the Java programming language. In
OOPSLA, pages 183–200, Oct. 1998.

[11] F. P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, Boston, MA, USA, 1975.

[12] P. Camphuijsen, J. Hage, and S. Holdermans. Soft typing PHP. Technical
Report UU-CS-2009-004, Department of Information and Computing
Sciences, Utrecht University, 2009.

[13] R. Cartwright and M. Fagan. Soft typing. In PLDI, pages 278–292, June
1991.

[14] DuctileJ website. http://code.google.com/p/ductilej/.
[15] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP,

pages 48–59, Oct. 2002.
[16] R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral contracts and

behavioral subtyping. In ESEC/FSE, pages 229–236, Sep. 2001.
[17] C. Flanagan. Hybrid type checking. In POPL, Jan. 2006.
[18] M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided static typing for

dynamic scripting languages. In OOPSLA, pages 283–300, Oct. 2009.
[19] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static type inference for

Ruby. In SAC, pages 1859–1866, Mar. 2009.
[20] K. E. Gray, R. B. Findler, and M. Flatt. Fine-grained interoperability through

mirrors and contracts. In OOPSLA, pages 231–245, Oct. 2005.
[21] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. In

TFP, 2007.
[22] A. Holkner and J. Harland. Evaluating the dynamic behavior of Python

applications. In ACSC, 2009.
[23] JRuby.

http://kenai.com/projects/jruby/pages/JRubyInternalDesign,
July 09, 2010.

[24] K. Knowles, A. Tomb, J. Gronski, S. N. Freund, and C. Flanagan. Sage:
Unified hybrid checking for first-class types, general refinement types, and
Dynamic. In SFP, Sep. 2006.

[25] G. Lagorio and E. Zucca. Just: Safe unknown types in Java-like languages. J.
Object Tech., 6(2):71–100, 2007.

[26] P. McGachey, A. L. Hosking, and J. E. B. Moss. Pervasive load-time
transformation for transparently distributed Java. In ByteCode 2009, Mar.
2009.

[27] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we
know it. In ICSE, pages 287–297, May 2009.

[28] D. A. Norman. The “problem” with automation: Inappropriate feedback and
interaction, not “over-automation”. Phil. Trans. Royal Soc., B,
327(1241):585–593, 1990.

[29] S.-O. Nyström. A soft-typing system for Erlang. In ERLANG ’03, pages
56–71, Aug. 2003.

[30] H. Ossher et al. Flexible modeling tools for pre-requirements analysis:
conceptual architecture and research challenges. In Onward!, pages 848–864,
Oct. 2010.

[31] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with
dependent types. In TCS, pages 437–450, Toulouse, Aug. 2004.

[32] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic
behavior of JavaScript programs. In PLDI, pages 1–12, June 2010.

[33] J. R. Rose. Bytecodes meet combinators: invokedynamic on the JVM. In
VMIL, pages 1–11, 2009.

[34] M. Salib. Starkiller: A static type inferencer and compiler for Python.
Master’s thesis, MIT Dept. of EECS, May 2004.

[35] D. Shasha and C. Lazere. Out of Their Minds: The Lives and Discoveries of
15 Great Computer Scientists. Copernicus Books, 1998.

[36] J. Siek and W. Taha. Gradual typing for objects. In ECOOP, pages 2–27,
Aug. 2007.

[37] J. Siek and M. Vachharajani. Gradual typing with unification-based inference.
In DLS, Pathos, Cyprus, July 2008.

[38] J. G. Siek, R. Garcia, and W. Taha. Exploring the design space of
higher-order casts. In ESOP, Mar. 2009.

[39] J. G. Siek and W. Taha. Gradual typing for functional languages. In SFP,
pages 81–92, Sep. 2006.

[40] J. G. Siek and P. Wadler. Threesomes, with and without blame. In POPL, Jan.
2010.

[41] STOP, July 2009.
[42] M. Tatsubori. Living with reflection: Towards coexistence of program

transformation by middleware and reflection in Java applications. In PPL,
Mar. 2004.

[43] S. Thatte. Quasi-static typing. In POPL, pages 367–381, Jan. 1990.
[44] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts

to programs. In DLS, Oct. 2006.
[45] S. Tobin-Hochstadt and M. Felleisen. The design and implementation of

Typed Scheme. In POPL, Jan. 2008.
[46] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In ESOP,

pages 1–16, Mar. 2009.
[47] T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Östlund, and J. Vitek.

Integrating typed and untyped code in a scripting language. In POPL, Jan.
2010.

http://code.google.com/p/ductilej/
http://kenai.com/projects/jruby/pages/JRubyInternalDesign

	Introduction
	Motivation
	Software Evolution
	Software Creation

	Implementation
	Basic Transformation
	Exception Wrapping
	Method Overloading
	Library Code
	Type Resolution
	Other Transformations
	Debugging
	Limitations

	Evaluation
	Semantic Correctness
	Case Studies
	Prototyping
	Software Evolution: Evaluating a Refactoring

	Performance

	Related Work and Discussion
	Strengthening a Dynamic Type System
	Adding Dynamic to a Static Type System
	Comparison to the Ductile Approach
	Tolerating Inconsistencies

	Conclusion
	References

