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Abstract
This artifact contains the data and analysis sup-
porting the literature survey in section 4 of [4]. In
our literature survey, we examined 187 papers from
the literature that mention “typestate” and ana-
lyzed the typestate specifications they contained to
determine whether or not they are accumulation
typestate specifications.

Our purpose in doing this literature survey was
to determine whether typestate FSMs were accu-

mulation or not. However, we believe that the col-
lection of typestate automata in typestates.pdf
might be useful to anyone interested in the sort of
typestate automata that appear in the literature. If
we had had access to such a collection (gathered for
a different purpose), our classification of whether
these typestate automata were accumulation would
have been much simpler. Anyone interested in prop-
erties of typestate automata can re-use our work.
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1 Scope

This artifact supports the claims in section 4 about the research literature.
Table 1, in particular, is produced from this artifact. The correspondence between artifact

components and each “dataset” row in Table 1 is the following:
papers.xlsx: “Papers since 2000 with <20 TSAs”
icse99-notes.md: “Dwyer et al. (1999) [18]”
ecoop11-notes.md: “Beckman et al. (2011) [4]”

The list of conferences at the end of section 4.1 was computed using cells I1:L18 of papers.xlsx.
The summary statistics in the beginning of section 4.2.1 are computed using cells I30:J31 of

papers.xlsx.
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22:2 Accumulation Analysis (Artifact)

Section 4.2.1 groups typestate automata into typestate problems. File typestates.pdf
contains the data underlying this grouping. The numbers of problems were counted using the
largest subsection number in the accumulation and non-accumulation sections (e.g., there are
31 accumulation typestate problems, because the largest subsection number in section 2 of
typestates.pdf is 2.31). Within typestates.pdf, the ordering of the problems is arbitrary.

Sections 4.2.1.1 and 4.2.1.2 give the most common typestate problems. These were chosen by
the “count” appearing in the text describing each problem in typestates.pdf, which one author
computed by hand from our notes. A second author double-checked all these computations.

We broke ties for the three examples in the paper by choosing the most interesting example.
The problems chosen correspond to the following subsections in typestates.pdf, in the order in
which they are presented in section 4.2.1:

resource leaks (Figure 3): 2.1
special initialization method (Figure 4): 2.5
object construction (Figure 5): 2.13
don’t read/write a stream after it is closed (Figure 6): 3.31
don’t update a collection during iteration (Figure 7): 3.12
classic file example (Figure 1): 3.1

The artifact also supports the claim about the causes of false positives in prior work [3]:
that even with perfect aliasing information, the precision of an accumulation-based resource leak
checker would only improve from 26% to 34%. Our reasoning for this assertion is based on the
analysis of the false positives from that checker in rlcfps.xlsx.

2 Content

The artifact package includes:
a spreadsheet listing each of the 187 papers that we examined closely, the number of typestate
specifications in that paper, and the number of those specifications that are accumulation
typestate specifications (papers.xlsx)
our notes about the typestates in each paper so examined, ordered alphabetically by title
(notes.md)
a list of each typestate “problem”, its corresponding finite-state machine, and citations to the
papers that mention it, sorted by our judgment on whether they are accumulation (section 2)
or are not accumulation (section 3) (typestates.pdf)
our notes about Dwyer et al. (1999) [2], to support our claims in section 4.2.2.1
(icse99-notes.md)
our notes about Beckman et al. (2011) [1], to support our claims in section 4.2.2.2
(ecoop11-notes.md)
our analysis of the false positives issued by the Resource Leak Checker (RLC) in [3] and whether
or not they could have been verified if the RLC had access to perfect aliasing information
(rlcfps.xlsx)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The artifact is also available from
https://doi.org/10.5281/zenodo.5771196.

https://doi.org/10.5281/zenodo.5771196
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4 Tested platforms

This artifact should be usable on any system with a PDF reader and a spreadsheet program
capable of understanding the .xlsx format (this includes web-based platforms; we have tested
Google Sheets).

5 License

The artifact is available under the Creative Commons Attribution-ShareAlike 4.0 International
license.

6 MD5 sum of the artifact

429b8a9421df64399b328dfa1e075a9d

7 Size of the artifact

1.1M
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