
User scripting on Android using BladeDroid
Ravi Bhoraskar,*, Dominic Langenegger†*, Pingyang He,*, and Michael D. Ernst,

,University of Washington {bhora, pingyh, mernst}@cs.washington.edu
†ETH Zurich, Switzerland dominicl@ethz.ch

Abstract
User scripts allow users to customize their app use experi-
ence. In web apps, for instance, a user may use Grease-
monkey [1] scripts and browser extensions to customize
the layout of a page, automate repeated tasks, block ads,
and so on. We bring user-side programmability to mobile
applications. Using our tool, BladeDroid, users can write
scripts that enable them to customize their experience
within Android apps.

We motivate our work using three example applications
that can be built using BladeDroid — an Ad Blocker, a
Social Media plugin, and a Runtime Testing harness. We
describe the design and implementation of BladeDroid,
and propose evaluation metrics to measure its usability,
robustness and performance.

1 Motivation
Mobile apps are central to the smartphone experience.
However, outside of what the developer provides, the user
has no control on customizing the behaviour of the app.
The only feasible way today to modify the behaviour of
an app is through bytecode rewriting [2]. This technique,
however, remains largely impractical, since it requires
recompiling an app for every new feature to be added,
removed or modified. BladeDroid does away with this
effort — in our model, a user may install, uninstall and
modify arbitrary scripts, without needing to recompile
or even reinstall the app. Additionally, a script is not
bound to a specific app, and can be reused to add the
same feature to multiple apps.

This kind of user-side scripting enables a variety of use-
cases. We list a few examples here to motivate our work.
Ad Blocker: An ad blocker searches for an Ad-View

within every page, and makes it invisible.
Social Media Plugin: A “Like” or “Share” button is on

every page to share the current app context to a
social media platform, for example to say “I like
level 10 of Angry Birds”. Clicking the like/share
button would scrape the interesting content from the
page, the name of the app, and post it to a user’s
feed.

Runtime Test Harness: Runtime app-state exploration
is a well-studied technique in the mobile testing
community [3]. User-scripting would ease this pro-
cess, by using a script that systematically invokes
interactions with all UI components in a page.

* Student Author

2 Design and Implementation
In order to enable an app to run user-scripts (which we
call “Blades”), BladeDroid rewrites an application to add
a BladeLoader in every page. The BladeLoader uses dy-
namic class loading to search through all installed Blades,
and then pass the current page object to the appropriate
ones. Installing new Blades is a simple matter of copying
a jar file to an appropriate location on the phone filesys-
tem. Since the scripts are loaded at runtime, the app need
not be recompiled (or even reinstalled) in order to add,
disable or modify a script.

A Blade is a Java class written against the Blade in-
terface, which contains methods hooked to each of the
Android Activity Lifecycle methods, allowing the Blade-
writer to exert control over the app at all interesting points.

3 Status and Next Steps
We have implemented BladeDroid, including the Blade

interface and the BladeLoader instrumentation. Currently,
we are developing Blades to implement the applications
described in the motivation above. At NSDI, we shall
demonstrate a few working Blades, running on real apps
from the Google Play store.

In order to evaluate BladeDroid, we wish to measure
the performance, robustness, and usability of the system.
Specifically, we want to compare the overheads of an
BladeDroid-instrumented app against an unmodified one,
or a manually instrumented one. Robustness shall be
tested by using BladeDroid against real Android apps
from the store. This will evaluate the reliability of the en-
tire toolchain, including frameworks like Soot [4] that we
use for bytecode rewriting. We shall evaluate the usabil-
ity of the BladeDroid interface by writing several scripts,
from different domains, and measuring the ease in the
modification process for a developer, compared to manual
binary rewriting.

We will use the limitations revealed during the evalu-
ation of the current version to improve the BladeDroid
architecture and implementation.

4 References
[1] GreaseMonkey — Official Site. http://www.greasespot.net.
[2] S. Hao, D. Li, W. G. Halfond, and R. Govindan. SIF: A Selective

Instrumentation Framework for Mobile Applications. MobiSys ’13,
June 2013.

[3] K. Lee, J. Flinn, T. Giuli, B. Noble, and C. Peplin. AMC: Verifying
User Interface Properties for Vehicular Applications. MobiSys ’13,
June 2013.

[4] R. Valle-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization framework.
IBM centre for advanced studies conference, 1999.


