Link-Time Static Analysis for Efficient
Separate Compilation of Object-Oriented
Languages

Jean Privat  Roland Ducournau

LIRMM
CNRS/Université Montpellier I
France

Program Analysis for Software Tools and Engineering
Lisbon 2005

O

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 1/24



QOutline

© Motivation

© Global Techniques
@ Type Analysis
@ Coloring
@ Binary Tree Dispatch

© Separate Compilation
@ Benchmarks

@ Description
@ Results

Privat, Ducournau (LIRMM) Link-Time Static Analysis

PASTE’'05

O

LIRMM

2/24



Outline

© Motivation

Privat, Ducournau (LIRMM) Link-Time Static Analysis



Software Engineering ldeal

Production of Modular Software
@ Extensible software
@ Reusable software components

= Object-Oriented Programming (inheritance + late binding)

Production of Software in a Modular Way
@ Small code modification — small recompilation
@ Shared software components are compiled only once

@ Software components can be distributed in a compiled form

= Separate Compilation (compile components + link)
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Compilation of OO Programs

Global Techniques

Knowledge of the whole program — more efficient implementation:
@ Method invocation
@ Access to attribute
@ Subtyping test

The Problem
@ Previous works use global technique with global compilation

@ Global compilation is incompatible with modular production
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Our Proposition

A Compromise
@ A separate compilation framework
@ that includes 3 global compilation techniques

How To?
= Perform global techniques at link-time
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Type Analysis

Problems
@ Most method invocations are actually monomorphic

— Implement them with a static direct call (no late binding)

@ Many methods are dead
— Remove them

How to?
Approximate 3 sets:
@ Live classes and methods
@ Concrete type of each expression
@ Called methods of each call site
Many type analysis exist
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Coloring

Problem
Overhead with standard VFT in multiple inheritance:

@ Subobjects
@ Many VFT (quadratic number, cubic size)

Solution
— Simple inheritance implementation even in multiple inheritance

How to?
@ Assign an identifier by class
@ Assign a color (index) by class, method and attribute

@ Minimize size of the tables

A NP-hard problem
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Coloring (example)

A Methods introduced in A
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Binary Tree Dispatch

Problem
Prediction of conditional branching of modern processors does not
work with VFT |

Solution
— Use static jumps instead of VFT

How to?
@ Perform a type analysis
@ Assign an identifier by live class
@ For each live call site, enumerate concrete type in a select tree
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Binary Tree Dispatch (Example)

Compiling call site x.foo
@ id is the class itentifier of the receiver x
@ Concrete type of x is {A, B, C}

Class A B C
Identifier 19 12 15
foo implementation | A_foo | B_foo | C_foo

Generated Code

if id <= 15 then
if id <= 12 then call B_foo
else call C_foo

else call A_foo

y

LIRMM

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 12 /24



Outline

© Separate Compilation

Privat, Ducournau (LIRMM) Link-Time Static Analysis



Separate Compilation

Source code Compiled component
coo metadata Final

. local phase Ina
TEHE EER) P executable
{ 7 R call bar? global

phase call 0x05217
.. meradat call 0x05175
void bar () local phase
oeoo HED call foo?
}

Two Phases
Local phase compiles independently of future use

Global phase links compiled components
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Local Phase

Source code \ Compiled component
/ Local phase Metamodel
Metamodel Internal model

Input

@ Source code of a class

@ Metamodel of required classes

Outputs

@ Compiled version of the class (with unresolved symbols)

@ Metadata : metamodel, internal model
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Compiled Component

Method Call Site
@ Assign a unique symbol by call site

@ Compile into a direct call

Attribute Access and Subtype Test
@ Assign a unique symbol by color and identifier
@ Compile into a direct access:

in the instance for attribute access
in the subtyping table for subtype tests
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Global phase

’Compiled component‘

Metadata
Live
global

Type analysis —»| model

IR -
—»[ Coloring ]—»[ Symbol substitution ]—» excijr'::ble

3 Stages

@ Type analysis: based on the metadata
@ Coloring: computes colors

@ Symbol substitution: generates the final executable

Method Call Site Symbols

Substitute the address of:
@ monomorphic — the invoked method
@ polymorphic w/ BTD — a generated select tree
@ polymorphic w/ VFT — a generated table access
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Benchmarks Description

Language and Compilers
@ g+-+: Separate + VFT w/ subobjects
@ SmartEiffel: Global + Binary Tree Dispatch
@ prmc w/ VFT: Separate + Coloring + VFT
@ prmc w/ BTD: Separate + Coloring + BTD

Programs
Small programs are generated by a script
@ The same programs for all language

@ 1 OO mechanism per program
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Size of Executables
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@ Subobjects: many VTF — an important overhead
@ prmc: BTD ~ VFT
@ SmartEiffel: better dead code removal
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Method Invocation
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@ Subobjects: constant overhead + cache misses
@ BTD: better on oligomorphic calls
@ Coloring: better on megamorphic calls

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 21 /24



Attribute Access
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@ Subobjects: constant overhead
@ Coloring: constant attribute access

o SmartEiffel: can degenerate

Privat, Ducournau (LIRMM) Link-Time Static Analysis PASTE’05 22 /24



Subtype Test
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@ g++: bad performances
@ Coloring and BTD: equivalent and mainly constant
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Summary

Summary

A separate compilation framework with global techniques for
statically typed class-based languages

@ Better modularity than global compilers
@ Better performance than other separate compilers

Outlook
@ Shared libraries linked at load-time or dynamically loaded

@ Time overhead of the global phase (link)
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