Link-Time Static Analysis for Efficient
Separate Compilation of Object-Oriented
Languages

Jean Privat Roland Ducournau

LIRMM
CNRS/Université Montpellier I
France

Program Analysis for Software Tools and Engineering
Lisbon 2005

O

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 1/24

QOutline

© Motivation

© Global Techniques
@ Type Analysis
@ Coloring
@ Binary Tree Dispatch

© Separate Compilation
@ Benchmarks

@ Description
@ Results

Privat, Ducournau (LIRMM) Link-Time Static Analysis

PASTE’'05

O

LIRMM

2/24

Outline

© Motivation

Privat, Ducournau (LIRMM) Link-Time Static Analysis

Software Engineering ldeal

Production of Modular Software
@ Extensible software
@ Reusable software components

= Object-Oriented Programming (inheritance + late binding)

Production of Software in a Modular Way
@ Small code modification — small recompilation
@ Shared software components are compiled only once

@ Software components can be distributed in a compiled form

= Separate Compilation (compile components + link)

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’'05

LIRMM

4/24

Compilation of OO Programs

Global Techniques

Knowledge of the whole program — more efficient implementation:
@ Method invocation
@ Access to attribute
@ Subtyping test

The Problem
@ Previous works use global technique with global compilation

@ Global compilation is incompatible with modular production

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’'05 5 /24

Our Proposition

A Compromise
@ A separate compilation framework
@ that includes 3 global compilation techniques

How To?
= Perform global techniques at link-time

Privat, Ducournau (LIRMM) Link-Time Static Analysis

PASTE’05

O

LIRMM

6/24

QOutline

© Global Techniques
@ Type Analysis
@ Coloring
@ Binary Tree Dispatch

Privat, Ducournau (LIRMM) Link-Time Static Analysis

PASTE’'05

O

LIRMM

7/2

Type Analysis

Problems
@ Most method invocations are actually monomorphic

— Implement them with a static direct call (no late binding)

@ Many methods are dead
— Remove them

How to?
Approximate 3 sets:
@ Live classes and methods
@ Concrete type of each expression
@ Called methods of each call site
Many type analysis exist

y

Privat, Ducournau (LIRMM) Link-Time Static Analysis

PASTE’05

o

LIRMM

8/24

Coloring

Problem
Overhead with standard VFT in multiple inheritance:

@ Subobjects
@ Many VFT (quadratic number, cubic size)

Solution
— Simple inheritance implementation even in multiple inheritance

How to?
@ Assign an identifier by class
@ Assign a color (index) by class, method and attribute

@ Minimize size of the tables

A NP-hard problem

4

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05

9/24

Coloring (example)

A Methods introduced in A

/VV\ A table |:|:|:|:|/]

5| [ewe DD o

V\/V ctable [[[ITT 1T

= Dtable ([1] []FTFIT]

MMMMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 10 / 24

Binary Tree Dispatch

Problem
Prediction of conditional branching of modern processors does not
work with VFT |

Solution
— Use static jumps instead of VFT

How to?
@ Perform a type analysis
@ Assign an identifier by live class
@ For each live call site, enumerate concrete type in a select tree

v

O

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 11 /24

Binary Tree Dispatch (Example)

Compiling call site x.foo
@ id is the class itentifier of the receiver x
@ Concrete type of x is {A, B, C}

Class A B C
Identifier 19 12 15
foo implementation | A_foo | B_foo | C_foo

Generated Code

if id <= 15 then
if id <= 12 then call B_foo
else call C_foo

else call A_foo

y

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 12 /24

Outline

© Separate Compilation

Privat, Ducournau (LIRMM) Link-Time Static Analysis

Separate Compilation

Source code Compiled component
coo metadata Final

. local phase Ina
TEHE EER) P executable
{ 7 R call bar? global

phase call 0x05217
.. meradat call 0x05175
void bar () local phase
oeoo HED call foo?
}

Two Phases
Local phase compiles independently of future use

Global phase links compiled components

<

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 14 /24

Local Phase

Source code \ Compiled component
/ Local phase Metamodel
Metamodel Internal model

Input

@ Source code of a class

@ Metamodel of required classes

Outputs

@ Compiled version of the class (with unresolved symbols)

@ Metadata : metamodel, internal model

4

2

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 15 /24

Compiled Component

Method Call Site
@ Assign a unique symbol by call site

@ Compile into a direct call

Attribute Access and Subtype Test
@ Assign a unique symbol by color and identifier
@ Compile into a direct access:

in the instance for attribute access
in the subtyping table for subtype tests

Privat, Ducournau (LIRMM) Link-Time Static Analysis

PASTE’05

LIRMM

16 / 24

Global phase

’Compiled component‘

Metadata
Live
global

Type analysis —»| model

IR -
—»[Coloring]—»[Symbol substitution]—» excijr'::ble

3 Stages

@ Type analysis: based on the metadata
@ Coloring: computes colors

@ Symbol substitution: generates the final executable

Method Call Site Symbols

Substitute the address of:
@ monomorphic — the invoked method
@ polymorphic w/ BTD — a generated select tree
@ polymorphic w/ VFT — a generated table access

4

Privat, Ducournau (LIRMM)

Link-Time Static Analysis PASTE’05 17 / 24

Outline

@ Benchmarks
@ Description
@ Results

Privat, Ducournau (LIRMM) Link-Time Static Analysis

Benchmarks Description

Language and Compilers
@ g+-+: Separate + VFT w/ subobjects
@ SmartEiffel: Global + Binary Tree Dispatch
@ prmc w/ VFT: Separate + Coloring + VFT
@ prmc w/ BTD: Separate + Coloring + BTD

Programs
Small programs are generated by a script
@ The same programs for all language

@ 1 OO mechanism per program

Privat, Ducournau (LIRMM) Link-Time Static Analysis

PASTE’05

LIRMM

19 / 24

Size of Executables

~ 120 | T T T

é 100 7
Q

=z 807 SmartEiffel |
2 60 I prmc w/ btd — |
% 40 prmc w/ vit]
8 20 - ———
n

0 10 20 30 40 50 60 70
Number of Classes

@ Subobjects: many VTF — an important overhead
@ prmc: BTD ~ VFT
@ SmartEiffel: better dead code removal

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 20 / 24

Method Invocation

14‘ T T T T T T

12 n
. 10r n
Tl *
E 6 g++ prmc w/ btd —— -
a 4 H SmartEiffel prmc w/ vft -

2 [n

O | | | | | |

0 10 20 30 40 50 60 70
Size of the Concrete Type of the Reicever

@ Subobjects: constant overhead + cache misses
@ BTD: better on oligomorphic calls
@ Coloring: better on megamorphic calls

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 21 /24

Attribute Access

10 T T T T T T
9 — —
8 r g++ .
z ol SmartEiffel
2 5f prmc .
S 4T 1
3r - 7]
2 — —
| = -
O | | | | | |

0 10 20 30 40 50 60 70
Size of the Concrete Type of Receiver

@ Subobjects: constant overhead
@ Coloring: constant attribute access

o SmartEiffel: can degenerate

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 22 /24

Subtype Test

35 T l T T T T
30
25
20
15
10

g++
SmartEiffel
prmc

Time (s)

0 10 20 30 40 50 60
Size of the Concrete Type of the Casted Expression

@ g++: bad performances
@ Coloring and BTD: equivalent and mainly constant

70

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05

A —

LIRMM

23/ 24

Summary

Summary

A separate compilation framework with global techniques for
statically typed class-based languages

@ Better modularity than global compilers
@ Better performance than other separate compilers

Outlook
@ Shared libraries linked at load-time or dynamically loaded

@ Time overhead of the global phase (link)

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05

LIRMM

24 /24

	Outline
	Motivation
	Global Techniques
	Type Analysis
	Coloring
	Binary Tree Dispatch

	Separate Compilation
	Benchmarks
	Description
	Results

	Summary

