
Finding Errors in Multithreaded GUI Applications

Sai Zhang Hao Lü Michael D. Ernst
Department of Computer Science & Engineering

University of Washington, USA
{szhang, hlv, mernst}@cs.washington.edu

ABSTRACT
To keep a Graphical User Interface (GUI) responsive and active,

a GUI application often has a main UI thread (or event dispatching
thread) and spawns separate threads to handle lengthy operations
in the background, such as expensive computation, I/O tasks, and
network requests. Many GUI frameworks require all GUI objects to
be accessed exclusively by the UI thread. If a GUI object is accessed
from a non-UI thread, an invalid thread access error occurs and the
whole application may abort.

This paper presents a general technique to find such invalid thread
access errors in multithreaded GUI applications. We formulate find-
ing invalid thread access errors as a call graph reachability problem
with thread spawning as the sources and GUI object accessing as
the sinks. Standard call graph construction algorithms fail to build
a good call graph for some modern GUI applications, because of
heavy use of reflection. Thus, our technique builds reflection-aware
call graphs.

We implemented our technique and instantiated it for four popular
Java GUI frameworks: SWT, the Eclipse plugin framework, Swing,
and Android. In an evaluation on 9 programs comprising 89273
LOC, our technique found 5 previously-known errors and 5 new
ones.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging.
General Terms: Reliability, Experimentation.
Keywords: Static analysis, invalid thread access error.

1. INTRODUCTION
End-user satisfaction depends in part on the responsiveness and

robustness of a software application’s GUI.
To make the GUI more responsive, GUI applications often spawn

separate threads to handle time-consuming operations in the back-
ground, such as expensive computation, I/O tasks, and network
requests. This permits the GUI to respond to new events even before
the lengthy task completes. However, the use of multiple threads
enables new types of errors that may compromise robustness. We
now discuss a standard programming rule for multithreaded GUI
applications, the consequences of violating it, and a technique for
statically detecting such violations.

1.1 The Single-GUI-Thread Rule
Many popular GUI frameworks such as Swing [18], SWT [34],

Eclipse plugin [9], Android [1], Qt [28], and MacOS Cocoa [22]
adopt the single-GUI-thread rule for GUI object access:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, July 15-20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$10.00.

All GUI objects, including visual components and data models,
must be accessed exclusively from the event dispatching thread.
The event dispatching thread, also called the UI thread, is a single

special thread initialized by the GUI framework, where all event-
handling code is executed. All code that interacts with GUI objects
must also execute on that thread. There are several advantages to
the single-GUI-thread rule:

• Concurrency errors, such as races and deadlocks, never occur
on GUI objects. GUI developers need not become experts at
concurrent programming. Programming the framework itself is
also simpler and less error-prone.
• The single-GUI-thread rule incurs less overhead. Otherwise,

whenever the framework calls a method that might be imple-
mented in client code (e.g., any non-final public or protected
method in a public class), the framework must save its state and
release all locks so that the client code can grab locks if necessary.
When GUI objects return from the method, the framework must
re-grab their locks and restore states. Even applications that do
not require concurrent access to the GUI must bear this cost.
• GUI events are dispatched in a predictable order from a single

event queue. If the thread scheduler could arbitrarily interleave
component changes, then event processing, program comprehen-
sion, and testing would be more difficult.

1.2 The Invalid Thread Access Error
The single-GUI-thread rule requires GUI application developers

to ensure that all GUI objects are accessed only by the UI thread. If
not, an invalid thread access error will occur. This may terminate the
application — doing so is considered preferable to nondeterministic
concurrency errors.

The single-GUI-thread rule can be easily violated, since a spawned
non-UI thread often needs to update the GUI after its task is finished.
In practice, invalid thread access errors are frequent, severe, and
hard to debug.

Take the popular Standard Widget Toolkit (SWT) GUI framework
as an example. Invalid thread access is one of the top 3 bugs in de-
veloping a SWT application, and is the source of many concurrency
bugs [35]. A Google search for “SWTException:Invalid thread ac-
cess” returns over 11,800 hits, consisting of numerous bug reports,
forum posts, and mailing list threads on this problem. Eclipse, the
IDE for Java development, is built on top of SWT. Searching for
“SWTException:Invalid thread access” in Eclipse’s bug repository
and discussion forum returns over 2700 bug reports and 350 dis-
tinct discussion threads, respectively. We manually studied all 156
distinct confirmed bug reports, and found this error has been con-
firmed in at least 20 distinct Eclipse projects and 40 distinct Eclipse
components. Even after over 10 years of active development, a
recent release of Eclipse still contains this error (bug id: 333533,
reported in January 2011). In addition, the invalid thread access
error is severe. It is user-perceivable, it cannot be recovered by
the program itself, and it often terminates the whole application.
In many circumstances as described in the bug reports, users must

In class: org.mozilla.gecko.gfx.LayerView
68. public LayerView(Context context, LayerController controller) {
69. super(context);

....
73. mRenderer = new LayerRenderer(this);
74. setRenderer(mRenderer);

...
}

In Android library class: android.opengl.GLSurfaceView
272. public void setRenderer(Renderer renderer) {

...
282. mGLThread = new GLThread(renderer);
283. mGLThread.start();

}

In class: org.mozilla.gecko.gfx.LayerRenderer
220. public void onSurfaceChanged(GL10 gl, int width, int height) {
221. gl.glViewport(0, 0, width, height);
222. mView.setViewportSize(new IntSize(width, height));

}

Figure 1: Bug 703256 reported on 11/17/2011 in Fennec (Mozilla Fire-
fox for Android) revision d7fa4814218d. On line 74, LayerView’s
constructor calls method setRenderer which spawns a new thread
on line 283. This newly created, non-UI thread calls back method
onSurfaceChanged that accesses GUI objects on line 222 of
LayerRenderer, causing an invalid thread access error. Our tool
finds this error and generates a report as shown in Figure 2.

restart the application to recover from the error. Furthermore, many
reported errors are non-trivial to diagnose and fix. Developers usu-
ally need non-local reasoning to find the specific UI interactions
that can trigger the bug; it took developers 2 years to fix Eclipse bug
51757 and verify the patch.

The invalid thread access error is not unique to the SWT frame-
work. Other recent GUI frameworks like Android suffer from similar
problems. For example, Figure 1 shows a recently-reported bug in
the Android version of Mozilla Firefox. This bug is particularly
difficult to diagnose, since the code that spawns a new thread inside
the setRenderer method is in an Android library.

1.3 Finding Invalid Thread Access Errors
To ensure that GUIs behave correctly, developers must prevent

or detect invalid thread access errors. Current techniques are not
effective.

It is infeasible for testing to cover the enormous space of possible
interactions with a GUI. Each sequence of GUI events can result in
a different state, and each GUI event may need to be evaluated in
all of these states. A software system like Eclipse often has a test
suite that achieves fairly high statement coverage, but many paths
executed by bug-triggering UI sequences are still not covered.

Stylized coding patterns are also inadequate. One possible rule
is to always access GUI objects via asynchronous message passing,
to ensure a GUI object is accessed in the UI thread. For example,
a developer could have prevented the bug in Figure 1 by wrapping
line 222 inside a post message-passing method1, as follows:

In class: org.mozilla.gecko.gfx.LayerRenderer
220. public void onSurfaceChanged(GL10 gl, int width, int height) {
221. gl.glViewport(0, 0, width, height);

mView.post(new Runnable() {
public void run() {

222. mView.setViewportSize(new IntSize(width, height));
}

});
}

Such an approach is desirable for accesses from non-UI threads,
but it is not necessary for all accesses. In our evaluation on real-
world programs, we found that a simple analysis that requires GUI
1The post method in class android.widget.View is a standard way
to send asynchronous messages to the UI thread.

org.mozilla.gecko.gfx.LayerView.<init>(Context;LayerController)
-> android.opengl.GLSurfaceView.setRenderer(GLSurfaceView$Renderer;)
-> java.lang.Thread.start()
-> android.opengl.GLSurfaceView$GLThread.run()
-> android.opengl.GLSurfaceView$GLThread.guardedRun()
-> org.mozilla.gecko.gfx.LayerRenderer.onSurfaceChanged(GL10;II)
-> org.mozilla.gecko.gfx.LayerView.setViewportSize(IntSize;)

...
-> android.view.ViewRoot.recomputeViewAttributes(View;)
-> android.view.ViewRoot.checkThread()

Figure 2: Our tool reports a method call chain that reveals the potential
error in Figure 1. → represents the call relationship between methods,
and checkThread is an Android library method that checks whether
the current thread is the event dispatching thread before accessing a
GUI object. 8 more methods in the call chain, shown as “..." above,
are omitted for brevity.

operations to be in a message issued an unacceptable number of
warnings. Furthermore, this approach is dangerous for accesses
from the UI thread. Asynchronous message passing offers no timing
guarantee, so a GUI object may have already been disposed before
the message sent to it arrives, causing other bugs.

Our approach: static analysis. This paper uses static analysis
to find potential GUI errors. Static analysis has two advantages
compared to dynamic approaches such as testing. First, a static
analysis can explore paths of the program without executing the
code, and without the need for a test suite. Second, a static analysis
can verify the code: if a sound static analysis reports no warnings,
the code is guaranteed to be bug-free.

Our static analysis formulates finding invalid thread access as a
call graph reachability problem. Given a call graph, our technique
traverses paths from its entry nodes, checking whether any path
accesses a GUI object from a non-UI thread. If a suspicious path
is found, the static analysis warns of a potential error. The warning
is in the form of a method call chain from the starting point. As an
example, Figure 2 shows a report produced by our static analysis for
the buggy code in Figure 1. This report indicates how a new, non-UI
thread is spawned and accesses GUI objects. The generated report
allows developers to inspect the method call chain, understand how
the error could be triggered, and fix it if it is a real bug.

Our static analysis is independent of the call graph construction
algorithm. However, modern GUI applications tend to use reflection,
and in the presence of reflection, existing call graph construction
algorithms such as RTA [4] and k-CFA [13] fail to build a complete
call graph. To alleviate this problem, we present an algorithm to
build a reflection-aware call graph, and also compare its usefulness
with existing call graph construction algorithms in our experiments.

Static analysis may report false positives due to its conservative
nature, or may report multiple warnings that actually correspond
to the same error. To address such limitations, we devised a set of
error filters to remove likely false positives and redundant warnings.
The filters introduce potential unsoundness to our algorithm, but in
practice they work well and make our technique more usable.

1.4 Technique Instantiation and Evaluation
We implemented an invalid-thread-access-error detection tool

that supports four popular GUI frameworks: SWT, Eclipse plugin
framework, Swing, and Android. Swing and SWT are the two
dominant GUI frameworks for desktop Java applications. Eclipse is
the most widely-used IDE for Java. Android is the #1 platform for
mobile applications with market share 56% as of September 2011.
Although our technique is applicable to any GUI framework with
the single-GUI-thread rule, each framework has its own definition
of UI thread and program entry points. Thus, our implementation is
parameterized with respect to those framework-specific parts (see
Section 3.1).

Our tool works in an automatic manner and scales to realistic
programs. We evaluated our implementation on 9 programs com-
prising 89273 LOC. The experimental results demonstrate that: our
technique is effective (it found 10 real-world errors and produced
only 10 false positive warnings); our reflection-aware call graph
construction algorithm helps in finding errors in Android applica-
tions; and our proposed error filters significantly reduce the number
of warnings and thus the programmer effort.

1.5 Contributions
This paper makes the following contributions:
• Problem. To the best of our knowledge, we are the first to

address the invalid thread access error detection problem for
multithreaded GUI applications.
• Technique. We formulate finding invalid thread access errors as

an elegant call graph reachability problem, and present a general
error detection technique. In addition, we use a reflection-aware
call graph construction algorithm (Section 2).
• Implementation. We implemented our technique and instanti-

ated it for four popular GUI frameworks: SWT, Eclipse plugin,
Swing, and Android (Section 3). Our implementation is publicly
available at: http://guierrordetector.googlecode.com.
• Evaluation. We applied our tool to 9 programs from 4 differ-

ent frameworks, comprising 89273 LOC. The results show the
usefulness of the proposed technique (Section 4).

2. TECHNIQUE
We first give a high-level formulation of the problem (Section 2.1),

then present the error detection algorithm (Section 2.2). Finally, we
show how to construct a reflection-aware call graph (Section 2.3)
and filter the error reports (Section 2.4).

2.1 Problem Formulation
This section formulates the problem. We first define UI thread,

non-UI threads, UI-accessing methods, safe UI methods, and invalid
thread access error, and state two assumptions we make with regard
to error detection.
DEFINITION 1 (UI THREAD). The UI thread is a special thread
created by the GUI framework during GUI initialization. After the
GUI becomes visible, the UI thread takes charge of the application
to handle events from the GUI. It spawns new threads to process
lengthy operations in the background.
ASSUMPTION 1. We assume that each multithreaded GUI applica-
tion has a single UI thread. This is true for applications built on top
of GUI frameworks adopting the single-GUI-thread rule. The only
exception is that an application may fork a new process to launch
another application with its own UI thread. In that case, we require
the launched application to be analyzed separately.
DEFINITION 2 (NON-UI THREAD). Any other threads except for
the UI thread in a multithreaded GUI application are called non-UI
threads.
ASSUMPTION 2. We assume that each non-UI thread is (transi-
tively) spawned by the UI thread. Under this assumption, we ignore
all non-UI threads created by the GUI framework before the UI
thread has been initialized. That is, we assume all post-initialization
GUI work occurs in the UI thread. Once the GUI is visible, the
application is driven by events, which are always handled in the UI
thread. We believe this assumption is reasonable, since if a non-UI
thread spawned during pre-initialization GUI work accesses a GUI
object, an exception becomes immediately apparent and the whole
application may abort even before the GUI is visible. This is highly
unlikely for fielded GUI applications.

Figure 3: A simple call graph to illustrate the invalid thread access
problem. The entry method is executed in the UI thread. Nodes
uiAcc1, uiAcc2, and uiAcc3 are UI-accessing methods. Node
start is a (non-UI) thread-spawning method, and node safe is a
safe UI Method. Methods uiAcc1 and uiAcc2 are executed in the
UI thread, but method uiAcc3 is executed in a non-UI thread, causing
an invalid thread access error.

DEFINITION 3 (UI-ACCESSING METHOD). A method whose
execution may read or write a UI object is called a UI-accessing
method.
DEFINITION 4 (SAFE UI METHOD). GUI frameworks that adopt
the single-GUI-thread rule must provide methods to permit non-UI
threads to run code in the UI thread, typically by sending a message
to the UI thread. We call such methods safe UI methods, since they
can be invoked safely by any thread.
DEFINITION 5 (INVALID THREAD ACCESS). An invalid-thread-
access error results when the UI thread may spawn a non-UI thread,
and there exists a path from the non-UI thread’s start method to any
UI-accessing method without going through any safe UI method.
PROBLEM. At a high level, to detect an invalid thread access error,
an analysis needs to track all non-UI threads spawned by the UI
thread, and check whether those non-UI threads may invoke a UI-
accessing method.
EXAMPLE. Figure 3 shows an example call graph to illustrate the
invalid thread access problem.

2.2 Error Detection Algorithm
Figure 4 shows the algorithm for detecting potential invalid thread

access errors. Our algorithm uses a static call graph as the program
representation for a multithreaded GUI application. A Java call
graph represents calling relationships between methods. Specifically,
each node represents a method and each edge (f , g) indicates that
method f may call method g. A theoretically ideal call graph is the
union of the dynamic call graphs over all possible executions of the
program. A conservative, or sound, static call graph is a superset of
the ideal call graph; it over-approximates the dynamic call graph of
every possible execution. Because it is based on the call graph, our
algorithm’s reports are in terms of methods, as shown in Figure 2.

Our algorithm in Figure 4 first constructs a static call graph for
the tested program (line 2), then specifies entry nodes, UI-accessing
nodes, and safe UI nodes for it on lines 3, 4, and 5, respectively.
Lines 3–5 are GUI-framework-specific. As an example, for a
SWT desktop application, the entry nodes include the single main
method, UI-accessing nodes include methods Widget.checkWidget

and Display.checkDevice, and safe UI methods include two SWT
helper methods Display.asyncExec and Display.syncExec for mes-
sage passing. Section 3.1 explains the detailed instantiation for each
supported framework.

The algorithm first performs graph traversal to find all reach-
able Thread.start() nodes from each entry node (line 7). Each
Thread.start() node in a call graph indicates that a new, non-UI
thread is spawned. The Thread.start() nodes act as the sources in
the main graph traversal. The algorithm uses Breadth-First Search
(BFS) to search for reachable UI-accessing methods (lines 9–23).
The algorithm stops the traversal if it reaches a UI-accessing method
(lines 15–17) or a safe UI method (lines 18, 19).

Input: a Java program P
Output: a set of potential invalid thread access errors
1: errors← /0

2: cg← constructCallGraph(P)
3: entryNodes← getEntryNodes(cg)
4: uiAccessingNodes← getUIAccessingNodes(cg)
5: safeUINodes← getSafeUINodes(cg)
6: for each entryNode in entryNodes do
7: worklist← getReachableStarts(entryNode)
8: visited← /0

9: while worklist 6= /0 do
10: node← worklist.dequeue()
11: if node ∈ visited then
12: continue
13: end if
14: visited← visited ∪ node
15: if node ∈ uiAccessingNodes then
16: newError← createErrorReport(node)
17: errors← errors ∪ newError
18: else if node ∈ safeUINodes then
19: continue
20: else
21: worklist.enqueueAll(getSuccNodes(cg, node))
22: end if
23: end while
24: end for
25: return errors
Figure 4: Algorithm for detecting invalid thread access errors in mul-
tithreaded GUI programs. Any call graph construction algorithm can
be used (line 2). The algorithm is parameterized by the three methods
in lines 3–5 which are specific to each GUI framework as described in
Section 3.1.

The error message created by the method createErrorReport

on line 16 includes the method call chain from the entry node to
the UI-accessing node as the error report. For brevity, the algo-
rithm does not show the data structures that store the current call
chain. The error report in Figure 2 displays a method call chain
from the entry node LayerView.<init> to the UI-accessing node
ViewRoot.checkThread.

The algorithm in Figure 4 uses BFS to search for potential error-
revealing paths, since BFS always returns the shortest path to the
UI-accessing node, permitting smaller error reports. However, other
graph search strategies such as Depth-First Search (DFS) or exhaus-
tive path search can also be employed. In our experiment (Sec-
tion 4.3.4), we empirically compared three different graph search
strategies, and demonstrated that using BFS, the algorithm found
more errors than DFS and was more practical than exhaustive path
search.

2.3 Call Graph Construction
For some modern GUI applications, computing a good call graph

in the presence of reflection and native methods is non-trivial. To
alleviate this problem, we next present a reflection-aware call graph
construction algorithm in Section 2.3.1 and annotation support for
native methods in Section 2.3.2.

2.3.1 Reflection
GUI applications built on top of the Android framework use

configuration files and reflection to specify GUI layout. As a result,
call graph construction algorithms such as RTA [4] and k-CFA [13]
fail to build a sufficiently complete call graph. The example code in
Figure 5 from an Android application illustrates the limitations. In
Figure 5, line 6 uses reflection to create a Button object by looking

<LinearLayout>
<Button android:id="@+id/button_id" android:text="A Button" />

</LinearLayout>

1. public class MyActivity extends Activity {
2. @Override
3. public void onCreate(Bundle savedInstanceState) {
4. super.onCreate(savedInstanceState);
5. setContentView(R.layout.main);
6. Button button = (Button) findViewById(R.id.button_id);
7. button.setOnClickListener(new Button.OnClickListener() {
8. @Override
9. public void onClick(View v) {
10. button.setText("Button Clicked.");
11. }
12. });
13. }
14. }

Figure 5: Sample GUI application code on the Android platform. The
layout XML file (the top) specifies a Button object declaratively, and the
Java code (the bottom) first loads the XML file (line 5) and then uses re-
flection to create a Button object by its ID (line 6, the findViewById
method).

Input: a Java program P
Output: a call graph cg
1: for each expression in P do
2: if isReflectionCall(expression) then
3: objectSet← getAllObjectsThatMayBeCreated(expression)
4: newExpr← createObjectCreationExpression(objectSet)
5: replace expression with newExpr
6: end if
7: end for
8: cg← constructCallGraph(P)
9: return cg

Figure 6: A reflection-aware call graph construction algorithm. Lines
1–7 are a simple program transformation to replace reflection calls with
object creations, and line 8 builds the call graph using an existing call
graph construction algorithm. This algorithm is parameterized by two
methods on lines 2 and 3. How to instantiate it for the Android frame-
work is presented in Section 2.3.1.

up its id declared in the associated XML file. When this button is
clicked, its event handling code (lines 9–11) updates the text.

When analyzing the code in Figure 5, existing call graph algo-
rithms fail to conclude that the variable button declared on line 6
points to a non-null Button object due to their limitations in handling
the reflection call findViewById. The resulting call graph omits the
edge corresponding to the setText method call on line 10.

To address this limitation, we present an algorithm to construct a
reflection-aware call graph based on a simple program transforma-
tion. The basic idea is to replace reflection calls with explicit object
creation expressions, pretending that the corresponding concrete ob-
ject has been created. The algorithm is shown in Figure 6. It consists
of two steps. The first step (lines 1–7) is a simple program transfor-
mation to replace reflection calls with object creation expressions,
and the second step (line 8) uses an existing call graph construction
algorithm to build the graph on the transformed program. In our con-
text, a reflection call represents a framework-specific helper method
invocation that uses Java reflection to create desirable objects, such
as the findViewById method in Android applications, instead of the
methods in the java.lang.reflection package. When it sees a re-
flection call, the algorithm determines a set of possible objects that
might be created. After that, the algorithm creates an expression
that non-deterministically returns a new object from the object set.

This algorithm is parameterized by two methods on lines 2 and 3.
When instantiated for the Android framework, the predicate isReflec-
tionCall on line 2 returns true if the expression is a findViewById(id)

method call, and the method getAllObjectsThatMayBeCreated on
line 3 parses the associated XML configuration file to extract the
class declaration corresponding to the given id value. If the id value
is dynamically generated, this method will conservatively return
instances of all subclasses of the declared type.

Take the code in Figure 5 as an example. When the algorithm
sees the reflection call findViewById(R.id.button_id), it parses
the XML configuration file to determine that the button_id value
is mapped to a Button instance. Then, it replaces the reflection
call with an explicit object creation expression: new Button(null).
After that, the algorithm employs existing call graph construction
algorithms to analyze the transformed program, and permits them
to include the call edge setText in the resulting graph.

As demonstrated in our experiments, this reflection-aware call
graph construction algorithm helps in detecting errors in Android
applications (Section 4.3.3).

2.3.2 Native Methods
A GUI application may use native methods to interact with the

underlying operating system or platform. Native methods are often
beyond the ability of a static analysis but should be considered to
make the call graph more complete. To do so, we provide an an-
notation @CalledByNativeMethods for users to specify which native
methods may call the current method. For example, the following
code snippet indicates that native methods native1() and native2()

may call method javaMethod().
@CalledByNativeMethods(callers={"native1", "native2"})

public void javaMethod() { ... }

Our static analysis takes the call relationship specified by this anno-
tation into consideration when traversing the call graph.

Adding annotations for native methods is optional and requires
manual effort. In our experiments, 1 out of 9 programs (SGTPuzzler)
uses native methods. We manually searched the Java source files to
find all native methods, inspected the C code to determine possible
target methods that may be called by a native method, and added
7 annotations for this program. We found such annotations were
useful: one error is only reported when using the user-provided
annotations.

2.4 Filtering the Error Reports
A static analysis can check possible error paths without executing

the code, but it may report paths that do not actually exist (false
positives) or multiple paths that have the same error cause (redundant
warnings). We devised 5 error filters to remove likely false positives
and redundant warnings. The first 2 filters are sound in that they
will not filter real bugs, and the other 3 filters are based on heuristics.
Orthogonally, filters 2 and 3 are for reducing false positives, and
filters 1, 4, and 5 are for reducing redundant warnings.

1. Filter Lexically Redundant Reports. One reported method
call chain can lexically subsume another one. For example, suppose
that two reported method call chains, a() → b() → c() and d()

→ a()→ b()→ c(), both lead to a potential error, since d() and
a() are two distinct entry methods. The second call chain can be
removed without missing any errors, since the first chain reveals the
same error and is shorter for programmers to interpret.

2. Filter Reports with User-Annotated Methods. Users are
permitted to explicitly annotate specific methods that will never
trigger an error. Assuming the user annotations are accurate, a
reported method call chain containing an annotated method can be
safely removed.

In our experiments, we produced a list of 19 annotated methods
for two subjects (MyTracks and Fennec), since they employ a cus-
tomized pattern to interact with the GUI framework. For example,

in MyTracks, all non-UI threads are initialized via using the library
method android.os.handler.handleCallback. This method can be
invoked from any thread and will never cause an invalid thread ac-
cess error, because it checks whether the current thread is the UI
thread or not before execution. If not, this method will use safe UI
methods to run the code in the UI thread.

3. Filter Reports Containing Library Calls. A method call
chain containing certain library calls like Runtime.shutDown are
unlikely to be buggy. For example, the Runtime.shutDown method is
called when the JVM terminates, and uses multithreading to dispose
all GUI objects when the program exits. Our experiments use a list
of 42 such library calls.

4. Filter Reports with the Same Head Methods from the En-
try Node to Thread.start(). A method can call multiple meth-
ods that access GUI objects, such as:

public void m() {
accessUIObject1();
accessUIObject2();

}

If method m() is invoked by a non-UI thread, our algorithm will
report method call chains that only differ in the last few method
nodes, such as:

a()→ ...Thread.start() ... → m()→ accessUIObject1() ...
a()→ ...Thread.start() ... → m()→ accessUIObject2() ...

These two chains may have the same error root cause: knowing that
method m() is called by a non-UI thread is sufficient to understand
the error. This filter compares two reported chains that have the
same head methods from the entry node to Thread.start(), and
removes the longer one.

5. Filter Reports with the Same Tail Methods from Thread.
start() to the UI-accessing Method. A method can have multi-
ple callers, so method call chains with the same tail are likely to
just represent different ways to trigger the same error. This filter
compares two reported method call chains that share the same tail
from Thread.start() to the UI-accessing methods, and removes the
longer one. Using filters 4 and 5 together results in only one error
per Thread.start().

In our experiments (Section 4.3.5), these filters remove 99.96% of
the reported warnings. We also found that using sound filters alone
was insufficient, because an overwhelming number of warnings
remained. This motivated our use of heuristic filters.

3. IMPLEMENTATION
We implemented an error detection tool on top of the WALA

framework [36]. We instantiated the proposed technique for four
widely-used GUI frameworks, namely SWT, Eclipse plugin frame-
work, Swing, and Android.

3.1 Instantiation for Different Frameworks
When instantiating our error detection technique for different

frameworks, the major framework-specific parts, corresponding
to lines 3–5 in Figure 4, are identifying call graph entry nodes,
UI-accessing nodes, and safe UI methods for each framework.

3.1.1 SWT
We instantiated our technique for SWT applications as follows:

• Call graph entry nodes: the main method. It is executed in the
UI thread after the GUI is initialized.
• UI-accessing nodes: the Widget.checkWidget and Display.check-

Device methods. If the current thread is a non-UI thread, these
methods throw a RuntimeException.
• Safe UI methods: Display.asyncExec and Display.syncExec.

These methods execute code (a)synchronously in the UI thread.

3.1.2 Eclipse Plugin
We instantiated our technique for the Eclipse plugin framework

as follows:

• Call graph entry nodes: all user code methods that override
SWT GUI event handling methods. Eclipse calls back the over-
ridden methods to handle the events. All SWT GUI event han-
dling methods (i.e., the overridden methods in a class that im-
plements org.eclipse.swt.internal.SWTEventListener) are al-
ways called back from the UI thread.
• UI-accessing nodes and safe UI methods are the same as SWT.

3.1.3 Swing
A Swing application has a single main method, but contains three

kinds of threads: the initial thread that executes initial application
code from the main method, the UI thread, where all GUI manipula-
tion code is executed, and the worker thread where time-consuming
background tasks are executed. After a Swing program starts, its
initial thread exits and the UI thread takes charge of the application
and starts to execute event-handling code or spawn new worker
threads. We instantiated our technique for Swing as follows:

• Call graph entry nodes: all user code methods that override
Swing GUI event handling methods. Those event handling meth-
ods are always called back from the UI thread.
• UI-accessing nodes: all methods defined in each Swing GUI

class except for three thread-safe methods: repaint(), revali-
date(), and invalidate().
• Safe UI methods: SwingUtilities.invokeLater and SwingUtil-

ities.invokeAndWait, which execute code in the UI thread.

3.1.4 Android
Android is a Java-based platform for embedded or mobile devices.

An Android program does not have a single entry point. It uses
activities (i.e., instances of the Activity class) to interact with users
through a visual interface and handle GUI events. We instantiated
our technique for Android programs as follows:

• Call graph entry nodes: in an Android application, an Activity

object is created and manipulated by the UI thread. Thus, we
treat all public methods defined in the Activity class and any
overriding definitions in its subclasses as call graph entry nodes.
We also add all user code methods that override Android GUI
event handling methods as entry nodes, since they are called back
from the UI thread.
• UI-accessing nodes: the ViewRoot.checkThread method. If the

current thread is a non-UI thread, the ViewRoot.checkThread

method throws a RuntimeException.
• Safe UI methods: View.post and View.postDelay, which exe-

cute code in the UI thread.

Given a GUI application using a supported framework, our tool
takes its Java bytecode as input, plugs in the corresponding instan-
tiation parameters at runtime, and automatically detects potential
invalid thread access errors.

3.2 Android-Specific Implementation Details
We implemented the reflection-aware call graph construction al-

gorithm (Section 2.3.1) using WALA’s bypass logic. Unlike other
tools [26], our tool does not require a separate pass for program
instrumentation; instead, it parses the configuration file in an An-
droid application, and then intercepts the call graph construction
process on-the-fly to replace all reflection calls with object creation
expressions. Since Android applications are often fully encrypted

and shipped in Dalvik bytecode as a single apk file, our tool first uses
android-apktool [2] to decrypt the apk file, and then uses the ded
translator [7] to convert Dalvik bytecode to Java bytecode before
feeding to WALA. The Android system library (i.e., android.jar)
uses many “stub” classes as placeholders for the sake of efficiency.
We manually re-compiled android.jar from its source code, so it
contains real class files rather than stubs.

4. EMPIRICAL EVALUATION
Our experimental objective is three-fold: to demonstrate the ef-

fectiveness of our approach in detecting real errors in multithreaded
GUI applications, to compare our call graph construction algorithm
with existing ones, and to evaluate the usefulness of the proposed
error filters.

First, we describe our subject programs (Section 4.1) and the ex-
perimental procedure (Section 4.2). We then show that our technique
detects bugs in real-world GUI applications (Section 4.3.1). We
also compare our technique with a straightforward approach (Sec-
tion 4.3.2), compare different call graph construction algorithms
(Section 4.3.3), and evaluate various graph search strategies in error
detection (Section 4.3.4). Finally, we show that the proposed filters
are effective in removing warnings (Section 4.3.5).

4.1 Subject Programs
We used 9 open-source projects from SourceForge, Google Code,

and the Eclipse plugin marketplace as evaluation subjects.
Five subjects (EclipseRunner, HudsonEclipse, SGTPuzzler, Fen-

nec, and MyTracks) are selected because they have known invalid
thread access errors (1 error per subject) and all errors have been
fixed in later revisions. We used the buggy versions to check whether
our tool can correctly identify those known errors. For the other
four subjects, we selected them by first searching for the framework
keywords (e.g., “Java Swing” or “Java SWT”) in the above source
repositories, and then choosing subjects based on the following crite-
ria. First, the subject must be a Java application, not an open library.
Second, the subject must use multithreading in its implementation.
Third, the subject is listed in the first 5 result pages. This permits us
to exclude immature subjects that may contain obvious errors. For
each selected subject, we ran our tool on the latest stable release to
find new errors.

The subjects used in our experiment (Figure 7) include end-user
applications, programming tools, and games.

• SWT desktop applications. FileBunker [12] is a file backup
application that uses one or more GMail accounts as its backup
repository. ArecaBackup [3] offers a local file backup solution
for Linux and Windows.
• Eclipse plugins. HudsonEclipse [16] monitors Hudson build sta-

tus from Eclipse. EclipseRunner [10] extends Eclipse’s capability
of running launch configurations.
• Swing applications. S3dropbox [30] allows users to drag and

drop files to their Amazon S3 accounts. SudokuSolver [33]
computes Sudoku solutions using multithreaded execution.
• Android applications. SGTPuzzler [32] is a single-player logic

game. Fennec [11], developed by Mozilla, is the Mozilla Firefox
web browser for mobile devices. MyTracks [24], developed by
Google, records users’ GPS tracks, and provides interfaces to
visualize them on Google Maps.

4.2 Experimental Procedure
We ran our tool on each subject program with three call graph

construction algorithms: RTA [4], 0-CFA, and 1-CFA [13]. When
running each call graph construction algorithm on three Android

Program (version) LOC Classes Methods
SWT desktop applications
FileBunker (1.1.2) 14237 150 1106
ArecaBackup (7.2) 23226 444 4729
Eclipse plugins
EclipseRunner (1.0.0) 3101 48 354
HudsonEclipse(1.0.9) 11077 74 649
Swing desktop applications
S3dropbox (1.7) 2353 42 224
SudokuSolver (1.06) 3555 10 62
Android mobile applications
SGTPuzzler (v9306.11) 2220 16 148
Fennec (d7fa4814218d) 8577 51 620
MyTracks (01d5c1e1cd47) 20297 143 1374
Total 89273 978 9266

GUI framework (version) LOC Classes Methods
SWT (3.6) 129942 999 9643
Eclipse plugin development (3.6.2) 460830 6630 37183
Swing (1.6) 167961 878 13159
Android (3.2) 683289 5085 10584
Total 1442022 13592 70569

Figure 7: Open-source programs used in our evaluation. Column
“LOC” is the number of lines of code, as counted by LOCC [21]. Each
program is analyzed together with its GUI framework, as listed in the
bottom table.

applications, we used two configurations: with and without our
enhancements (Section 2.3). We did not use more expensive algo-
rithms like k-CFA (k > 1), because they do not scale to our subject
programs.

Subject SGTPuzzler uses native methods to interact with the
underlying operating system. For it, we manually checked the
possible Java methods that a native method may call, and then
added 7 @CalledByNativeMethods annotations for it. Two subjects
(MyTracks and Fennec) use a customized pattern to interact with
the GUI framework. For them, we added 19 user-defined filters,
described in Section 2.4. In this experiment, none of the paper
authors was familiar with the subject programs, but we found it was
quite easy to add extra annotations and user-defined filters. All these
manual parts took less than a total of 60 minutes.

We manually determined the validity of each warning. For a
known error, we compared the generated report (i.e., an error-
revealing method call chain as shown in Figure 2) against the actual
bug fix to check whether the tool identified the buggy method. For
a previously-unknown error, we submitted a new bug report to its
developers, and wrote a test driver to reproduce it.

4.3 Results

4.3.1 Errors in Multithreaded GUI Applications
As shown in Figure 8, our tool found errors in each subject

program. Using the 1-CFA call graph algorithm, our tool issued
20 warnings, among which 10 warnings reveal 10 distinct errors (5
were previously unknown, and the 5 known errors were correctly
identified), 2 warnings are false positives, and the remaining 8
warnings are redundant. Section 4.3.3 compares with other call
graph construction algorithms.

We submitted all 5 new errors to the respective developers. As of
May 2012, 1 error in S3dropbox has been confirmed, and we have
reproduced all the other errors. All found bugs and our experimen-

In class: com.tomczarniecki.s3.gui.DeleteBucketAction
59.private void deleteBucket() {
60. executor.execute(new Runnable() {
61. public void run() {
62. try {
63. controller.deleteCurrentBucket();
64. } catch (Exception e) {
65. logger.info("Delete failed", e);
66. deleteError();
67. }
68. }
69. });
70.}

77.private void deleteError() {
78. String text = "Cannot delete folder";
79. display.showErrorMessage("Delete failed",

String.format(text, controller.getSelectedBucketName()));
80.}

Figure 9: An invalid thread access error reported by our tool in the
S3dropbox Swing application. The error occurs when the method
deleteCurrentBucket invoked on line 63 throws an exception,
which causes method deleteError to access a Swing GUI object
display on line 79 from a non-UI thread. This error was previously
unknown, and has been confirmed by the S3dropbox developers.

In class: com.eclipserunner.views.impl.RunnerView
179.private void initializeResourceChangeListener() {
180. ResourcesPlugin.getWorkspace().addResourceChangeListener(

new IResourceChangeListener() {
181. public void resourceChanged(IResourceChangeEvent event) {
182. refresh();
183. }
184. }, IResourceChangeEvent.POST_CHANGE);
185.}

414.public void refresh() {
415. getViewer().refresh();
416.}

Figure 10: An invalid thread access error reported by our tool
for the EclipseRunner plugin. In Eclipse, the callback method
resourceChanged on line 181 is invoked by non-UI threads when
a ResourceChangeEvent happens. However, the refresh method
directly accesses GUI objects (to refresh the view on line 415) without
any protection and thus triggers the error. This error was reported by
other users 13 months after the buggy code was checked in, and fixed
by developers.

tal results are publicly available at http://www.cs.washington.
edu/homes/szhang/guierror/.

Figure 9 shows an invalid thread access error our tool found
in S3dropbox. This error happens when the deleteCurrentBucket

call on line 63 throws an exception, making it hard to detect by
testing. We reported this error to the S3dropbox developers. Tom
Czarniecki, a key developer of S3dropbox, confirmed this single-
GUI-thread violation. He mentioned that the S3dropbox project
uses certain design patterns to avoid such violations (e.g., actions
for UI interaction are encapsulated into a Worker interface), but the
developers still overlooked the error our tool found. Another reason
they overlooked this violation is because some GUI frameworks
like Swing do not provide any runtime checks for invalid thread
accesses. The Swing GUI does not exhibit user-visible faults on
some erroneous executions. However, as clearly stated in the official
documentation [18], accessing Swing GUI objects from non-UI
threads risks thread interference or memory-consistency errors.

Figure 10 shows an error found in the EclipseRunner plugin.
This error is event-related. It happens when a ResourceChangeEvent

happens, which then invokes the refresh method on line 415 to
update the user interface. In EclipseRunner, the refresh method is
called by 6 different methods from the same non-UI thread. Thus,
our tool issues 6 separate warnings to indicate 6 different ways to
trigger this error. 5 of the warnings are redundant.

Subject Our Technique Requiring Wrappers
Program RTA 0-CFA 1-CFA (Section 4.3.2)

CG Size #Warning #Bug CG Size #Warning #Bug CG Size #Warning #Bug #Warning
SWT desktop applications
FileBunker 18951 1 0 15743 0 0 76088 2 1 693
ArecaBackup 20882 1 0 19697 1 1 116398 1 1 3021
Eclipse plugins
EclipseRunner 11248 6 1 7201 6 1 26911 6 1 202
HudsonEclipse 18473 2 1 15814 2 1 56645 3 1 182
Swing desktop applications
S3dropbox 37751 0 0 30609 0 0 115324 1 1 210
SudokuSolver 27730 3 2 20907 3 2 39299 2 2 356
Android mobile applications
SGTPuzzler 13631 / 13865 1 / 16 0 / 0 9546 / 9682 0 / 4 0 / 1 35198 / 35756 0 / 1 0 / 1 104
Fennec 14058 / 14387 1 / 1 0 / 0 8263 / 8898 1 / 1 0 / 0 29125/ 31759 3 / 3 1 / 1 433
MyTracks 24036 / 24036 161 / 220 0 / 0 10803 / 13645 119 / 119 0 / 0 39235 / 110977 1 / 1 0 / 1 1192
Total 186760 / 187323 176 / 250 4 / 4 138583 / 142196 132 / 136 5 / 6 534223 / 609158 19 / 20 8 / 10 6393

Figure 8: Experimental results in finding invalid-thread-access errors in multithreaded GUI programs. Column “CG Size” is the number of nodes
in the call graph. Column “#Warning” is the number of warnings issued by our tool. Column “#Bug” shows the actual bugs found. Column
groups “RTA”, “0-CFA”, and “1-CFA” show the results of using different call graph construction algorithms. For the Android applications, a
slash “/” separates the result of using standard call graph construction algorithm and our call graph construction algorithm in Section 2.3 (dealing
with reflection calls and adding 7 native method annotations for SGTPuzzler). The 5 errors found in FileBunker, ArecaBackup, S3dropbox, and
SudokuSolver are previously unknown. As a comparison, the results of the “Requiring Wrappers” approach (Section 4.3.2), are shown at the far
right.

Besides the above two examples, other errors our tool reported
are also subtle to find. For example, our tool found two new errors
in SudokuSolver. One error only happens when the given Sudoku is
unsolvable. The other one happens when the program fails to launch
the mail-composing window of the user’s default mail client (i.e.,
the java.awt.Desktop.mail() method throws an exception after a
user clicks the “eMail Me” button).

We found that GUI developers have already used design patterns,
runtime checks, and testing to avoid violating the single-GUI-thread
rule. However, due to the huge space of possible UI interactions,
hard-to-find invalid thread access errors still exist.
Summary. Our technique can find real errors in multithreaded GUI
applications with acceptable accuracy.

4.3.2 Comparison to Requiring Wrappers
As mentioned in Section 1.3, one way to prevent invalid thread

access errors is to wrap every GUI-accessing operation with message
passing (i.e., via the safe UI methods). A wrapper is not always
necessary, and indiscriminate wrapping can give rise to other types
of errors. Nonetheless, a straightforward and sound way to detect
potential invalid thread access errors is to issue a warning whenever
a GUI-accessing operation is not wrapped.

This approach identifies every error that our technique found.
However, requiring wrappers issues a huge number of warnings,
most of which are probably false positives (see the far right column
of Figure 8). The primary reason is that this simple approach does
not globally reason about the calling relationship between threads,
UI-accessing methods, and safe UI methods, and thus it often in-
correctly classifies GUI accessing operations which will never be
executed in a non-UI thread as erroneous. Furthermore, our tech-
nique outputs a method call chain with each reported error, which
can help developers understand how an invalid thread access error
is triggered.
Summary. Our technique provides richer contextual information for
the reported error, and is significantly more precise than requiring
each GUI access to be wrapped.

void entry() {

f();

g1();

}

void f() {

 new Thread(new Runnable() {

 public void run() {

 safe();

 }

 }).start();

}

void safe() {

uiAcc();

}

void g1() { g2(); }

void g2() {

 new Thread(new Runnable() {

 public void run() {

uiAcc();

 }

 }).start();

}

(a) (b) (c)

Figure 11: (a) shows example code, in which safe() is a Safe UI
method and uiAcc() is a UI-accessing method. (b) shows a less pre-
cise call graph built by RTA or 0-CFA, and (c) shows a more precise call
graph built by 1-CFA. Nodes for constructors are omitted for brevity.
Using the less precise call graph, our error detection algorithm (Fig-
ure 4) reports an invalid method call chain: entry() → f() →
start() → run() → uiAcc(). It does not report the actual er-
ror path because it is longer: entry()→ g1()→ g2()→ start()
→ run() → uiAcc(). The algorithm outputs the actual error path
when using the more precise call graph.

4.3.3 Comparing Call Graph Construction Algorithms
We next compare the 3 call graph construction algorithms (RTA,

0-CFA, and 1-CFA) used in our experiments. As shown in Figure 8,
1-CFA found more errors than the other two algorithms. This is
because RTA and 0-CFA do not consider the calling context when
constructing a call graph: they mix calls to the same method from
different callers into a single node, thus introducing imprecision.
Although the error paths exist in the less precise graphs, our algo-
rithm does not report them because of its heuristics for outputting
the shortest possible call chain. Figure 11 illustrates this point.

The results in Figure 8 also show that using the call graph con-
struction algorithm in Section 2.3 helps in finding errors in Android

applications. One error from the MyTracks Android application can
only be found by using the reflection-aware call graph construction
algorithm (Section 2.3.1). This is because the error-related GUI
object (msgTextView) in MyTracks is created reflectively as follows.

In class: com.google.android.apps.mytracks.StatsUtilities
97. public void setLatLong(int id, double d) {
98. TextView msgTextView = (TextView) activity.findViewById(id);
99. msgTextView.setText(LAT_LONG_FORMAT.format(d));
100. }

Another error in SGTPuzzler is only reported when adding native
method annotations (Section 2.3.2).
Summary. Using the 1-CFA algorithm finds more errors than 0-CFA
and RTA, and our reflection-aware call graph construction algorithm
helps to find errors in some Android applications.

4.3.4 Comparing Graph Search Strategies
The error detection algorithm in Figure 4 uses a separate BFS

for each entry node. This section evaluates three variants: a multi-
source BFS; a separate DFS for each entry node; and exhaustive
search.

The first variant uses a single BFS, but starting at multiple sources.
It deletes lines 6 and 24 in Figure 4 and changes line 7 to:

worklist←
S

entry∈entryNodes getReachableStarts(entry)
This variant returns the shortest path from any Thread.start() node
to any UI-accessing node, rather than the shortest path from each
Thread.start() node to any UI-accessing node as the algorithm in
Figure 4 does. This variant reported 8 errors and 12 false positives.
It missed 1 error in S3dropbox and 1 error in SudokuSolver. It visits
every node in the call graph only once, rather than potentially once
per entry node, but doing so prunes out real error paths.

The second variant uses one DFS per entry node, by changing
the worklist on line 7 of Figure 4 to a stack, and changing queue
operations dequeue and enqueueAll on lines 10 and 21 to pop and
pushAll. This variant reported 9 errors and 10 false positives. It
missed 1 error in FileBunker. DFS tends to search deeper into the
graph and return longer paths that are more likely to be infeasible or
to be removed by the filters.

The third variant uses exhaustive search to find potential errors.
This variant enumerates all non-cyclic paths from all reachable
Thread.start() nodes to each UI-accessing node, and then checks
whether each path spawns a new thread and accesses GUI objects
without using safe UI methods. We ran this variant on each subject
program for 1 hour. It explored 5.1×109 paths on average, but did
not output any potential errors before it terminated. The number of
non-cyclic paths in a graph is exponential in the graph size, and it
is infeasible to enumerate all paths for a realistic call graph. In our
experiments, the smallest call graph contains 7201 nodes and the
average out-degree of each node is 2.15. The number of distinct non-
cyclic paths is astronomically large; a rough estimate is 2.157201 ≈
1.07×102107.

Given a sound call graph, suppose that there exists some error-
revealing path between an entry node E and a UI-accessing node
U. A sound search strategy is one that reports some error-revealing
path between E and U, while an unsound strategy might report a
non-error-revealing path between the nodes (Figure 11 shows an
example). Exhaustive search is sound because it does not miss any
possible (non-cyclic) paths. However, it is impractical. BFS and
DFS are unsound because they visit every node, but do not traverse
every path to visit that node. Using BFS or DFS can be viewed as a
heuristic filtering step, akin to the filters of Section 2.4.
Summary. Our algorithm finds more errors than using multi-source
BFS, DFS, or exhaustive search.

Number of Warnings
Subject Before Sound Filters Heuristic Filters
Program Filtering F1 F1,2 F1,2,3 F1,2,3,4 F1,2,3,4,5

SWT desktop applications
FileBunker 4494 4494 4494 3210 10 2
ArecaBackup 6219 438 438 438 1 1
Eclipse plugins
EclipseRunner 1644 1644 1644 1644 6 6
HundsonEclipse 1367 567 567 567 3 3
Swing desktop applications
S3dropbox 45528 31978 31978 30975 9 1
SudokuSolver 58 58 58 58 2 2
Android mobile applications
SGTPuzzler 2 1 1 1 1 1
Fennec 122 84 80 80 9 3
MyTracks 1176 1176 483 441 69 1
Total 60610 40440 39753 37414 110 20

Figure 12: Number of warnings after applying a set of sound and
heuristic error filters. Column “Before Filtering” shows the number of
warnings by the reflection-aware 1-CFA algorithm. Other algorithms
show similar patterns, which are omitted for brevity. Column “Fi,..., j”
represents the number of remaining warnings after applying the ith to
jth filters as defined in Section 2.4. The numbers in the last column
are the same as the subcolumn “#Warning" under column “1-CFA” in
Figure 8.

4.3.5 Evaluating Error Filters
Figure 12 measures the effectiveness of the error filters of Sec-

tion 2.4. The five error filters removed 99.96% of the reported
warnings as likely false positives or redundant warnings. Specifi-
cally, the two sound filters 1 and 2 removed 34.44% of the warnings,
and the three heuristic filters 3, 4, and 5 removed a further 65.52%
of the warnings. The most effective filter is #4, for removing reports
with the same head methods from the entry node to Thread.start().
Summary. Our proposed error filters are effective in reducing the
number of warnings.

4.4 Discussion
Performance and scalability. Our tool has been evaluated on 9 sub-
ject programs with 89273 LOC and frameworks with 1.4 MLOC,
showing good scalability. Our evaluations were conducted on a
2.67GHz Intel Core PC with 4GB physical memory (1GB is al-
located for the JVM), running Windows 7. For the most time-
consuming subject, S3dropbox, our tool finished the whole analysis
within 252 seconds using the most expensive 1-CFA call graph
construction algorithm. Analyzing other subjects or using different
algorithms took less time. Call graph construction took 33–91% of
the total time.
Threats to validity. There are two major threats to validity in our
evaluation. One threat is the degree to which the subject programs
used in our experiment are representative of true practice. In our
evaluation, we only selected subjects from open-source repositories.
Another threat is that we only employed three widely-used call
graph construction algorithms (i.e., RTA, 0-CFA, and 1-CFA) in our
evaluation. Using other call graph construction algorithms might
achieve different results.
Limitations. Our technique is limited in three aspects. First, it only
considers non-UI threads that are spawned by the UI-thread after the
GUI is initialized, and ignores other possible non-UI threads (quite
unusual) that are created during the pre-initialization GUI work.
One way to remedy this limitation is to design an analysis to identify
those non-UI threads created before a GUI is launched. Second, like

many bug-finding techniques, our technique is neither sound nor
complete. It may issue false positives due to the conservative nature
of a static analysis. It may miss true positives due to the graph search
strategy, and it never reports cyclic paths. Furthermore, for the sake
of scalability, our tool implementation uses the default configuration
of WALA and ignores part of the AWT library. Thus, it missed one
error in S3dropbox which we later found by using pluggable type-
checking [8]. Designing better call graph construction algorithms,
graph search strategies, and filtering heuristics may alleviate this
limitation. Third, our tool cannot compute call relationships for inter-
process communication between components. It also requires users
to manually add annotations to characterize call relationships that
involve native methods. This limitation may lead to false negatives.
Investigating the false negative rate is ongoing work.
Experimental Conclusions. Invalid thread access errors can be
subtle to detect in many cases. The technique presented in this paper
offers a promising solution. Our technique finds real-world errors
and issues few false positive warnings. Our proposed filters are
useful in reducing the number of warnings.

5. RELATED WORK
Work related to this paper falls into three main categories; (1) an-

alyzing and testing GUI applications; (2) bug-finding techniques for
multithreaded programs; and (3) call graph construction algorithms.

5.1 Analyzing and Testing GUI Applications
Automated GUI testing is a challenging task. Various tech-

niques automate GUI testing including test generation [39], test
execution [38], and test script repairing [6,15]. For example, Gui-
tar [38, 39] is a GUI testing framework for Java and Microsoft
Windows applications. Yuan and Memon [39] generated event-
sequence-based test cases for GUI programs using a structural event
generation graph. However, testing is often insufficient to detect
many potential errors in a GUI application due to the huge space
of possible UI interactions. In contrast, a sound static analysis can
explore all paths to find potential errors missed by testing. Com-
pared to software testing, a static analysis tool such as ours may
report false positives and redundant warnings due to its conservative
nature. In our experiments, simple error filters reduced the number
of warnings to an acceptable level.

Michail and Xie [23] proposed a tool-based approach to help
users avoid bugs in GUI applications. Their approach monitors a
user’s actions in the background, and gives a warning as well as
the opportunity to abort the action, when a user attempts an action
that has led to problems in the past. Their work aims to prevent an
existing bug from happening again. By contrast, our work aims to
find unknown errors.

Recently, Payet and Spoto [26] presented a static analysis frame-
work for Android programs based on abstract interpretation. Their
framework focuses on the Android platform, and consists of 7 ex-
isting static analyses such as nullness analysis, class analysis, and
termination analysis. However, their framework does not support
detecting invalid thread access errors, and uses a quite different
abstraction than ours. To the best of our knowledge, we are the
first to address the invalid thread access error detection problem for
multithreaded GUI applications, and our core technique has been
tailored for four GUI frameworks.

5.2 Finding Bugs in Multithreaded Programs
A rich body of techniques have been developed to detect bugs in

multithreaded programs [14,19,25,31]. Runtime analysis tools such
as Eraser [31] dynamically detect concurrency bugs using lockset
algorithms. Static analysis tools such as Chord [25] exploit a key

property of Java - namely the scoped use of locks, to further improve
the precision of lockset computations. However, finding invalid
thread access errors is quite different than detecting data races.
A data race occurs when two concurrent threads access a shared
variable and when at least one access is a write and the threads use no
explicit mechanism to prevent the accesses from being simultaneous.
In contrast, an invalid thread access error occurs when a non-UI
thread accesses (reads or writes) a GUI object. Unlike detecting
data races, finding an invalid thread access error does not require
monitoring every shared-memory reference to verify that consistent
locking behavior is observed among different threads. A technique
only needs to track whether a non-UI thread can accesses a GUI
object or not, and is much cheaper. Leveraging data race detection
to improve our technique is future work.

An alternative way to find bugs in multithreaded programs is
using model checking [19]. By exhaustively exploring the thread
scheduling space, a model checker can report counterexamples
as bug reports. Unfortunately, due to the exponential size of the
search space, it is hard for model checking approaches to scale to
a realistic multithreaded GUI application without compromising
the error detection capability. We are not aware of any software
model checking approach that scales to programs as large as those
used in our experiments (including the library code). The technique
presented in this paper is specifically designed to find invalid thread
errors instead of being a general property checking tool. It chooses
the call graph as a coarse-grained program representation with a set
of error filters, to achieve good scalability with reasonable accuracy.

5.3 Call Graph Construction Algorithms
Call graph construction algorithms have been well studied in

the literature. However, standard algorithms such as RTA [4] and
k-CFA [13] do not build a sound call graph in the presence of re-
flection. As reflected in our experiments, using standard call graph
algorithms misses errors in some Android applications. Livshits
et al. [20] presented a static analysis to reason about reflective
calls. The analysis attempts to infer additional information stored in
string constants to resolve reflective calls statically. Their approach
focuses on standard Java reflection calls (e.g., Class.forName) in-
stead of framework-specific ones (e.g., View.findViewById). Tami-
Flex [5], a pure dynamic approach, records all reflectively-created
class instances by intercepting JVM system calls, and re-inserts
those recorded class into a program. However, TamiFlex requires
a set of representative program executions and is only sound with
respect to the given executions. Perhaps the closest work to our call
graph construction algorithm is Payet and Spoto’s Julia system [26].
The Julia system needs to first instrument Android’s library code that
performs the XML inflation, and then replaces the findViewById

call with the corresponding object creation expressions. In addition,
the Julia system does not handle native methods when building call
graphs. In contrast, our technique provides annotation support for
native methods, and our tool does not need a separate pass of off-line
instrumentation. The reflection-aware call graph is created online
by intercepting the standard call graph construction process.

6. CONCLUSION AND FUTURE WORK
This paper presented a simple, general, effective technique to find

invalid thread access errors in multithreaded GUI applications. Our
technique statically explores paths in a call graph to check whether a
non-UI thread can access a GUI object. It uses a reflection-aware call
graph construction algorithm to build a good call graph, and employs
a set of error filters to filter likely false positives and redundant
warnings. We demonstrated the usefulness of our technique by
evaluating it on 9 programs built on 4 popular GUI frameworks.

The source code of our tool implementation is available at:
http://guierrordetector.googlecode.com

Besides general issues such as performance and ease of use, our
future work will concentrate on the following topics:

Integration with dynamic and symbolic analyses. The tech-
nique presented in this paper is a call-graph-based, pure static analy-
sis. It suffers from false positives for many GUI applications, due
to the conservative nature of static analysis. A possible way to
reduce the number of false positives is to integrate with dynamic
analyses [40] or symbolic analyses [27, 37] by using more accurate
information to guide call graph exploration.

Unit testing multithreaded GUI programs. Besides a static
analysis, software testing is another way to improve software qual-
ity. Although many testing techniques have been developed recently,
few of them can be applied to unit test multithreaded GUI programs
to find potential errors earlier. We plan to investigate how to ap-
ply recent advance in automated testing [17, 40] to the context of
multithreaded GUI applications.

Fixing potential GUI errors. After an error is revealed, fixing it
and verifying the patch is often time-consuming. Fixing concurrency
bugs has become especially critical in the multicore era. Recently,
work has been done on automatically repairing test scripts for GUI
applications [6, 15]. However, none of them focuses on repairing
the GUI program to patch a revealed error. Thus, we are interested
in developing automated error fixing techniques for multithreaded
GUI applications.

Generalization. We have applied our graph reachability analysis
to one specific, but important problem. There is a rich history of
testing and analysis problems being cast as reachability (e.g., [29]).
In future work, we plan to formulate other problems, such as detect-
ing security vulnerabilities, as path reachability, and to apply our
scalable analysis to them.

7. ACKNOWLEDGEMENTS
We thank Stephen Fink and Manu Sridharan for answering our

questions about WALA. This work was supported in part by ABB
Corporation and NSF grant CCF-1016701.

8. REFERENCES
[1] Android website. http://www.android.com/.
[2] Android-Apktool.

http://code.google.com/p/android-apktool/.
[3] ArecaBackup. http://www.areca-backup.org/.
[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++

virtual function calls. In Proc. OOPSLA, 1996.
[5] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini.

Taming reflection: Aiding static analysis in the presence of
reflection and custom class loaders. In Proc. ICSE, 2011.

[6] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and
M. Pezzè. Automated GUI refactoring and test script repair. In
ETSE, 2011.

[7] Ded Decompiler. http://siis.cse.psu.edu/ded/.
[8] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. Schiller.

Building and using pluggable type-checkers. In ICSE, 2011.
[9] The Eclipse IDE for Java. http://eclipse.org/.

[10] EclipseRunner. http://andrei.gmxhome.de/filesync/.
[11] Fennec. http://www.mozilla.org/en-US/mobile/.
[12] FileBunker. http://filebunker.sourceforge.net/.

[13] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph
construction in object-oriented languages. In OOPSLA, 1997.

[14] J. Huang and C. Zhang. Persuasive prediction of concurrency
access anomalies. In Proc. ISSTA ’11, 2011.

[15] S. Huang, M. B. Cohen, and A. M. Memon. Repairing GUI
test suites using a genetic algorithm. In Proc. ICST, 2010.

[16] HundsonEclipse.
http://code.google.com/p/hudson-eclipse/.

[17] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and
D. Marinov. Improved multithreaded unit testing. In FSE,
2011.

[18] JDK Swing Framework. http://docs.oracle.com/
javase/6/docs/technotes/guides/swing/.

[19] R. Jhala and R. Majumdar. Software model checking. ACM
Comput. Surv., 41(4):21:1–21:54, Oct. 2009.

[20] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for
Java. In Proc. APLAS ’05, 2005.

[21] LOCC.
http://csdl.ics.hawaii.edu/Plone/research/locc/.

[22] Macos Cocoa. http://developer.apple.com/
technologies/mac/cocoa.html.

[23] A. Michail and T. Xie. Helping users avoid bugs in GUI
applications. In Proc. ICSE, May 2005.

[24] MyTracks. http://code.google.com/p/mytracks.
[25] M. Naik, A. Aiken, and J. Whaley. Effective static race

detection for Java. In Proc. PLDI, 2006.
[26] E. Payet and F. Spoto. Static analysis of Android programs. In

Proc. CADE’ 11, 2011.
[27] C. S. Păsăreanu, N. Rungta, and W. Visser. Symbolic

execution with mixed concrete-symbolic solving. In ISSTA,
2011.

[28] The Qt Framework. http://qt.nokia.com/products/.
[29] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural

dataflow analysis via graph reachability. In POPL, 1995.
[30] S3dropbox. http://s3dropbox.googlecode.com.
[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and

T. Anderson. Eraser: a dynamic data race detector for
multi-threaded programs. In Proc. SOSP, 1997.

[32] SGTPuzzles. http:
//chris.boyle.name/projects/android-puzzles.

[33] SudokuSolver.
http://sudokupuzzlesol.sourceforge.net/.

[34] The SWT toolkit. http://eclipse.org/swt/.
[35] Top 3 SWT exceptions. Presentation by Lakshmi P

Shanmugam, Eclipse SWT team at Eclipse Day India.
http://www.slideshare.net/lakshmip/
top-3-swt-exceptions-3951224.

[36] WALA. http://wala.sourceforge.net.
[37] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A

framework for generating object-oriented unit tests using
symbolic execution. In Proc. TACAS, 2005.

[38] X. Yuan, M. B. Cohen, and A. M. Memon. GUI interaction
testing: Incorporating event context. IEEE TSE, 37(4), 2011.

[39] X. Yuan and A. M. Memon. Using GUI run-time state as
feedback to generate test cases. In Proc. ICSE, 2007.

[40] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static
and dynamic automated test generation. In Proc. ISSTA, 2011.

