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Basic statistics

• More than 6 billion people 
own a smartphone  

• Almost three-quarters are 
Android-based 

• We manipulate a lot of 
sensitive data
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High Security Risks
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How to detect?

Dynamic Analysis Static Analysis

1 2
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Dynamic Analysis

“Dynamic analysis operates by executing a program and 
observing the executions”*

“Dynamic analysis is precise because no approximation or 
abstraction need be done”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." WODA 2003: ICSE Workshop on Dynamic Analysis. 2003

Dynamic analysis is 
precise!
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Static Analysis

“Static analysis examines program code and reasons over all 
possible behaviors that might arise at run time”*

“Typically, static analysis is conservative and sound”*

“Soundness guarantees that analysis results are an accurate 
description of the program’s behavior, no matter on what 

inputs or in what environment the program is run”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." WODA 2003: ICSE Workshop on Dynamic Analysis. 2003

Static analysis is 
sound!

Is it?
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FlowDroid - malware detection
- features extraction
- instrumentation
- incompatibility issues
- Type-state issues
- etc.
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- Li, Li et al. Iccta: Detecting inter-component privacy leaks 
in android apps. ICSE 2015.
- Wei et al., Amandroid: A precise and general inter-
component data flow analysis framework for security vetting 
of android apps. TOPS 2018.
- Gordon et al. Information flow analysis of android 
applications in droidsafe. NDSS 2015.

ICC

- Li, Li et al., Droidra: Taming reflection to 
support whole-program analysis of android 
apps. ISSTA 2016.
- Barros et al. Static analysis of implicit control 
flow: Resolving java reflection and android 
intents. ASE 2015.

Reflection

- Arzt et al. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android 
apps. PLDI 2014.
- Yang et al. Static control-flow analysis of user-driven 
callbacks in Android applications. ICSE 2015.

Callback

?

?

?

Can you trust this 
model?
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Comprehensiveness of Program Analysis
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App Code

m()

n()

Discontinuity

Modeling

Android Framework

Real Behavior

n()

m()
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public class MainActivity extends AppCompatActivity { 
        @Override 
        protected void onCreate(Bundle savedInstanceState) { 
                MyTask myTask = new MyTask(); 
                myTask.execute(); 
        }  
}

Example
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public class MyTask { 
        public void execute() { 
                doSomething();         
        }  
}
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public class MainActivity extends AppCompatActivity { 
        @Override 
        protected void onCreate(Bundle savedInstanceState) { 
                MyTask myTask = new MyTask(); 
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}

Example
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public class MyTask extends AsyncTask<Void, Void, String> { 
        @Override 
        protected String doInBackground(Void... params) { 
                return "Background task completed"; 
        } 

        @Override 
        protected void onPostExecute(String result) { 
                textView.setText(result); 
        }  
}
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public class MyTask extends AsyncTask<Void, Void, String> { 
        @Override 
        protected String doInBackground(Void... params) { 
                return "Background task completed"; 
        } 

        @Override 
        protected void onPostExecute(String result) { 
                textView.setText(result); 
        }  
}

execute

doInBackground

onPostExecute
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execute

Example
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doInBackground onPostExecute
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If static analysis tools do not model 
these discontinuities, the model is 

unsound
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Measure and understand the level 
of  unsoundness in Android static 

analysis tools

Objective

20



How?

Dynamic Analysis Static Analysis
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Dataset

1000 apps from AndroZoo 
from 2023
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Dynamic Analysis
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Dynamic Analysis

24



Dynamic Analysis

1000 
call graphs
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8%
Average Code Coverage
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8%
Average Code Coverage Median Code Coverage

4%
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Static Analysis
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Static Analysis When possible, we 
parametrized the call 

graph construction 
algorithm :  

25 configurations
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Static Analysis

25 x 1000 = 25 000  
call graphs 
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126
Apps successfully analyzed by all tools

25 x 126 = 3 150 
call graphs
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Comparison of static analysis tools

• Tools find different numbers of methods in apps 

• Some tools supposed to add edges have fewer edges than baselines 

• More precise call graph algorithms lead to significantly fewer edges in the call graph 

• Tools consider a large proportion of apps as dead code 

• The same call graph construction algorithm leads to different call graphs
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Comparison

Dynamic Call Graph Static Call Graph 34



Comparison
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Comparison
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40%  
methods missed with the 

biggest over-approximation
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Comparison of dynamic and static analysis

• More precise call graph construction algorithms fail at their tasks 

• The more precise an algorithm, the more unsound 

• CHA-based tools have less unsoundness 

• Even if CHA is the biggest over-approximation, it still falls short 

• The bigger the code coverage does not mean the bigger the unsoundness
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But!
What is the cause of this 

unsoundness?
39
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Remember the dynamic call graph?
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Remember the dynamic call graph?

What do these nodes have in common?

They have no predecessor!

41



We hypothesized that they 
are one of the main reasons 

for unsoundness
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>16%
of methods do not have a predecessor, i.e., they 

are entrypoints
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Causes of Unsoundness
• Many methods missed are derived from the Android framework methods 

• Many methods missed are derived from framework methods, e.g., Google, 
Flutter, Ryanheise, or Unity3d 

• All static analysis tools miss at least 35% of these entry points 

• They represent 20% of all methods missed 

• Constructors, obfuscated methods, and lifecycle methods are among the most 
missed methods 

• Methods indicative of implicit mechanisms are also among the most missed 
methods: onCreate, read, then, accept, onXXX, write***, apply, execute, etc. 44



Frameworks
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Other languages
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Implications for Security

Better Static Code Modeling

Better Static Code Coverage
=

Malicious Code Detection
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Our study highlights many 
opportunities for future research and 

paves the way for improving the 
soundness of static analysis tools

Static analysis is NOT 
sound!
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Dynamic Analysis

Static Analysis

Our study highlights many 
opportunities for future research and 

paves the way for improving the 
soundness of static analysis tools
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Comprehensiveness of Program Analysis
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Most of the icons used in this presentation come from: https://www.flaticon.com

https://github.com/JordanSamhi/Call-Graph-
Soundness-in-Android-Static-Analysis

Call Graph Soundness
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https://github.com/JordanSamhi/

