
September, 20th 2024 - ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)

Jordan Samhi1, René Just2, Tegawendé F.
Bissyandé3, Michael D. Ernst2, Jacques Klein3

Call Graph Soundness in
Android Static Analysis

1CISPA Helmholtz Center for Information Security
2University of Washington
3University of Luxembourg

 1

Basic statistics

• More than 6 billion people
own a smartphone

• Almost three-quarters are
Android-based

• We manipulate a lot of
sensitive data

2

High Security Risks

3

4

01010111001011000100

110110100011110110100011

110110100011
110110100011

01010111001011000100

110
110

10
0

0
11 11

0
11

0
10

0
0

11

110110100011

110110100011

110110100011
110110100011

110110100011

01010111001011000100

110110100011110110100011

110110100011
110110100011

01010111001011000100

110
110

10
0

0
11 11

0
11

0
10

0
0

11

110110100011

110110100011

110110100011
110110100011

110110100011

0
1
0
1
0
1
1
1
0
0
1
0

0
1
0
1
0
1
1
1
0
0
1
0

0
1
1
1
1
0
0
1
0
1

0
1
1
1
1
0
0
1
0
1

0
1
1
0
1
0
1

0
1
1
0
1
0
1

0
1
1
0
1
0
1

0
1
1
0
1
0
1

0
1
1
1
1
0
0
1
0
1

0
1
1
1
1
0
0
1
0
1

0
1
1
1
1
0
0
1
0
1

0
1
1
1
1
0
0
1
0
1

0
1
1
1
1
0
0
1
0
1

0
1
1
0
1
0
1

0
1
1
0
1
0
1

0
1
1
0
1
0
1

5

How to detect?

Dynamic Analysis Static Analysis

1 2
6

Dynamic Analysis

“Dynamic analysis operates by executing a program and
observing the executions”*

“Dynamic analysis is precise because no approximation or
abstraction need be done”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." WODA 2003: ICSE Workshop on Dynamic Analysis. 2003

Dynamic analysis is
precise!

7

Static Analysis

“Static analysis examines program code and reasons over all
possible behaviors that might arise at run time”*

“Typically, static analysis is conservative and sound”*

“Soundness guarantees that analysis results are an accurate
description of the program’s behavior, no matter on what

inputs or in what environment the program is run”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." WODA 2003: ICSE Workshop on Dynamic Analysis. 2003

Static analysis is
sound!

Is it?
8

FlowDroid - malware detection
- features extraction
- instrumentation
- incompatibility issues
- Type-state issues
- etc.

9

September, 20th 2024 - Jordan Samhi
10

- Li, Li et al. Iccta: Detecting inter-component privacy leaks
in android apps. ICSE 2015.
- Wei et al., Amandroid: A precise and general inter-
component data flow analysis framework for security vetting
of android apps. TOPS 2018.
- Gordon et al. Information flow analysis of android
applications in droidsafe. NDSS 2015.

ICC

- Li, Li et al., Droidra: Taming reflection to
support whole-program analysis of android
apps. ISSTA 2016.
- Barros et al. Static analysis of implicit control
flow: Resolving java reflection and android
intents. ASE 2015.

Reflection

- Arzt et al. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android
apps. PLDI 2014.
- Yang et al. Static control-flow analysis of user-driven
callbacks in Android applications. ICSE 2015.

Callback

?

?

?

Can you trust this
model?

10

September, 20th 2024 - Jordan Samhi

Comprehensiveness of Program Analysis

11

App Code

m()

n()

Discontinuity

Modeling

Android Framework

Real Behavior

n()

m()

11

September, 20th 2024 - Jordan Samhi

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 MyTask myTask = new MyTask();
 myTask.execute();
 }
}

Example

1212

September, 20th 2024 - Jordan Samhi

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 MyTask myTask = new MyTask();
 myTask.execute();
 }
}

Example

1313

September, 20th 2024 - Jordan Samhi

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 MyTask myTask = new MyTask();
 myTask.execute();
 }
}

Example

1414

September, 20th 2024 - Jordan Samhi

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 MyTask myTask = new MyTask();
 myTask.execute();
 }
}

Example

15

public class MyTask {
 public void execute() {
 doSomething();
 }
}

15

September, 20th 2024 - Jordan Samhi

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 MyTask myTask = new MyTask();
 myTask.execute();
 }
}

Example

16

public class MyTask extends AsyncTask<Void, Void, String> {
 @Override
 protected String doInBackground(Void... params) {
 return "Background task completed";
 }

 @Override
 protected void onPostExecute(String result) {
 textView.setText(result);
 }
}

16

September, 20th 2024 - Jordan Samhi

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 MyTask myTask = new MyTask();
 myTask.execute();
 }
}

Example

17

public class MyTask extends AsyncTask<Void, Void, String> {
 @Override
 protected String doInBackground(Void... params) {
 return "Background task completed";
 }

 @Override
 protected void onPostExecute(String result) {
 textView.setText(result);
 }
}

execute

doInBackground

onPostExecute

17

September, 20th 2024 - Jordan Samhi

execute

Example

18

doInBackground onPostExecute

18

If static analysis tools do not model
these discontinuities, the model is

unsound

19

Measure and understand the level
of unsoundness in Android static

analysis tools

Objective

20

How?

Dynamic Analysis Static Analysis
21

Dataset

1000 apps from AndroZoo
from 2023

22

Dynamic Analysis

23

Dynamic Analysis

24

Dynamic Analysis

1000
call graphs

25

8%
Average Code Coverage

26

8%
Average Code Coverage Median Code Coverage

4%
27

Static Analysis

28

Static Analysis When possible, we
parametrized the call

graph construction
algorithm :

25 configurations

29

Static Analysis

25 x 1000 = 25 000
call graphs

30

126
Apps successfully analyzed by all tools

25 x 126 = 3 150
call graphs

31

32

Comparison of static analysis tools

• Tools find different numbers of methods in apps

• Some tools supposed to add edges have fewer edges than baselines

• More precise call graph algorithms lead to significantly fewer edges in the call graph

• Tools consider a large proportion of apps as dead code

• The same call graph construction algorithm leads to different call graphs

33

Comparison

Dynamic Call Graph Static Call Graph 34

Comparison

35

Comparison

36

40%
methods missed with the

biggest over-approximation

37

Comparison of dynamic and static analysis

• More precise call graph construction algorithms fail at their tasks

• The more precise an algorithm, the more unsound

• CHA-based tools have less unsoundness

• Even if CHA is the biggest over-approximation, it still falls short

• The bigger the code coverage does not mean the bigger the unsoundness

38

But!
What is the cause of this

unsoundness?
39

September, 20th 2024 - Jordan Samhi
40

Remember the dynamic call graph?

40

September, 20th 2024 - Jordan Samhi
41

Remember the dynamic call graph?

What do these nodes have in common?

They have no predecessor!

41

We hypothesized that they
are one of the main reasons

for unsoundness

42

>16%
of methods do not have a predecessor, i.e., they

are entrypoints

43

Causes of Unsoundness
• Many methods missed are derived from the Android framework methods

• Many methods missed are derived from framework methods, e.g., Google,
Flutter, Ryanheise, or Unity3d

• All static analysis tools miss at least 35% of these entry points

• They represent 20% of all methods missed

• Constructors, obfuscated methods, and lifecycle methods are among the most
missed methods

• Methods indicative of implicit mechanisms are also among the most missed
methods: onCreate, read, then, accept, onXXX, write***, apply, execute, etc. 44

Frameworks

45

Other languages

46

September, 20th 2024 - Jordan Samhi
4747

September, 20th 2024 - Jordan Samhi
4848

Implications for Security

Better Static Code Modeling

Better Static Code Coverage
=

Malicious Code Detection

49

Our study highlights many
opportunities for future research and

paves the way for improving the
soundness of static analysis tools

Static analysis is NOT
sound!

50

Dynamic Analysis

Static Analysis

Our study highlights many
opportunities for future research and

paves the way for improving the
soundness of static analysis tools

September, 20th 2024 - Jordan Samhi

Comprehensiveness of Program Analysis

 X

App Code

m()

n()

Discontinuity

Modeling

Android Framework

Real Behavior

n()

m()

Most of the icons used in this presentation come from: https://www.flaticon.com

https://github.com/JordanSamhi/Call-Graph-
Soundness-in-Android-Static-Analysis

Call Graph Soundness

51

https://github.com/JordanSamhi/

