
Accumulation Analysis (Artifact)
Martin Kellogg #

University of Washington, Seattle, WA, USA

Narges Shadab #

University of California, Riverside, CA, USA

Manu Sridharan #

University of California, Riverside, CA, USA

Michael D. Ernst #

University of Washington, Seattle, WA, USA

Abstract
This artifact contains the data and analysis sup-
porting the literature survey in section 4 of [4]. In
our literature survey, we examined 187 papers from
the literature that mention “typestate” and ana-
lyzed the typestate specifications they contained to
determine whether or not they are accumulation
typestate specifications.

Our purpose in doing this literature survey was
to determine whether typestate FSMs were accu-

mulation or not. However, we believe that the col-
lection of typestate automata in typestates.pdf
might be useful to anyone interested in the sort of
typestate automata that appear in the literature. If
we had had access to such a collection (gathered for
a different purpose), our classification of whether
these typestate automata were accumulation would
have been much simpler. Anyone interested in prop-
erties of typestate automata can re-use our work.

2012 ACM Subject Classification Software and its engineering → Formal software verification
Keywords and phrases Typestate, finite-state property
Digital Object Identifier 10.4230/DARTS.8.2.22
Funding This research was supported in part by the National Science Foundation under grants CCF-
2007024 and CCF-2005889, DARPA contract FA8750-20-C-0226, a gift from Oracle Labs, and a Google
Research Award.

Related Article Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst, “Accumulation
Analysis”, in 36th European Conference on Object-Oriented Programming (ECOOP 2022), LIPIcs,
Vol. 222, pp. 10:1–10:30, 2022.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6–10, 2022, Berlin, Germany
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact supports the claims in section 4 about the research literature.
Table 1, in particular, is produced from this artifact. The correspondence between artifact

components and each “dataset” row in Table 1 is the following:
papers.xlsx: “Papers since 2000 with <20 TSAs”
icse99-notes.md: “Dwyer et al. (1999) [18]”
ecoop11-notes.md: “Beckman et al. (2011) [4]”

The list of conferences at the end of section 4.1 was computed using cells I1:L18 of papers.xlsx.
The summary statistics in the beginning of section 4.2.1 are computed using cells I30:J31 of

papers.xlsx.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Martin Kellogg, Narges Shadah, Manu Sridharan, and
Michael D. Ernst;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 22, pp. 22:1–22:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:kelloggm@cs.washington.edu
mailto:nshad001@ucr.edu
mailto:manu@cs.ucr.edu
mailto:mernst@cs.washington.edu
https://doi.org/10.4230/DARTS.8.2.22
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


22:2 Accumulation Analysis (Artifact)

Section 4.2.1 groups typestate automata into typestate problems. File typestates.pdf
contains the data underlying this grouping. The numbers of problems were counted using the
largest subsection number in the accumulation and non-accumulation sections (e.g., there are
31 accumulation typestate problems, because the largest subsection number in section 2 of
typestates.pdf is 2.31). Within typestates.pdf, the ordering of the problems is arbitrary.

Sections 4.2.1.1 and 4.2.1.2 give the most common typestate problems. These were chosen by
the “count” appearing in the text describing each problem in typestates.pdf, which one author
computed by hand from our notes. A second author double-checked all these computations.

We broke ties for the three examples in the paper by choosing the most interesting example.
The problems chosen correspond to the following subsections in typestates.pdf, in the order in
which they are presented in section 4.2.1:

resource leaks (Figure 3): 2.1
special initialization method (Figure 4): 2.5
object construction (Figure 5): 2.13
don’t read/write a stream after it is closed (Figure 6): 3.31
don’t update a collection during iteration (Figure 7): 3.12
classic file example (Figure 1): 3.1

The artifact also supports the claim about the causes of false positives in prior work [3]:
that even with perfect aliasing information, the precision of an accumulation-based resource leak
checker would only improve from 26% to 34%. Our reasoning for this assertion is based on the
analysis of the false positives from that checker in rlcfps.xlsx.

2 Content

The artifact package includes:
a spreadsheet listing each of the 187 papers that we examined closely, the number of typestate
specifications in that paper, and the number of those specifications that are accumulation
typestate specifications (papers.xlsx)
our notes about the typestates in each paper so examined, ordered alphabetically by title
(notes.md)
a list of each typestate “problem”, its corresponding finite-state machine, and citations to the
papers that mention it, sorted by our judgment on whether they are accumulation (section 2)
or are not accumulation (section 3) (typestates.pdf)
our notes about Dwyer et al. (1999) [2], to support our claims in section 4.2.2.1
(icse99-notes.md)
our notes about Beckman et al. (2011) [1], to support our claims in section 4.2.2.2
(ecoop11-notes.md)
our analysis of the false positives issued by the Resource Leak Checker (RLC) in [3] and whether
or not they could have been verified if the RLC had access to perfect aliasing information
(rlcfps.xlsx)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The artifact is also available from
https://doi.org/10.5281/zenodo.5771196.

https://doi.org/10.5281/zenodo.5771196


M. Kellogg, N. Shadab, M. Sridharan, M. D. Ernst 22:3

4 Tested platforms

This artifact should be usable on any system with a PDF reader and a spreadsheet program
capable of understanding the .xlsx format (this includes web-based platforms; we have tested
Google Sheets).

5 License

The artifact is available under the Creative Commons Attribution-ShareAlike 4.0 International
license.

6 MD5 sum of the artifact

429b8a9421df64399b328dfa1e075a9d

7 Size of the artifact

1.1M

References
1 Nels E Beckman, Duri Kim, and Jonathan Aldrich.

An empirical study of object protocols in the wild.
In European Conference on Object-Oriented Pro-
gramming, pages 2–26. Springer, 2011.

2 Matthew B Dwyer, George S Avrunin, and James C
Corbett. Patterns in property specifications for
finite-state verification. In International Confer-
ence on Software Engineering, pages 411–420, 1999.

3 Martin Kellogg, Narges Shadab, Manu Sridharan,
and Michael D. Ernst. Lightweight and modular re-

source leak verification. In ESEC/FSE 2021: The
ACM 29th joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2021.

4 Martin Kellogg, Narges Shadab, Manu Sridharan,
and Michael D. Ernst. Accumulation analysis. In
European Conference on Object-Oriented Program-
ming (ECOOP), 2022.

DARTS


	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

