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This paper presents Tratto, a neuro-symbolic approach that generates assertions (boolean expressions)
that can serve as axiomatic oracles, from source code and documentation. The symbolic module of Tratto
takes advantage of the grammar of the programming language, the unit under test, and the context of the
unit (its class and available APIs) to restrict the search space of the tokens that can be successfully used
to generate valid oracles. The neural module of Tratto uses transformers fine-tuned for both deciding
whether to output an oracle or not and selecting the next lexical token to incrementally build the oracle from
the set of tokens returned by the symbolic module. Our experiments show that Tratto outperforms the
state-of-the-art axiomatic oracle generation approaches, with 73% accuracy, 72% precision, and 61% F1-score,
largely higher than the best results of the symbolic and neural approaches considered in our study (61%,
62%, and 37%, respectively). Tratto can generate three times more axiomatic oracles than current symbolic
approaches, while generating 10 times less false positives than GPT4 complemented with few-shot learning
and Chain-of-Thought prompting.
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1 Introduction
Software testing is an expensive activity. While many testing activities can be automated, for
example, test execution with JUnit [12], and unit test input generation with Randoop [41] and
EvoSuite [26], other activities still require significant human effort. The oracle problem is still largely
open and its automation is limited [4, 45]. Current approaches generate implicit and regression
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2 Molinelli et al.

oracles, which address only some aspects of the oracle problem: implicit oracles detect crashes and
exceptions, while regression oracles detect differences in behavior between different versions.

In this paper, we focus on the automatic generation of axiomatic oracles. The current approaches
to generate test oracles produce concrete oracles, that is, assertions on specific concrete inputs. For
instance, assertTrue(sum(20,22)==42) indicates the expected result for the concrete input values
20 and 22. Axiomatic oracles generalize concrete oracles as assertions on the inputs and outputs
variables and state. For instance assertTrue(sum(a,b)==a+b) predicates on the expected result for
all pairs of inputs. Axiomatic oracles are essential elements in tools such as QuickCheck [14] and
jmlunit [13] as an aid for testing. Axiomatic oracles are core assets of property-based testing [22],
metamorphic relations [10], parameterized unit tests [53], and theories [48].

The benefits of axiomatic oracles are particularly significant when dealing with large, automati-
cally generated test suites. Tools like Randoop [41] and EvoSuite [25] generate test cases that rely
on implicit and regression oracles only, and may result in false alarms. Generating concrete oracles
manually for each test input to filter out false alarms is extremely effort-demanding and impracti-
cal for large test suites. Axiomatic oracles in the form of preconditions, normal and exceptional
postconditions within the unit under test are independent from the number of test cases, and can
effectively reduce false alarms. Preconditions rule out invalid program inputs, thus reducing false
positives. Normal and exceptional postconditions identify failures, thus reducing false negatives.
Beyond testing, axiomatic test oracles are useful for other software engineering (SE) tasks. For

example, they aid program comprehension [16, 31] by specifying expected behavior unequivocally,
unlike ambiguous natural language descriptions. They support requirements engineering [11] by
providing formal specifications to validate and ensure completeness and consistency. In program
synthesis [43], axiomatic oracles can guide the generation of correct code by offering clear specifi-
cations. Lastly, in runtime verification [33, 56], they serve as properties to monitor, ensuring the
program meets its specifications during execution.
Current approaches for generating test oracles are either symbolic- or neural-based. Symbolic

approaches derive axiomatic oracles, such as program invariants [20], metamorphic relations [8],
and postconditions [6] from formal specifications [3, 18], software documentation [44], and program
traces [57] using a pre-defined set of rules and patterns. Neural approaches leverage deep learning
(DL) [19] and transfer learning [35] to generate either concrete test cases [54] or concrete oracles
for a given test input [19, 59]. Symbolic and neural approaches both suffer from limitations. Neural
approaches are well suited to handle fuzziness, for example, when deriving test oracles from
ambiguous natural language descriptions. However, they require large amounts of (usually labeled)
data and they are expensive to run. Symbolic techniques perform well by leveraging a fixed set
of domain-specific rules, for instance, pattern and lexical matching [6–8], but do not generalize
beyond the hard-coded rules. To the best of our knowledge, the potential of neural approaches for
generating widely applicable axiomatic test oracles is still unexplored.
This paper introduces Tratto, a neuro-symbolic approach to derive axiomatic oracles from

commonly available software artifacts such as source code and documentation. An axiomatic oracle
is composed of lexical tokens.1 For instance, the axiomatic oracle “result>0;” is composed of four
tokens, ‘result’, ‘>’, ‘0’, and ‘;’. Tratto (TRAnsformer-based Token-by-Token Oracle generation)
reformulates the oracle generation problem as a token generation problem.

Tratto generates oracles token by token. At each token-generation iteration, Tratto restricts
the search space of the next possible tokens in two ways. The first restriction is based on a

1Unless otherwise specified, we use “token” in the traditional sense of compilers, lexers, and programming languages.
Machine learning transformers use “token” for a different concept (e.g., the lexical token someVar may be tokenized into
two transformer tokens, some and Var).
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programming language grammar and the portion of the oracle generated so far. For instance, a
boolean expression cannot be the argument with a “>” operator. The second restriction is based on
the symbols that are in scope. These symbols include the method parameters and the return value
(for postconditions), fields and methods both in the current class and accessible through them.

Tratto implements a neural approach to select a token from the set of available tokens. Tratto
leverages pre-trained transformers fine-tuned on the task of selecting candidate tokens based on
(i) the oracle generated so far, (ii) the unit under test (including source code and documentation),
and (iii) additional unit context, for instance, information about the available APIs.

The neural module of Tratto features a multitask model trained on a dataset that was expressed
in two different ways (for two different tasks): a dataset of oracles, and a dataset of tokens that
appear in the oracles. The dataset substantially extends the dataset available in the replication
package of Blasi et al. [1, 6]. We enhanced the initial dataset by (i) fixing semantically-incorrect
oracles, (ii) adding oracles that we could infer from the code and the documentation, (iii) adding
oracles from other publicly available Java projects, and (iv) automatically augmenting the Javadoc
comments with semantically equivalent Javadoc comments that refer to the same oracles. The
resulting dataset features 34,249 oracle samples. We produced a dataset of 188,900 tokens from the
tokens in the oracles. Both datasets are publicly available in multiple formats, suitable for training
sequence-to-sequence and classification models, to support future research [2].

We experimentally evaluated Tratto. We compared the performance of different code models to
support the neural module, Code Gemma (Google) [51], StarCoder2 (BigCode) [34] and Code Llama
(Meta) [47], all in their version featuring 7B trainable parameters. We selected Code Llama since it
outperforms the other models for this task, with 91% accuracy in predicting the next oracle token.
We performed two ablation studies to compare Tratto with (i) a purely neural model trained

for predicting oracles, not supported by the token-by-token symbolic approach, and (ii) a version
of Tratto featuring two different models, instead of a single multitask model. The results show
that the symbolic module and the multitask model provide an additional +6 and +3 percentage
points of accuracy in predicting oracles, respectively.
We compared Tratto with two state-of-the-art symbolic and neural approaches for axiomatic

oracle generation, Jdoctor (symbolic) [6] and GPT4 (neural) [39] on a ground-truth dataset of
axiomatic test oracles. The experimental results that we discuss in Section 4.3.5 indicate that
Tratto outperforms both Jdoctor and GPT4 in terms of accuracy (73% for Tratto, 61% for Jdoctor,
40% for GPT4), precision (72% for Tratto, 62% for Jdoctor, 24% for GPT4), and F1-score (61% for
Tratto, 25% for Jdoctor, 37% for GPT4). Tratto’s recall (52%) is better than Jdoctor’s (16%) and
worse than GPT4’s (89%). In overall terms, Tratto achieves an excellent balance between generating
oracles (3× more than Jdoctor) while incurring in few false positives (10× less than GPT4).
We also compared the robustness of Tratto, Jdoctor and GPT4 in generating correct oracles

when the documentation of the units under test wasmodified in different ways (details in Section 4.4).
The results show that Tratto and GPT4 have comparable performance, generating 195 and 208
correct and compilable oracles, respectively, from a set of 220 descriptions derived from 55 original
descriptions. Jdoctor generated only 49 correct and compilable oracles.
Lastly, we evaluated the effectiveness of the oracles generated by Tratto and Jdoctor for

increasing the mutation score of test suites automatically generated with EvoSuite [25]. We could
not evaluate GPT4 for this purpose due to the large amount of non-compilable oracles generated
(552 out of 1,213), which made it impossible to automate the insertion of oracles into the test
cases. We considered two types of test suites: with implicit oracles only, and with both implicit and
regression oracles. From among 6 projects considered, Tratto increased the mutation score of 5
test suites with implicit oracles and 3 test suites with both implicit and regression oracles, while
Jdoctor increased the mutation score of 4 test suites in the former case and in no cases in the latter.
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In summary, this paper discusses the limitations of the state-of-the-art approaches to generate
axiomatic oracles (Section 2), and makes the following contributions:

(1) It defines a novel approach that iteratively generates test oracles, token by token, by combining
a symbolic with a neural approach to steer the generation of tokens toward valid oracles,
thus reducing the impact of false positives of purely neural approaches (Section 3.1).

(2) It introduces Tratto, a neuro-symbolic approach and corresponding tool to generate ax-
iomatic oracles from source code and documentation (Sections 3.2 and 3.3).

(3) It proposes a collection of comprehensive datasets of oracles and tokens that can be reused
for training future models for generating oracles (Section 3.4).

(4) It performs empirical studies to: (i) compare the performance of different code models
for the tasks of oracle evaluation and token selection; (ii) highlight the contributions of
Tratto’s components to its overall performance; and (iii) compare Tratto with state-of-
the-art approaches for oracle generation, showing its superior performance in terms of
correctness, robustness and applicability to enhancing automatically generated test suites
(Section 4).

2 Motivating Example
1 /**
2 * Sets the item label generator for a series and
3 * sends a {@link RendererChangeEvent} to all
4 * registered listeners.
5 *
6 * @param series the series index (zero based).
7 * @param generator the generator
8 * (<code>null</code> permitted).
9 *
10 * @see #getSeriesItemLabelGenerator(int)
11 */
12 public void setSeriesItemLabelGenerator(int series,
13 CategoryItemLabelGenerator generator) {
14 setSeriesItemLabelGenerator(series, generator,
15 true);
16 }

Listing 1. Documentation and implementation of

method setSeriesItemLabelGenerator from JFreeChart.

This section shows how state-of-the-art ora-
cle generators perform on an example method
(Listing 1). Their limitations motivate Tratto.

The documentation in Listing 1 describes a
precondition “series >= 0” in natural language
(“the series index (zero based)”, line 6). If a test
generator produces a unit test case with a neg-
ative series as argument, the test crashes. The
precondition indicates that the test case is in-
valid, and avoids executing the test with a false
positive result.
The main state-of-the-art oracle generators

do not generate this precondition:
TOGA [19], a neural approach for generating test assertions, does not generate preconditions at all.
Jdoctor [6], a symbolic approach, does not generate the precondition either, since it is based on a
set of patterns and rules that do not match the comment.
EvoSuite [25], a search-based test generator, generates regression test oracles, and no preconditions.
GPT4 [40], a large language model (LLM) trained on natural language and code, correctly gen-
erates the precondition, but also generates wrong, useless, or non-compilable oracles such as
“generator == null || generator != null” and “generator == null || generator is a valid

CategoryItemLabelGenerator instance”.
Tratto derives the precondition “series >= 0” that prevents the generation of invalid test cases
and false positives, and does not generate wrong oracles like GPT4. The neural module of Tratto
generalizes to previously unseen oracles, beyond the fixed set of rules and patterns of Jdoctor, while
the symbolic module restricts the possible oracles to compilable oracles.

3 Tratto
Tratto generates executable preconditions, regular and exceptional postconditions that together
comprise axiomatic oracles. Tratto generates executable assertions in Java from Java source code
and Javadoc comments. Preconditions, like “param1 cannot be null”, constrain the validity of the
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test input. Postconditions, like “the output must be positive”, and exceptional postconditions, like “if
param1 is null, an exception is thrown”, constrain the expected behavior of a program.
The input of Tratto is the source code of the method under test and its context, such as

fields and methods in its class. Tratto tries to generate a precondition from each @param tag, a
regular postcondition from each @return tag, an exceptional postcondition from each @throws and
@exception tag, and preconditions, regular and exceptional postconditions from the free-text part
of the Javadoc, the method signature and the implementation.

3.1 Architecture
Tratto integrates a symbolic and a neural module to generate test oracles iteratively, token by
token. The symbolic module features a Token collector and a Token filter to restrict the possible
tokens forming the oracle. The neural module consists of a multitask model that works in two
modes: Oracle evaluator and Token selector . The former decides whether to generate an oracle or
not, while the latter selects the tokens that incrementally form an oracle, based on those returned
by the symbolic module.

Neural module

Multitask model

Symbolic module

methodResultID !=

/**
 * Javadoc documentation.
 * @return a non-null object.
 */
public Object getObject() {...}

Unit under test

Unit's project's source

Partial oracle, initially empty

Token
collector

Token
filter

Evaluate oracle

Oracle
evaluator

Token
selector

END

Generate token

N
o oracle

C
andidate tokens

All tokens

null

Next oracle token

Next oracle token == ';'

G
enerate oracle

Append to partial oracle

Legend:

Main loop
Preprocessing

Output
TRATTO
Input

Fig. 1. Workflow of Tratto.

Figure 1 shows the work-
flow of Tratto. As a prepro-
cessing step (black arrows),
the Oracle evaluator compo-
nent of the neural module de-
cides if an oracle should be
generated, solely based on the
documentation and code of
the unit under test. If so, it
triggers the token-generation
workflow (white arrows). At
each iteration, Tratto gener-
ates the next token of the or-
acle based on (i) the unit un-
der test, (ii) the unit project’s
source (documentation and
source of the whole project),
and (iii) the partial oracle (por-
tion of the oracle built so far).
Tratto starts with an empty
partial oracle and terminates when the next generated token is a semicolon (‘;’).

The symbolic and the neural modules of Tratto cooperate to incrementally generate the tokens
that comprise the partial oracle, until they produce a complete oracle. At each iteration, the Token
collector retrieves all possible tokens to build an oracle, for instance, parameters of the unit under
test with their fields and methods. Then, the Token filter selects the subset of tokens that are valid,
i.e., that can be added to the partial oracle to eventually generate a well-formed assertion (Candidate
tokens in Figure 1). For example, the instanceof operator may not follow a variable of primitive
type, although it is a syntactically valid expression. Given a set of candidate tokens, the Token
selector of Tratto’s neural module selects the next token that shall be added to the partial oracle.

Tratto uses a novel token-level approach to generate oracles. The state-of-the-art approaches
like TOGA [19] and Jdoctor [6] generate a whole oracle at once. Generating test oracles token-by-
token brings two main benefits:
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6 Molinelli et al.

(1) The grammar-based symbolic approach of Tratto: (i) generates only oracles that are com-
pilable by construction, while neural-based approaches may generate oracles that do not com-
pile [40, 54]; (ii) generates any oracle that is consistent with the grammar, while some neural
approaches generate only oracles compatible with a set of candidate assertions [19]; and (iii) col-
lects contextual information from the unit under test useful to generate an oracle, for instance,
possible method calls to external libraries, calls that neither symbolic nor neural approaches can
access without manual intervention, while prompt-based neural approaches require manually
specified data. We define the grammar-based symbolic approach of Tratto in Section 3.2.

(2) The neural model: (i) is trained on a dataset of tokens much larger than a dataset of oracles,
since oracles are composed of multiple tokens; and (ii) takes full advantage of transformers capabil-
ities of learning patterns and associations related to natural language and source code, by relying
on training with significantly more data, beyond the limitations of semantic approaches that rely
on pattern, lexical and semantic matching. We discuss the neural module of Tratto in Section 3.3
and the benefits of the tokens dataset in Section 3.4.

3.2 Symbolic Module
The symbolic module of Tratto restricts the search space of the possible oracles for a given unit,
to a set of tokens that produce compilable oracles, by construction. The Token collector collects all
possible tokens that could be used to form an oracle. The Token filter discards the illegal tokens
(syntactically and semantically invalid tokens that would make the oracle non-compilable) with a
grammar-based approach.

3.2.1 Token Collector. The Token collector creates a set of all the tokens that Tratto needs to
generate oracles for the target unit. These tokens may be generic tokens related to the target unit
under test, collected in the first token-generation iteration, or specific tokens related to the current
partial oracle, collected only in some iterations.

In the first iteration (when the partial oracle is empty), the Token collector gathers three types of
generic tokens: (i) common tokens which could be part of any oracle, such as operators, keywords,
and common constants like 0 and 1; (ii) tokens extracted from the project under test, including classes
and their respective fields and methods (e.g., CollectionUtils.isEmpty()); and (iii) tokens extracted
from the method under test, including its parameters (if any) as well as fields and methods callable
upon those parameters, containing class, and return value of the method (e.g., this.contains(o)).
At each subsequent iteration, the Token collector may augment the set of tokens with specific

tokens that may occur when the last token of the partial oracle is a period that follows an expression
that is a class of the project, this, methodResultID (which identifies the return value of the method
under test), or a method parameter. For instance the Token collector adds the tokens ‘hasNext’ and
‘next’ to the set of tokens when the partial oracle ends with “this.iterator().”.

3.2.2 Token Filter. The Token filter discards both the tokens that are syntactically illegal in the
next position of the partial oracle (for instance, ‘true’ is not syntactically correct as the next
token after “arg1 >”), and the tokens that would result in a compilation error of the oracle (for
instance, the > operator may follow only an expression that evaluates to a numeric type). The Token
filter prunes the set of tokens with a grammar-based approach. Tratto also implements several
context restrictions that discard tokens that may not occur in the next position of the oracle, even if
grammatically legal, for instance, methodResultID may not be used if the method under test is void.

Tratto Grammar. Axiomatic oracles are boolean expressions. Tratto implements a custom-
defined grammar to express oracles (available in the replication package [2] due to space restrictions).
In a nutshell, the grammar supports expressions consisting of variables potentially chained with
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class fields and method calls, such as “this.a.b()”; arithmetic operations, as in “arg2+arg3”; com-
parison operators, as in “methodResultID != null”; and conjunctions and disjunctions formed with
the logical operators && and ||. This simple but effective grammar can represent all procedure
specifications from the work by Blasi et al. [6], while permitting new oracles.

Context Restrictions. A grammar does not suffice to generate a test oracle, since it lacks the
underlying semantics of the specific tokens conforming it. For example, according to the Tratto
grammar, the token ‘instanceof’ is valid after the partial oracle “methodResultID”. However, if the
type of the variable methodResultID (i.e., the return type of the method under test) is primitive,
the resulting expression would not compile. We refer to cases like this as context restrictions, since
they restrict tokens depending on the context of the oracle (so far). Tratto implements 27 context
restrictions (documented in the replication package [2]). The context restrictions also alleviate the
load of the neural module, by reducing the number of tokens that it must evaluate to generate
accurate oracles.

3.3 Neural Module
The neural module comprises the Oracle evaluator—decides whether an oracle should be generated
or not—and the Token selector—guides the generation of oracles toward optimal solutions, token by
token, in all iterations. The neural module features a multitask DL model trained for both tasks.

3.3.1 Oracle Evaluator. Although the oracle evaluation task is a binary task that determines
whether an oracle should be generated or not, we treat it as a generation task, so that we can reuse
the same auto-regressive model (e.g., specialized for code generation and completion) for both tasks.
We ask the model to fill out the mask of a masked input. Listing 2 shows the input template used for
this task. It is composed of an oracle type and a Javadoc tag, if available (line 1), two next possible
candidate tokens for the partial oracle (line 2), the mask token to fill out (line 4), and the method
under test (lines 6–8). The model selects one of the two next possible tokens, either ‘assertTrue(’
(an oracle should be generated) or ‘// No assertion possible’ (no oracle).

3.3.2 Token Selector. We treat the token selection task as a generation task, as for the Oracle

evaluator . Listing 3 shows the input template that we use for this task. With respect to the input of
the Oracle evaluator , this is augmented with (i) a list of next possible tokens and not just a binary
choice (line 2), (ii) the partial oracle that is not empty (line 4), and (iii) the additional context with
information about method signatures and field declarations corresponding to the next possible
tokens (lines 10-11), aiming to provide more context to the model. The model selects one of the
next possible tokens that produces a new correct partial oracle when added to the tail of the input
partial oracle.

1 // <oracle_type>: "<javadoc_tag>"
2 // Next possible tokens: ['assertTrue(',

'// No assertion possible']
3 // Assertion:
4 <FILL_ME>
5
6 // Method under test:
7 <method_javadoc>
8 <method_source>

Listing 2. Input template for the Oracle Evaluator.

1 // <oracle_type>: "<javadoc_tag>"
2 // Next possible tokens: [<next_possible_tokens>]
3 // Assertion:
4 assertTrue(<partial_oracle><FILL_ME>
5
6 // Method under test:
7 <method_javadoc>
8 <method_source>
9
10 // Additional context:
11 <method_signatures_and_field_declarations>

Listing 3. Input template for the Token Selector.

Listing 4 is a complete example of the input to the model when acting as Token selector . The
example is a snapshot of the construction of an exceptional postcondition as shown in line 1 (partial
oracle = “array.getClass().” in line 4). As the getClass() method returns an object of type Class,
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8 Molinelli et al.

the next possible tokens are non-private fields and methods of class Class (line 2). The model
selects the correct token, in this case ‘isArray’ (additional information provided in line 24), among
the possible tokens, to replace the mask token in the partial oracle, thus continuing the oracle
generation process.

3.4 Data Collection

1 // Exceptional postcondition: "@throws
IllegalArgumentException if <code>array</code> is
not an array."

2 // Next possible tokens: ['equals', 'toString',
'isArray', 'getClassData', 'getClassLoader', ...]

3 // Assertion:
4 assertTrue(array.getClass().<FILL_ME>
5
6 // Method under test:
7 /**
8 * Constructs an ArrayListIterator that will
9 * iterate over the values in the specified array.
10 *
11 * @param array the array to iterate over
12 * @throws IllegalArgumentException if
13 * <code>array</code> is not an array
14 * @throws NullPointerException if
15 * <code>array</code> is <code>null</code>
16 */
17 public ArrayListIterator(final Object array){
18 super(array);
19 }
20
21 // Additional context:
22 public boolean equals(Object arg0)
23 public String toString()
24 public native boolean isArray()
25 Object getClassData()
26 public ClassLoader getClassLoader()
27 ...

Listing 4. Input to the model acting as Token Selector.

We trained Tratto’s neural model used for
the Oracle evaluator and Token selector with
datasets of oracles and tokens, respectively. Fig-
ure 2 shows how we generated the datasets.
We started with an existing dataset of proce-
dure specifications [6], added comments with
and without a corresponding oracle, and manu-
ally inspected and cleaned the dataset. We aug-
mented this dataset via automated techniques.
We disaggregated oracles into tokens via the
Token collector and Token filter components of
Tratto, to produce the tokens dataset. Oracles
and tokens datasets are available in the replica-
tion package [2].

3.4.1 Procedure Specifications Dataset. Blasi
et al. [6] provide a dataset of procedure specifi-
cations (preconditions, regular and exceptional
postconditions) that correspond to Javadoc tags.
The procedure specifications express the in-
tended behavior of a program and therefore they can be used as test oracles. This dataset contains
3,150 tuples in the form of ⟨(𝑢, jt), 𝑜⟩, where u is the unit under test, jt is the Javadoc tag in the
unit documentation, and o is an executable Boolean expression that corresponds to the Javadoc
tag and may be used as an oracle. Blasi et al. [6] provide also 23,397 Javadoc tags for which their
approach cannot generate axiomatic oracles.

3.4.2 Oracles Dataset. We created an initial oracles dataset by combining the 3,150 procedure
specifications from the dataset of Blasi et al. [6] (positive instances) with 3,150 randomly sampled
negative instances (Comments without oracles in Figure 2) from among the 23,397 Javadoc tags
without oracles. Since the authors report an average precision and recall of 92% and 83%, respectively,
we decide to inspect the selected 6,300 instances (3,150 positive and negative) to fix possible mistakes
(e.g., wrongly generated oracles). Additionally, we add 222 oracles from various Java projects on
GitHub to increase the quality of the final dataset. This manual process (step 1 in Figure 2) leads
to an initial oracles dataset of 5,911 samples, 4,582 of which are positive and 1,329 of which are
negative. Indeed, a large number of the 3,150 inspected comments without oracles resulted in
oracles that could be derived, hence the larger number of positive instances in the resulting dataset.

1 @return the sum {@code a + b}. // Original
2 @return the total value of {@code a + b}
3 @return the result of adding {@code a} and {@code b}
4 @return the outcome of summing {@code a} and {@code b}.
5 @return the value obtained by adding {@code a} and {@code b}.
6 @return the sum of {@code a} and {@code b}

Listing 5. Equivalent Javadoc tags generated with ChatGPT.

We augmented the oracles dataset
by creating semantically equivalent
versions of the comments in the
dataset with ChatGPT [38]. We asked
it to generate new Javadoc comments
by suggesting equivalent versions of
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Fig. 2. Data collection process.

the comments, with a maximum of 5 ( 2 ). Listing 5 shows a sample set of equivalent Javadoc tags
generated with ChatGPT. Details of the prompts and data cleaning are available in the replication
package [2]. We obtained 34,249 comments, 23,392 with an oracle (positive samples) and 10,857
without (negative samples).

3.4.3 Tokens Dataset. Based on the oracles dataset, we generated an oracles with tokens dataset,
by leveraging the Token collector to extract generic tokens that could belong to each oracle ( 3 ),
for instance, class names (e.g., HashBiMap), constants (e.g., CollectionUtils.EMPTY_COLLECTION), and
method names (e.g., .toString()). The Token collector component (Section 3.2.1) analyzes the source
code of the project related to the oracle to extract available tokens, and produces a dataset of tuples
in the form of ⟨(u, jt, t[]), o⟩, where t[] refers to the list of all possible tokens that could be initially
used to start building the oracle o.

Subsequently, we automatically disaggregated oracles into partial oracles ( 4 ) and used both the
Token collector and Token filter to add relevant tokens and rule out invalid tokens for each partial
oracle ( 5 ), respectively, leading to a dataset of tokens in the form of ⟨(𝑢, jt, po, lt []), 𝑡⟩ tuples,
where po denotes a partial oracle, lt[] refers to the list of legal tokens that could possibly follow the
partial oracle (e.g., ‘0’, ‘1’, and ‘SomeClass’ could follow “result >”), and t is the actual next token
after the partial oracle, which must be one of the tokens from the aforementioned list. The tokens
dataset contains 188,900 samples in total.

loadFactor <= 0  ; 

loadFactor

initialCapacity

true

(

BagUtils

Bag

HashBag

==

>

!=

<

>=

<=

initialCapacity

BagUtils

Bag

HashBag

1

loadFactor

0 &&

;

||

"" "loadFactor" "loadFactor <=" "loadFactor <= 0"

. . . . . .

Fig. 3. Converting one oracle sample into four token

samples. Oracle (𝑜) at the top; partial oracles (𝑝𝑜) and

legal tokens (𝑙𝑡 []) on top and bottom white boxes, re-

spectively; next tokens (𝑡 ) in green.

Figure 3 shows an example of the conversion
process from an oracle sample to token sam-
ples. The oracle “loadFactor<=0;” represents
an exceptional behavior, i.e., if the argument of
the method under test loadFactor is less than
or equal to 0, an exception should be thrown.
This oracle contains four tokens, so the data
generation process produces four partial ora-
cles. For instance, in the first iteration, the or-
acle may start with tokens such as parameters
from the method under test (i.e., loadFactor
and initialCapacity), an opening parenthesis,
the name of a class (e.g., if a static method is
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to be called), and so on. In the second iteration, when the partial oracle is “loadFactor”, the next
token can only be a comparison operator since loadFactor is of numeric type, thus the Token filter

discarded all other tokens that may not be used in this context (including arithmetic operators
which are not allowed in this particular position according to the Tratto grammar [2]). The same
process is repeated for the remaining tokens of the oracle.

4 Evaluation
Our experimental evaluation addresses the following research questions:
RQ1: How do different LLM code models compare for evaluating oracles and selecting tokens? We

evaluate different code models aiming to find the most suitable one for the tasks performed by the
neural module of Tratto.
RQ2: What is the contribution of the symbolic module and the multitask model to the overall

performance of Tratto? We carry out ablation studies to assess the performance of Trattowithout
the symbolic module (a purely neural model not supported by the proposed token-by-token oracle
generation approach) and without the multitask model (two different models for theOracle evaluator
and Token selector).
RQ3: What is the effectiveness of Tratto in generating axiomatic test oracles and how does it

compare with state-of-the-art neural and symbolic techniques? We devise a ground-truth dataset of
axiomatic test oracles to evaluate Tratto, and compare it against state-of-the-art symbolic- and
neural-based approaches for oracle generation.
RQ4: How robust is Tratto to documentation variations? Based on the results of RQ3, we select

the oracles that all approaches correctly predict, we apply systematic variations to their associated
documentation, and we measure the robustness of Tratto and the other approaches in terms of
the amount of oracles that they can still correctly infer.
RQ5: How effective are the generated oracles for improving test suites? We apply the oracles

that Tratto generates to test suites automatically generated with EvoSuite, and we measure the
effectiveness of Tratto for testing as the improvement of the mutation score.

4.1 RQ1: Code Models Comparison
RQ1 addresses the suitability of LLM code models that Tratto uses to both evaluate oracles and
predict the next oracle token. We compare three models—Code Gemma by Google [51], StarCoder2
by BigCode [34], and Code Llama by Meta [47]—to determine the most effective LLM for such tasks.
We model both tasks as code infilling problems (see Listings 2 and 3). We select these models since
they are state-of-the-art, support infilling problems, are trained on large-scale code corpora, and
are popular among researchers and practitioners for addressing code-related tasks. We used the
version of each model that features 7B trainable parameters.

The dataset used for training and validation features 223,149 samples (34,249 oracles + 188,900
tokens). We set aside all samples belonging to a single Java project (Guava, 30,891 samples, 14% of
the total) for validation, and used the remaining 192,258 samples (86%) for training.2 We trained
all models for two epochs, as we experimentally determined that accuracy does not improve
significantly after this point. We set the input length to 2,048 transformer tokens and the output
length to 32 transformer tokens.3 We used default hyper-parameters for all trainings.
The accuracy obtained with Code Gemma, StarCoder2, and Code Llama is 58%, 69%, and 91%,

respectively. Code Llama largely outperforms both Code Gemma and StarCoder2. We hypothesize
2We split the dataset in this way to avoid data leakage, since some oracle and token samples from the same project are the
same except for the rephrased Javadoc tag, according to the data augmentation process described in Section 3.4.2.
3Although the output of the models is a single lexical token (e.g., a variable name such as millis2secs) this is tokenized into
multiple transformer tokens (e.g., mill-is-2-se-cs, five tokens).
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that such a difference is due to both the pre-training data and the specificity of each training
procedure. Code Llama is pre-trained primarily on natural language and actual code, and is further
specialized for long-context inputs, which fits well with our tasks. StarCoder2 is pre-trained
on varied data, including GitHub issues, pull requests and Jupyter notebooks. Code Gemma is
pre-trained on English language data from open source mathematics datasets and synthetically
generated code. Both Code Gemma and StarCoder2 are pre-trained on general data and synthetic
code that are not particularly useful for our case.
The results of RQ1 measure the accuracy of different LLM code models in correctly evaluating

oracles and selecting oracle tokens, and clearly point to Code Llama as the best choice to generate
correct axiomatic oracles. When used to generate a complete sequence of tokens conforming an
oracle, Tratto instantiated with Code Llama correctly generates 69% axiomatic oracles on the
Guava validation set, that is, 3,337 oracles (out of 4,865) have all their tokens correctly predicted.4

Answer to RQ1: Code Llama achieves 91% accuracy for the tasks of evaluating oracles and
selecting tokens, and outperforms both Code Gemma (58%) and StarCoder2 (69%).

4.2 RQ2: Ablation Studies
RQ2 addresses the contributions of the symbolic module and multitask model of Tratto in gener-
ating oracles. To this end, we carry out two ablation studies where these components are removed.
In the first study, we remove the token-by-token oracle generation approach enabled by the

symbolic module. Thus, the neural module either infers the whole oracle or indicates the impossi-
bility of generating one, solely based on the unit under test. We set aside the Guava oracles (4,865)
for validation, and used the remaining (29,384) for fine-tuning the Code Llama 7B model with
default hyper-parameters for two epochs, as we did for Tratto. The resulting model generates
3,049 correct oracles out of 4,865, achieving an accuracy of 63%, 6% less that the 69% accuracy of
Tratto. The difference is statistically significant according to the McNemar test (𝑝-value < 0.001,
Odds Ratio = 2.57), which is suitable to pairwise compare dichotomous results of two different
treatments as in this case [36]. This indicates that the symbolic module and the token-by-token
approach contribute to improve the performance of generating axiomatic oracles.

In the second study, we remove the multitask model and fine-tune two separate models, an Oracle

evaluator and a Token selector . Both are based on Code Llama 7B and the training is performed
with default hyper-parameters for two epochs. The Oracle evaluator is fine-tuned on the 29,384
oracle samples (86% of all oracles) that do not include the Guava project, and the Token selector is
fine-tuned on the respective 162,874 token samples (86% of all tokens). Then, we jointly evaluate
the capabilities of both models to correctly predict the 4,865 oracles from the Guava validation set,
i.e., with the Oracle evaluator correctly predicting whether an oracle should be generated and, if so,
with the Token selector correctly predicting all tokens of the oracle. Overall, this approach achieved
66% accuracy in generating oracles (3,213 out of 4,865 oracles from the Guava validation set), 3%
less than the accuracy of Tratto. The difference is statistically significant (𝑝-value < 0.001, Odds
Ratio = 1.55). This highlights the benefits of leveraging a multitask model for evaluating oracles
and predicting tokens.
Our analysis of the oracles that Tratto generates and the ablated approaches fail to generate

indicates that the ablated approaches either incur in false positives, i.e., they generate oracles
where there should be none, or they generate incorrect oracles. As an example of false positives,
the purely neural model wrongly generates the precondition “array != null” from the Javadoc

4Note that this dataset also contains non-oracle samples (Comments without oracles in Figure 2), which are deemed as
correctly predicted if the Oracle evaluator judged no need to generate an oracle.
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tag “@param array an array of {@code short} values, possibly empty”. The Oracle evaluator of
the non-multitask model generates a precondition from the Javadoc tag “@param defaultValue

the value provided for inputs absent in map keys”, which does not express any precondition. As
an example of wrong oracles, the purely neural model generates the incorrect oracle “true ?

Arrays.stream(array).anyMatch(jdVar -> jdVar == target) : true”, which asserts that the array
parameter should always contain the target parameter, from the Javadoc tag “@return {@code

true} when any element {@code array[i]} equals {@code target}”, while Tratto generates the correct
oracle, “Arrays.stream(array).anyMatch(jdVar -> jdVar == target) ? methodResultID == true :

methodResultID == false”, which asserts that, if the array parameter contains the target parameter,
the method should return true, otherwise it should return false.

Answer to RQ2: The purely neural and the non-multitask approaches achieve 63% and 66%
accuracy, respectively, less than the 69% accuracy of Tratto. Thus, we conclude that the symbolic
module and the multitask model both improve the performance of Tratto.

4.3 RQ3: Oracle Generation
RQ3 compares the effectiveness of Tratto to the state-of-the-art neural and symbolic approaches
for generating axiomatic oracles. We present the ground-truth dataset used for evaluating, the state-
of-the-art approaches we compare Tratto with, the metrics we computed with the experiments,
the training and evaluation setup of the experiments, and finally we discuss the results.

4.3.1 Ground-Truth Dataset. We manually created a ground-truth dataset of axiomatic test oracles,
to fairly compare Tratto with state-of-the-art approaches. We extracted and validated oracles
from Defects4J [30]. We excluded two projects (Apache Commons Math [24] and Apache Commons
Collections [23]) that are part of the training set of Tratto. For each of the remaining 15 projects
in Defects4J, we systematically selected 10 Java classes by sorting them according to their character
count and selecting those evenly spaced within the 5% to 95% range (i.e., the classes at the percentiles
5, 15, 25, etc.). Wemanually extracted all possible axiomatic oracles from all methods of each selected
class. The dataset contains 389 axiomatic oracles (positive samples) belonging to 274 methods of 150
classes from 15 projects. For each method, we also generate one negative sample if no precondition,
postcondition or exceptional postcondition could be generated for such method. For instance, if a
method encodes two preconditions, it will result in two positive samples (two preconditions) plus
two negative samples (one non-postcondition and one non-exceptional-postcondition). This leads to a
total of 496 negative samples. Each sample was reviewed by at least two authors.

4.3.2 Comparison Approaches. We compare Tratto with Jdoctor [6] and GPT4 [40], as repre-
sentative symbolic and neural approaches, respectively. Jdoctor [6] generates axiomatic oracles
(preconditions, normal and exceptional postconditions) from the Javadoc tags @param, @return and
@throws/@exception, respectively, by applying pattern, lexical, and semantic matching techniques.
Jdoctor outperforms other approaches such as Toradocu [27] and @tComment [50].
The state-of-the-art neural approaches to generate oracles [19, 55, 59] produce concrete test

oracles, that is, assertions on specific concrete inputs. They are not directly comparable with
Tratto, which generates axiomatic oracles that predicate on variables, and are valid for all concrete
inputs. Thus we compare Tratto against GPT4 (model GPT4-o) as representative neural approach
to generate axiomatic oracles. We enhance GPT4 with few shot learning [58] combined with Chain-
of-Thought prompting [60] to fully leverage its understanding capabilities. We provide GPT4 with
three examples of how and when to generate axiomatic oracles based on several Java methods,
following a step-by-step approach, and ask it to generate oracles for the ground-truth dataset,
method by method. We share the prompts we use in our experiments in the replication package [2].
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4.3.3 Metrics. We comparatively evaluate Tratto by computing true positives (correctly predicted
oracles), true negatives (instances for which no oracle should be generated, and none is generated),
false positives (instances for which no oracle should be generated, but one is generated, or wrongly
generated oracles), and false negatives (oracles not generated, while one should be generated).

We classify incomplete oracles, that is, oracles that capture only a subset of the correct behavior,
as false positives, since they partially miss the semantic of the reference oracle and do not work for
all test cases. The oracle “result != null” is an example of incomplete oracle for a method that
returns a positive Integer, as it correctly captures only a subset of the expected behavior, while
“result >= 0” is a wrong oracle for the same method, as 0 is not positive.

We also compute accuracy (portion of all correct predictions out of the total predictions), precision
(portion of oracles correctly generated out of all oracles generated), recall (portion of oracles
correctly generated out of all actual oracles in the dataset), and F1-score (weighted harmonic mean
of precision and recall). Accuracy measures the overall performance of the technique, but does
not differentiate between false positives and negatives. Precision measures the ability to avoid false
positives. Recall reflects the ability to capture all relevant instances, avoiding false negatives. F1-
score combines precision and recall into a single measure that balances false positives and negatives,
and is especially useful when the dataset is unbalanced and the positive class is rare, as in our case.

4.3.4 Training and Evaluation Setup. We trained Tratto with the same setup as in previous
experiments, although using the complete dataset (223k samples) for training. We generated as
many axiomatic oracles as possible for all methods in the ground-truth dataset. We downloaded and
set up the most recent version of Jdoctor from the publicly available GitHub repository (commit
d76899f). Jdoctor does not need training, as it is based on a set of heuristic rules and patterns. We
generated as many axiomatic oracles as possible for all methods in the ground-truth dataset, as
we did for Tratto. We performed similarly for GPT4, generating as many axiomatic oracles as
possible for all methods, by crafting a prompt per method, making an API call per prompt, and
collecting all responses, which we manually analyzed.

4.3.5 Results. Table 1 reports the accuracy (row 𝐴), precision (𝑃 ), recall (𝑅), and F1-score (𝐹1) that
we computed for each approach (Tratto, Jdoctor and GPT4) and each project (columns closure-
compiler ... mockito), as well as for all projects (column Total). The table highlights in green the
best Total values and in red the worst values. We observe that Tratto outperforms both Jdoctor
and GPT4 in terms of accuracy (73% for Tratto, 61% for Jdoctor, 40% for GPT4), precision (72%
for Tratto, 62% for Jdoctor, 24% for GPT4), and F1-score (61% for Tratto, 25% for Jdoctor, 37%
for GPT4). Tratto’s recall (52%) is better than Jdoctor’s (16%) and worse than GPT4 (89%). The
results indicate that Tratto infers more correct predictions than both Jdoctor and GPT4 (accuracy)
with a low impact of wrong results (precision). The better performance of GPT4 than Tratto in
terms of recall indicates that GPT4 generates a higher proportion of oracles than Tratto out of the
ground truth. This was expected since GPT4 is a general-purpose LLM with better generalization
capabilities. However, the higher recall comes with a cost of more false positives (lower precision),
on which Tratto does not incur as often thanks to the fine-tuning performed, which allows it to
evaluate more precisely whether an oracle should be generated or not, and what the shape or the
oracle should be. This is also illustrated with the F1-score, which well summarizes the improvement
of the token-by-token neuro-symbolic approach of Tratto over the symbolic approach of Jdoctor
and the neural approach of GPT4. The precision and recall of the approaches vary greatly across
projects, thus confirming the dependency of the approaches on the quality of comments and code.
Table 2 provides futher details for each project and approach. The table reports the number of

methods (column 𝑀), the number of oracles in the ground truth (𝑂), the number of non-oracle
(negative) instances (𝑁𝑂), and the true and false predictions (𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , 𝐹𝑁 ) for all approaches
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Table 1. Accuracy (𝐴), precision (𝑃 ), recall (𝑅), and F1-score (𝐹1) for all approaches on ground-truth dataset.
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A 56% 83% 61% 74% 91% 62% 75% 80% 68% 58% 67% 77% 81% 60% 67% 73%

P N/A 60% 29% 82% 88% N/A 61% 70% 43% 33% N/A 90% 83% 50% N/A 72%

R 0% 75% 24% 53% 97% 0% 67% 70% 33% 3% 0% 60% 78% 5% 0% 52%Tratto

F1 N/A 67% 26% 64% 92% N/A 64% 70% 37% 6% N/A 72% 80% 8% N/A 61%

A 56% 72% 56% 73% 79% 62% 60% 64% 67% 61% 67% 47% 59% 57% 67% 61%
P N/A 100% 33% 100% 96% N/A 0% 6% 33% 100% N/A N/A 74% 0% N/A 62%
R 0% 16% 4% 41% 68% 0% 0% 7% 11% 3% 0% 0% 33% 0% 0% 16%

Jdoctor

F1 N/A 29% 7% 58% 79% N/A N/A 6% 17% 6% N/A N/A 46% N/A N/A 25%

A 18% 26% 37% 42% 55% 5% 53% 19% 47% 35% 50% 35% 53% 41% 50% 40%

P 12% 7% 20% 27% 40% 2% 31% 3% 22% 13% 0% 27% 42% 23% 33% 24%

R 100% 100% 92% 100% 92% 100% 88% 60% 100% 100% N/A 92% 96% 67% 100% 89%
GPT4

F1 22% 12% 32% 42% 56% 4% 46% 6% 36% 24% N/A 42% 58% 34% 50% 37%

and projects, as well as the totals (last row). For each metric, we report both the total number of
predictions as well as the percentage over the total number of instances (𝑂 +𝑁𝑂 = 389+ 496 = 885).
Note that the sum of 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 may go over 885 as any approach can generate any
arbitrary number of false positives.

Row Total of Table 2 highlights in green the best and in red the worst performance of the three
approaches. Tratto generates the highest rate of correct oracles (total true positive rate 21%), and
avoids generating oracles that shall not be generated in a good number of cases (total true negative
rate 52%, just below the best result of Jdoctor, 54%). Tratto performs well also in terms of false
alarms and missed oracles, with low false positive/negative rates, i.e., 8% and 19%, respectively and
overall. Jdoctor performs sightly better than Tratto in terms of true negative (54% vs. 52%) and
false positive rates (4% vs. 8%), however, it performs worst among the three approaches in terms of
both true positive (7%) and false negative rates (35%). GPT4 presents an excellent false negative rate
(only 2%) however with poor true positive (18%), true negative (22%) and false positive rates (58%).
The true and false positive and negative rates confirm the best performance of Tratto among the
three approaches, as well summarized by the best F1-score in Table 1.
Overall, Tratto generates 186 out of 389 oracles in the ground truth and demonstrates a good

capability to discern when an oracle should be generated, with a relatively small number of wrong
oracles (72 out of 885 predictions). Thus, Tratto can significantly reduce the effort of manually
generating oracles without a big overhead for identifying and discarding wrong oracles.
Tratto generates three times more correct oracles than Jdoctor (186 vs. 58). The result is not

surprising: Jdoctor exploits classic natural language processing and semantic matching, and as such,
it works well in the presence of precise comments in natural language, however it does not process
well the imprecise comments that often occur in Javadoc documentation. The neuro-symbolic
approach of Tratto is much more tolerant with respect to the precision of the comments in
natural language, and handles many more cases than Jdoctor. The results highly depend on the
quality of the comments and code. Jdoctor generates a fair number of oracles for commons-csv

(23 oracles while Tratto generates 30), but does not generate any oracle for jfree-chart, while
Tratto generates 26 correct oracles. GPT4 infers 217 correct oracles, a relative small increment
with respect to Tratto (186 correct oracles). This reflects the huge difference in the size of the
respective neural components (GPT4 features hundreds of billions of parameters against the 7 billion
parameters of Code Llama, the reference model of Tratto). GPT4 generates 701 false positives,
almost 10 times more than Tratto (72), which accounts for more than half of all the predictions
(58%). The significant amount of false positives showcases the main difference between the pure
neural approach of GPT4 and the neuro-symbolic approach of Tratto: the symbolic component of
Tratto discriminates valid from invalid results, while its neural component is specifically trained
for discerning the possibility to generate and oracle (Oracle evaluator), thus Tratto generates less
valid results than GPT4 but also a much more limited number of invalid results, while GPT4 does
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Table 2. True/false positives/negatives (𝑇𝑃/𝑇𝑁 /𝐹𝑃/𝐹𝑁 ) for all approaches on ground-truth dataset.

Project 𝑀 O 𝑁𝑂
Tratto Jdoctor GPT4

𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁 𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁 𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁

closure-compiler 3 4 5 0 (0%) 5 (56%) 0 (0%) 4 (44%) 0 (0%) 5 (56%) 0 (0%) 4 (44%) 2 (12%) 1 (6%) 14 (0%) 0 (82%)
commons-cli 6 6 12 3 (16%) 12 (67%) 2 (6%) 1 (11%) 1 (5%) 12 (67%) 0 (0%) 5 (28%) 1 (5%) 4 (21%) 14 (74%) 0 (0%)
commons-codec 19 24 33 4 (7%) 32 (54%) 10 (22%) 13 (17%) 1 (2%) 31 (54%) 2 (4%) 23 (40%) 11 (15%) 16 (22%) 45 (62%) 1 (1%)
commons-compress 12 17 20 9 (24%) 19 (50%) 2 (5%) 8 (21%) 7 (19%) 20 (54%) 0 (0%) 10 (27%) 12 (21%) 12 (21%) 33 (58%) 0 (0%)
commons-csv 16 35 23 30 (52%) 23 (40%) 4 (7%) 1 (2%) 23 (39%) 23 (39%) 1 (2%) 11 (18%) 24 (28%) 23 (27%) 36 (42%) 2 (2%)
commons-jxpath 4 5 8 0 (0%) 8 (62%) 0 (0%) 5 (38%) 0 (0%) 8 (62%) 0 (0%) 5 (38%) 1 (2%) 2 (4%) 49 (94%) 0 (0%)
commons-lang 53 64 103 37 (22%) 89 (53%) 24 (14%) 18 (11%) 0 (0%) 101 (61%) 2 (1%) 64 (38%) 38 (20%) 62 (33%) 83 (44%) 5 (3%)
gson 27 30 51 19 (23%) 46 (57%) 8 (10%) 8 (10%) 1 (1%) 51 (63%) 16 (20%) 13 (16%) 3 (3%) 18 (16%) 88 (79%) 2 (2%)
jackson-core 10 10 20 3 (10%) 18 (58%) 4 (13%) 6 (19%) 1 (3%) 19 (63%) 2 (7%) 8 (27%) 5 (15%) 11 (32%) 18 (53%) 0 (0%)
jackson-databind 24 30 48 1 (1%) 42 (57%) 2 (3%) 29 (39%) 1 (1%) 46 (60%) 0 (0%) 29 (39%) 13 (10%) 33 (25%) 84 (65%) 0 (0%)
jackson-dataformat 1 1 2 0 (0%) 2 (67%) 0 (0%) 1 (33%) 0 (0%) 2 (67%) 0 (0%) 1 (33%) 0 (0%) 2 (50%) 2 (50%) 0 (0%)
jfree-chart 25 46 40 26 (0%) 40 (47%) 3 (3%) 17 (20%) 0 (0%) 40 (47%) 0 (0%) 46 (53%) 34 (24%) 17 (12%) 90 (62%) 3 (2%)
joda-time 40 71 63 52 (39%) 56 (42%) 11 (8%) 15 (11%) 23 (17%) 56 (42%) 8 (6%) 47 (35%) 50 (33%) 31 (20%) 70 (46%) 2 (1%)
jsoup 33 45 66 2 (2%) 65 (59%) 2 (2%) 42 (38%) 0 (0%) 64 (57%) 4 (3%) 45 (40%) 22 (16%) 36 (25%) 73 (51%) 11 (8%)
mockito 1 1 2 0 (0%) 2 (67%) 0 (0%) 1 (33%) 0 (0%) 2 (67%) 0 (0%) 1 (33%) 1 (25%) 1 (25%) 2 (50%) 0 (0%)
Total 274 389 496 186 (21%) 459 (52%) 72 (8%) 169 (19%) 58 (7%) 480 (54%) 35 (4%) 312 (35%) 217 (18%) 269 (22%) 701 (58%) 26 (2%)

not check the validity and compilability of the results, and often generates oracles in cases where
none should be generated. The large amount of false positives of GPT4 greatly reduces its practical
applicability since it requires massive human effort to prune the results.
GPT4 produces very few false negatives (26, 2% of the total predictions), while Tratto and

Jdoctor do not generate any oracles for 169 and 312 oracles in the ground truth (19% and 35% of the
total predictions), respectively. The good performance of GPT4 in terms of false negatives balances
the bad results in terms of false positives: GPT4 mostly always attempts to generate oracles. As a
consequence, it generates lots of wrong oracles (false positives) and misses very few cases (false
negatives). On the contrary, both Tratto and Jdoctor identify those cases where no oracle should
be generated, and generate less wrong oracles. The overall performance of the approaches is well
reflected by the combination of false predictions (positives and negatives): GPT4 generates a total
of 727 false results (701 FP + 26 FN), Jdoctor 347 (35 + 312) and Tratto only 241 (72 + 169).
The second @throws tag in Listing 6 (line 6) well exemplifies the capability of Tratto to infer

correct oracles from Javadoc tags in terms of exceptional postconditions that both Jdoctor and GPT4
fail to generate. The @throws tag contains an implicit reference (line 6, “this method is called on a

closed result set” ) to a method (isClosed) of a class (ResultSet) of an external library (java.sql):
Tratto’s symbolic module retrieves the contextual information related to the external class from
the signature of the method (line 9, resultSet method parameter) and feeds the neural model with
additional information to produce the correct axiomatic oracle “resultSet.isClosed();”. Jdoctor
cannot infer an oracle from the Javadoc tag, since it falls outside the set of rules and patterns,
resulting in a false negative. GPT4 generates the precondition “resultSet != null;”, claiming that
the parameter resultSet must not be null, even if neither the documentation nor the contextual
information indicate that the method cannot accept null values in input. GPT4 generates also three
exceptional postconditions (“resultSet == null ? NullPointerException;”, “IOException may be

thrown;” and “SQLException may be thrown if resultSet is closed or if there is a database

access error”) that are either wrong or not compilable. The example highlights how a pure neural
model struggles to infer non-trivial oracles, may generate non-compilable oracles since it lacks a
precise grammar, and generates a non-negligible number of false positives.

A manual inspection of the oracles generated with Tratto and Jdoctor shows that there is only
one oracle that Jdoctor generates and Tratto does not. This was an exceptional oracle stating the
need of a method parameter to be of a certain type (via the instanceof operator). We hypothesize
that Tratto’s training set did not include enough oracles of this kind and thus the Oracle evaluator
judged no need to generate an oracle in this case. On the other hand, Tratto generates significantly
more oracles than Jdoctor, as the symbolic matching of Jdoctor often overlooks similar cases. For
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example, Tratto successfully generates exceptional oracles “source == null;” and “bigInteger
== null;” from the Javadoc comments “the parameter passed to this method is null” in Listing 7
(lines 14-15) and “@throws NullPointerException if null is passed in” in Listing 8 (line 8), respectively.
Jdoctor generates only the first oracle, and cannot generate the second, despite the similarity of the
two Javadoc comments. The neural component of Tratto enhances Tratto’s ability to identify
interesting oracles and explains the significantly higher recall of Tratto over Jdoctor.
1 /**
2 * Prints headers for a result set based on its metadata.
3 *
4 * @param resultSet The ResultSet to query for metadata.
5 * @throws IOException If an I/O error occurs.
6 * @throws SQLException If a database access error occurs or this method is called on a closed result set.
7 * @since 1.9.0
8 */
9 public synchronized void printHeaders(final ResultSet resultSet) throws IOException, SQLException {
10 printRecord((Object[]) format.builder().setHeader(resultSet).build().getHeader());
11 }

Listing 6. Documentation and implementation of method printHeaders from CSVPrinter.

1 /**
2 * Decodes an "encoded" Object and returns a
3 * "decoded" Object. Note that the implementation of
4 * this interface will try to cast the Object
5 * parameter to the specific type expected by a
6 * particular Decoder implementation. If {@link
7 * ClassCastException} occurs this decode method will
8 * throw a DecoderException.
9 *
10 * @param source the object to decode
11 * @return a 'decoded" object
12 * @throws DecoderException a decoder exception can
13 * be thrown for any number of reasons. Some good
14 * candidates are that the parameter passed to this
15 * method is null, a param cannot be cast to the
16 * appropriate type for a specific encoder.
17 */
18 Object decode(Object source) throws DecoderException;

Listing 7. Documentation and implementation of

method decode from Decoder.

1 /**
2 * Encodes to a byte64-encoded integer according to
3 * crypto standards such as W3C's XML-Signature.
4 *
5 * @param bigInteger a BigInteger
6 * @return A byte array containing base64 character
7 * data
8 * @throws NullPointerException if null is passed in
9 * @since 1.4
10 */
11 public static byte[] encodeInteger(final BigInteger
12 bigInteger) {
13 Objects.requireNonNull(bigInteger, "bigInteger");
14 return encodeBase64(toIntegerBytes(bigInteger),
15 false);
16 }

Listing 8. Documentation and implementation of

method encodeInteger from Base64.

Answer to RQ3: Tratto achieves an F1-score of 61% in generating axiomatic oracles, signifi-
cantly higher than Jdoctor (25%) and GPT4 (37%). Tratto can generate a high number of oracles
(186, 3× more than Jdoctor) incurring in few false positives (72, 10× less than GPT4).

4.4 RQ4: Robustness to Documentation Variations
RQ4 evaluates the robustness of Tratto, Jdoctor and GPT4 in terms of their ability to generate
axiomatic oracles with varying degrees of documentation quality. We select all oracles that all three
approaches successfully generate (RQ3) and systematically generate variations of their associated
documentation. We then compute the proportion of oracles that the approaches can still generate
with the modified documentation.

There are 55 oracles that all three approaches successfully generate from eight projects from the
ground-truth dataset. For each oracle, we identify the Javadoc tag based on which the oracle was
generated, and we generate four variations of it. We automate the process and make it systematic,
by asking ChatGPT to generate alternative versions of the Javadoc tag with the following criteria:
(i) replacing words with synonyms or rephrasing sentences while keeping the same meaning;
(ii) changing the order of the sentence; (iii) introducing grammatical mistakes or typos; and
(iv) making the sentence less explicit. Listing 9 shows some examples of the generated variations.

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://github.com/apache/commons-csv/blob/2f44a6b399edf1d243b340180538a7f657a2a078/src/main/java/org/apache/commons/csv/CSVPrinter.java#L232
https://github.com/apache/commons-csv/blob/2f44a6b399edf1d243b340180538a7f657a2a078/src/main/java/org/apache/commons/csv/CSVPrinter.java
https://github.com/apache/commons-codec/blob/3dbd866654140fada4616647efeedaa43d26b5d8/src/main/java/org/apache/commons/codec/Decoder.java#L45
https://github.com/apache/commons-codec/blob/master/src/main/java/org/apache/commons/codec/Decoder.java
https://github.com/apache/commons-codec/blob/3dbd866654140fada4616647efeedaa43d26b5d8/src/main/java/org/apache/commons/codec/binary/Base64.java#L376
https://github.com/apache/commons-codec/blob/3dbd866654140fada4616647efeedaa43d26b5d8/src/main/java/org/apache/commons/codec/binary/Base64.java


Tratto: A Neuro-Symbolic Approach to Deriving Axiomatic Test Oracles 17

Table 3. Robustness to documentation variations.

Approach Synonyms Order Typos Explicitness Total

Tratto 53 (96%) 54 (98%) 54 (98%) 34 (62%) 195 (89%)
Jdoctor 16 (29%) 29 (53%) 4 (7%) 0 (0%) 49 (22%)
GPT4 52 (95%) 54 (98%) 53 (96%) 49 (89%) 208 (95%)

Wemanually check the correctness
of the oracles that the approaches
generate for each of the 220 varia-
tions (55 oracles × 4 variations). Ta-
ble 3 shows the number and percent-
age of oracles that each approach cor-
rectly generates. Tratto generates
about 90% of correct oracles for the documentation variations, about the same as GPT4, despite
relying on a much smaller model. Indeed, the performance of Tratto is similar to GPT4 for all
types of variations except for less explicit descriptions. This is expected since these do not explicitly
provide information regarding oracles (e.g., line 6 in Listing 9). Jdoctor is the least robust approach,
with only 22% correct oracles for the variations, and no oracles at all for less explicit descriptions.
1 (object == null) == false; // Generated oracle
2 @param object the object to convert, must not be null // Original Javadoc tag
3 @param object the item to transform, should not be null // Synonyms or rephrasing
4 @param object Must not be null, this is the object that needs conversion. // Changed order
5 @param object the obect to convirt, musn't be nul // Grammatical mistakes or typos
6 @param object an element to be used, should be valid // Less explicit

Listing 9. Rephrased Javadoc tags generated with ChatGPT.

4.5 RQ5: Application to Software Testing
We address RQ5 with an exploratory study on the impact of the automatically generated oracles on
the mutation score [29] of test suites. We developed a script to automatically insert the generated
oracles into test cases that contain a call to a method for which an oracle was generated. Oracles
that make a test case fail are simply discarded, although a further check on them may discover
bug-revealing tests, further strengthening the usefulness of the oracles. Then, the mutation score is
computed with the PIT mutation testing tool [15]. We measure the impact of the oracles as the
difference between the mutation score of the test suite with and without the oracles. We excluded
GPT4 from this experiment due to the large amount of non-compilable oracles it generates (552
out of 1,213 in RQ3), which makes it impossible to automate the insertion of oracles into test suites.
We generated test suites with EvoSuite [25] for the 10 classes of each project from the ground-

truth dataset for which we generated oracles as part of RQ3. We were unable to run EvoSuite on five
projects—closure-compiler, jackson-core, jackson-databind, jackson-dataformat and mockito—
due to incompatibility issues. We did not consider three projects for which Jdoctor did not generate
oracles from the ground-truth dataset—commons-lang, jfree-chart and jsoup—and a project for
which neither Tratto nor Jdoctor generated oracles—commons-jxpath—since, without oracles, the
test suite and consequently the mutation score do not change. By focusing on the projects for
which both Tratto and Jdoctor generate oracles, we aim to ensure a fair comparison.

We evaluated the improvement achieved with the automatically generated oracles upon test
suites with implicit oracles only, and with both implicit and regression oracles. The latter represent
the default test suites generated with EvoSuite, while the former entail a more realistic scenario,
where regression oracles are not available, or it cannot be assumed that they are correct. To create
these test suites, we simply wrap the assertions generated by EvoSuite into try-catch blocks.
Table 4 shows the mutation score of the test suites with Evosuite, Tratto and Jdoctor, with

and without regression oracles. The oracles generated by Tratto improve the mutation score
with respect to Evosuite’s implicit oracles for 5 out of 6 projects, from 2% (commons-compress) up to
17% (commons-codec), with an average increase of 7% across all projects. The oracles improve the
mutation score also in the presence of Evosuite’s regression oracles on 3 out of 6 projects with an
average increase of 1%. This lower increase was expected since EvoSuite’s regression oracles make
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concrete assumptions of expected behavior and thus may be more effective than axiomatic oracles
in this context, although not so widely applicable nor necessarily correct. Table 4 also highlights
the worse performance of Jdoctor compared to Tratto, as it improved the mutation score of 4 out
of 6 test suites with implicit oracles (1% average increase vs. 7% of Tratto) and in no cases for test
suites with regression oracles.

Table 4. Mutation score of test suites.

Project Implicit oracles Implicit/regression oracles
EvoSuite Tratto Jdoctor EvoSuite Tratto Jdoctor

commons-cli 21% 28% 22% 61% 61% 61%
commons-codec 42% 59% 46% 71% 75% 71%
commons-compress 20% 22% 20% 41% 41% 41%
commons-csv 5% 5% 5% 13% 13% 13%
gson 22% 30% 24% 67% 68% 67%
joda-time 38% 47% 39% 78% 79% 78%
Total 25% 32% 26% 55% 56% 55%

Despite the modest results in this ex-
ploratory study, two things are worth not-
ing. First, Tratto can only enhance test
suites, not worsen them, as the new ora-
cles generated may reveal actual bugs or
increase their mutation score in the best-
case scenario. Second, software testing is
just one possible application of the oracles
generated by Tratto, as they may be useful in other contexts such as program comprehension,
requirements specification or runtime verification.

5 Threats to Validity
Internal validity. The datasets used in our experiments may contain wrong instances, since they
are based on an automatically generated dataset [6]. We mitigate this threat by manually inspecting
and fixing or discarding wrong instances. Manually generated or modified instances were inspected
by two authors to minimize bias, and conflicts were solved via open discussion. Indeed, all processes
involving manual analysis, including the generation of the ground-truth dataset and the analysis of
the predictions by Tratto, Jdoctor and GPT4, were performed by two authors. All our datasets,
results, and tool implementations are available as open source in our replication package [2].

In answering RQ1 and RQ2, we measure the differences across the techniques (code models and
ablated approaches) in terms of the accuracy in generating the next oracle token. This does not
take into account equivalent valid oracles that the model can generate. For example, the oracle
“param < 0;” is equivalent to “(param < 0);”, thus both tokens ‘(’ and ‘param’ are valid when the
partial oracle is empty. However, only ‘param’ is deemed as correct. The significant difference
between the accuracies of the three models in RQ1 relieves the risk of missing the best LLM for
Tratto. As for RQ2, we noticed that this phenomenon occurred in both cases (for Tratto and the
ablated approaches), partially alleviating this threat to the validity of the results. In RQ3 and RQ4
we manually analyzed all oracles generated to fully neutralize this threat and properly compare
Tratto against the state-of-the-art approaches, while RQ5 is not affected by this threat.

In generating the ground-truth dataset, we decided to keep only those methods featuring at least
one oracle, otherwise the dataset would be extremely unbalanced, containing 389 positive samples
(oracles) and 6,485 negative samples (units for which no oracles can be extracted). Furthermore, this
would make the manual analysis extremely costly, due to the myriad of false positives generated
by GPT4. We did analyze the results for Tratto and Jdoctor considering also the 6,485 negative
samples and found that the recall for both remained in similar levels (49% for Tratto and 19% for
Jdoctor) while precision decreased (49% for Tratto and 57% for Jdoctor). This was expected due to
the higher amount of negative samples, making both approaches incur in more false positives.

External validity. Our experiments with Java methods do not prove the generalizability of
Tratto to other programming languages. Nevertheless, the approach can be easily adapted to
other languages since it merely relies on source code and documentation of inputs and outputs.
The symbolic component simply needs a language grammar and context restrictions, while for the
neural module an ML model pre-trained on the target programming language is sufficient.
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Tratto takes about five times more to analyze a Java class and generate oracles for it, compared
to Jdoctor. This is partly because Tratto generates more oracles. Generating oracles token by token
causes an overhead, but acceptable for the improvement achieved. Scalability can be addressed
as Tratto’s neural module is decoupled from the symbolic module, and the communication is
handled through a REST API [21, 46]. In practice, this means that the neural module could be
deployed in a more powerful server, leveraging a bigger code model, to speed up oracle generation.

6 Related Work
Our work combines symbolic and neural techniques to generate axiomatic oracles. Neuro-symbolic
approaches have been studied for some SE problems, like code completion [5, 32, 49] or program
synthesis [9, 43]. To the best of our knowledge, Tratto is the first neuro-symbolic approach tailored
to the oracle problem. Next, we discuss both symbolic and neural techniques for oracle generation.

6.1 Symbolic Approaches
Symbolic approaches leverage static and dynamic program analysis and natural language processing
(NLP) to understand the semantics of software systems and produce semantically relevant oracles.

The seminal approaches Daikon [20] and Dysy [17] on invariant mining execute a program on
a collection of inputs against a collection of potential invariants. The accuracy of the invariants
inferred with these methods depends on both the quality and completeness of the test cases and the
collection of potential invariants provided. Evospex [37] overcomes the limitations of the previous
techniques by exercising the unit under test through its APIs to generate valid pre and post states,
without requiring any specification or test. The valid pre and post states undergo mutations that
lead to corresponding invalid pre and post states and a genetic algorithm infers valid postconditions
guided by the valid/invalid states. GAssert [52] improves automatically inferred assertion oracles,
by reducing false positives and negatives with an evolutionary algorithm. All these approaches
derive test oracles, by both relying on the execution of the current version of a program and
generating regression oracles that cannot detect if the bug is already present in the program.

Text-driven specification mining methods exploit NLP, pattern, semantic, and syntax matching to
generate test oracles from code comments and text documentation. ALICS [42] mines code contracts
in the form of pre- and postconditions from code comments. ALICS uses NLP-based patternmatching
with an application domain specific dictionary which hardly generalizes. @tComment [50] infers
null-deference properties of parameters from Javadoc comments, with natural language patterns
and heuristics. The patterns are quite narrow and do not generalize to other exception types.

Toradocu [27], JDoctor [6], MeMo [8] and CaMeMa [7] use natural language parsing and lexical
matching to generate preconditions, normal and exceptional postconditions, metamorphic relations,
and temporal properties, from Javadoc comments. These approaches can infer oracles when code
comments fit the defined patterns, but do not generalize when comments fall outside those. These
approaches are not applicable when code comments are unavailable. We discussed the experimental
comparison of Tratto with Jdoctor, the most complete of this family of approaches, in RQ3,4,5.

6.2 Neural Approaches
Recently, there has been an upsurge of works that exploit DL for SE and software testing, with
many applications of neural-based transformers and transfer learning to automatically generate
semantically relevant assertion oracles and entire unit tests, overcoming the limitations of symbolic
techniques even in the absence of precise patterns or entire docstrings.

ATLAS [59] leverages a recurrent neural network (RNN) to generate assertion oracles from a unit
under test and a test prefix. ATLAS relies only on the source code and ignores the documentation. It
solely targets normal postconditions and cannot generate oracles for preconditions or exceptional
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behavior. Subsequently, Tufano et al. [54] proposed AthenaTest, which outperformed ATLAS by
replacing the RNN with transformer models pre-trained on natural language and code. This was the
first noteworthy approach to generate test cases including both test prefixes and oracles, considering
both the unit implementation and its context, such as the surrounding class and method signature.
AthenaTest does not consider the information provided in the code documentation.

Dinella et al. [19] redesigned the oracle generation problem as a two-step neural ranking proce-
dure. Their approach, TOGA, exploits two pre-trained models fine-tuned on the task of discerning
among normal and exceptional behaviors to generate test oracles. The exceptional oracle classifier
infers whether a test prefix should throw an exception, from the unit under test, the docstring (if
available) and a test prefix. The assertion oracle ranker generates an assertion oracle conforming
to a grammar of candidate assertions, which enforces syntactic and type correctness. The wide
applicability and high flexibility of neural approaches comes with a cost in terms of accuracy.
TOGA mitigates the issue by restricting the approach to a subset of plausible and syntactically valid
oracles. Hossain et al. [28] analyzed the current neural-based test oracle generation approaches
(including TOGA) and highlighted how the inferred assertions still exhibit high false positive rates
that threaten their practical usefulness. Our proposed approach tackles this limitation.
All neural approaches discussed generate concrete assertions as normal and exceptional post-

conditions. Tratto is the first attempt to successfully generate axiomatic oracles, including pre-
conditions, to invalidate tests when input values are not satisfied, thus mitigating false positives.

7 Conclusion
In this paper, we propose Tratto, a neuro-symbolic approach to automatically generate axiomatic
oracles from commonly available information: documentation and code. Axiomatic oracles in the
form of pre- and postconditions are particularly useful as a complement to automatically generated
test suites, as preconditions can rule out invalid inputs, reducing false positives, and postconditions
can detect bugs, reducing false negatives. Moreover, axiomatic oracles are applicable to any test
case, as they predicate on input and output variables and states.
Tratto entails a novel reformulation of the oracle generation problem, as a token-by-token

generation approach. The symbolic module of Tratto effectively restricts the search space of the
tokens that may be used to generate an oracle, while the neural component steers the generation
process towards semantically relevant oracles. Our ablation studies confirm the contributions
of both the symbolic and neural components over solely symbolic- or neural-based approaches.
Tratto generates over three times more correct oracles than state-of-the-art symbolic approaches
(Jdoctor [6]) while incurring in 10 times less false positives than neural approaches (GPT4 comple-
mented with few-shot learning and Chain-of-Thought prompting). Also, Tratto is significantly
robust to the quality of documentation, and it can help improve the quality of existing test suites.
Our future research agenda will focus on applying neuro-symbolic techniques to generating

concrete assertions and complete test cases.

Data Availability
Our replication package includes the source code of the scripts and programs developed, the data
generated in the experiments (including datasets) and instructions on how to reuse the material for
further research. The artifact can be downloaded from [2].
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