
Continuous Compliance
Martin Kellogg 1,∗ Martin Schäf 2 Serdar Tasiran 2 Michael D. Ernst 1,2

1University of Washington 2Amazon Web Services
USA

kelloggm@cs.washington.edu,schaef@amazon.com,tasirans@amazon.com,mernst@cs.washington.edu

ABSTRACT
Vendors who wish to provide software or services to large corpo-
rations and governments must often obtain numerous certificates
of compliance. Each certificate asserts that the software satisfies a
compliance regime, like SOC or the PCI DSS, to protect the privacy
and security of sensitive data. The industry standard for obtaining
a compliance certificate is an auditor manually auditing source
code. This approach is expensive, error-prone, partial, and prone
to regressions.

We propose continuous compliance to guarantee that the codebase
stays compliant on each code change using lightweight verifica-
tion tools. Continuous compliance increases assurance and reduces
costs.

Continuous compliance is applicable to any source-code compli-
ance requirement. To illustrate our approach, we built verification
tools for five common audit controls related to data security: cryp-
tographically unsafe algorithms must not be used, keys must be at
least 256 bits long, credentials must not be hard-coded into program
text, HTTPS must always be used instead of HTTP, and cloud data
stores must not be world-readable.

We evaluated our approach in three ways. (1) We applied our
tools to over 5 million lines of open-source software. (2) We com-
pared our tools to other publicly-available tools for detecting mis-
uses of encryption on a previously-published benchmark, finding
that only ours are suitable for continuous compliance. (3) We de-
ployed a continuous compliance process at AWS, a large cloud-
services company: we integrated verification tools into the compli-
ance process (including auditors accepting their output as evidence)
and ran them on over 68 million lines of code. Our tools and the
data for the former two evaluations are publicly available.

CCS CONCEPTS
• Software and its engineering → Software verification; Au-
tomated static analysis; Data types and structures.

KEYWORDS
compliance, SOC, PCI DSS, FedRAMP, key length, encryption, hard-
coded credentials, pluggable type systems

* Some of the work was performed while this author was an intern at AWS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416593

ACM Reference Format:
Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst. 2020.
Continuous Compliance. In 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual
Event, Australia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3324884.3416593

1 INTRODUCTION
A compliance regime like the PCI DSS [61], FedRAMP [35], or
SOC [4] encodes a set of best practices. For example, all of these
regimes require that data be stored encrypted and that the encryp-
tion used be strong.

Many organizations are required by law, by contract, or by in-
dustry standard to only use software that is compliant with one or
more regime. For example:
• VISA requires companies that process credit card transactions
to use software that is compliant with the PCI DSS (Payment
Card Industry Data Security Standard) [80]. PCI DSS certifica-
tion assures card issuers that merchants will safely handle con-
sumer credit card data [61]. Other card issuers have similar re-
quirements [53, 71], and someU.S. states define non-compliance
as a type of corporate negligence for which companies can be
sued [56, 66].

• The U.S. government requires that cloud vendors be compliant
with FedRAMP (Federal Risk and Authorization Management
Program) [35, 78].

• Many customers of software providers expect a SOC (System
and Organization Controls) report [4], which is used to evaluate
how seriously potential vendors take security [2, 42].

When making a purchasing decision, an organization with com-
pliance requirements typically requests an up-to-date compliance
certificate from an accredited third-party auditor, also known as a
Qualified Security Assessor (QSA) [21].

A compliance regime is made up of many requirements. For each
requirement, the QSA imposes some control—a specific rule, usually
defined by industry standard, and a process for enforcing that rule.
For example, a QSA might impose the control “use 256-bit mode
AES” for the requirement “use strong encryption.”

A compliance regime may also make requirements about the
process used to create or run the software, such as what data is
logged or which employees have access to data. This paper focuses
on requirements about the source code. Continuous compliance
automates checking of these compliance requirements.

1.1 Problems with manual audits
Currently, the enforcement of source-code controls is primarily
manual: employees of the auditor examine selected parts of the
software to ensure it follows each control. The state of the art suffers
the following problems:

https://doi.org/10.1145/3324884.3416593
https://doi.org/10.1145/3324884.3416593
https://doi.org/10.1145/3324884.3416593

ASE ’20, September 21–25, 2020, Virtual Event, Australia Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst

Cost To sell its product, a vendor must participate in audits—
often multiple times per year to show continuing adherence to
the compliance regime. The vendor must pay the salary of its
internal compliance officers, spend engineering time gathering
evidence, and pay external auditors—often at significant and
rising expense (more than $3.5 million each for a sample of 46
organizations in 2011) [28, 63]. A failed audit can cost millions
of dollars more [34].

Judgment Humans can make mistakes of judgment. Engineers
may provide non-compliant code for audit, which may lead to
expensive failed audits. Auditors may incorrectly certify non-
compliant code—false negatives. Auditors may raise concerns
about safe code—false positives that must be investigated at
further expense.

Sampling Auditors routinely sample randomly from the code
under audit, because it is too expensive to manually examine it
all. The standard reporting format for a PCI DSS audit includes
a section dedicated to sampling procedures [62].

Regressions Audits occur periodically—typically every six or
twelve months. Every code change is a chance for the software
to fall out of compliance. In a study by Verizon’s audit division,
only 52.5% of organizations with an active compliance certifi-
cation passed their re-audit without significant changes [77].

Our goal is to reduce costs, increase assurance and coverage, and
prevent regressions by deploying lightweight verification tools.

1.2 Our approach: continuous compliance
We propose continuous compliance, which runs a verification tool
on every commit to check compliance properties in source code.
More formally, continuous compliance is the process of automat-
ically enforcing source-code compliance controls whenever the
code is changed, such as on every compiler invocation, commit, or
pull request. Continuous compliance is an instance of continuous
testing [67] and continuous integration [16, 32].

Continuous compliance eliminates the need for manual audits
for specific source-code controls, resolving the problems described
in section 1.1. The marginal cost of an audit is negligible, because
auditors accept the results of running the verifier. The opportu-
nity for mistakes is smaller: our tools found dozens of findings
of interest to compliance auditors that all prior approaches had
missed, because the verifier checks the entire codebase. Regres-
sions are caught immediately when they occur, when it is cheaper
for developers to fix them [17]. Even if continuous compliance is
implemented only for some source-code controls, it reduces the
scope of manual audits and makes them easier, cheaper, and more
reliable.

Implementing a system for continuous compliance is challenging.
To be acceptable to auditors, developers, and compliance officers,
the continuous compliance system must be:
• sound: it must not miss defects. If it might suffer a false nega-
tive (missed alarm), then a manual audit would still be required.

• applicable to legacy source-code.
• scalable to real-world codebases.
• simple so that both developers and non-technical auditors can
understand it and interpret its output.

• precise enough to produce few time-wasting false alarms.

1.3 Contributions
There are four main contributions of our work:
• a conceptual contribution: the recognition that source-code com-
pliance is an excellent domain for the strengths and weaknesses
of (some varieties of) formal verification.

• an engineering contribution: we designed and built five prac-
tical verification tools corresponding to common compliance
controls.

• an empirical contribution: we evaluated the verification tools’
efficacy on 654 open-source projects. We also compared them
to state-of-the-art alternatives to demonstrate that only verifi-
cation tools are suitable for continuous compliance—unsound
bug-finding tools are insufficient.

• an experiential contribution: we deployed continuous compli-
ance at Amazon Web Services (AWS). We report the reactions
of developers and auditors to the introduction of continuous
compliance. We believe that this contribution is the most impor-
tant: it is a concrete step toward making verification practical
for everyday developers.

Our key conceptual contribution is recognizing the benefits of
verification tools to compliance auditors. The ideas were not obvi-
ous to compliance officers and auditors. The state of the practice is
manual code examination, and the state of the art is run-time check-
ing. Research roadmaps for improving the certification process do
not even mention source code verification [50, 52, 76]. The ideas
were not obvious to working developers. They believed that formal
verification would require high annotation burden and would pro-
duce many false positive warnings. The ideas were not obvious
to the verification community, who have focused on programmers
(or modelers) rather than other important stakeholders such as
compliance auditors.

Our engineering contributions are modest but non-trivial. We
implemented five open-source verification tools for Java. The five
compliance controls are common to many compliance regimes:
encryption keys must be sufficiently long, insecure cryptographic
algorithms must not be used, source code must not contain hard-
coded credentials, outbound connections must use HTTPS, and
cloud data stores must not be world-readable. We implemented
our analyses as typecheckers, because typecheckers scale well and
are more familiar to developers than other automated verification
approaches such as abstract interpretation, model checking, and
SMT-based analysis.

Our empirical contributions apply these tools to 654 open-source
projects (section 6) and compare them to state-of-the-art tools for
finding misuses of cryptographic APIs on a previously-published
benchmark, with a focus on their suitability for continuous compli-
ance (section 7). Only our tools suffered no false negatives—that is,
they did not miss any real problems.

Our experiential contribution is deploying a continuous com-
pliance system at scale at AWS, as part of its regular development
process. Currently, 7 of its core services with a compliance require-
ment run verification tools on each commit, ensuring continuous
compliance. External auditors accepted our verification tools as
replacements for manual audits for these 7 services (section 8.1).
Both developers and compliance teams are now more receptive to
formal methods than they were before: both AWS and the auditors

Continuous Compliance ASE ’20, September 21–25, 2020, Virtual Event, Australia

Figure 1: A sample of evidence that the nitor-vault program [79]
only uses 256-bit keys to encrypt data in its source code.

have spoken publicly on how verification has improved their pro-
cess [83]. Security and compliance teams also run verifiers on a
significant fraction of code at the company on a regular schedule—
the most recent run (section 8.2) scanned over 68 million lines of
code and required only 23 type annotations.

2 COMPLIANCECERTIFICATIONWORKFLOW
Section 2.1 describes the state-of-the-art approach for compliance
certification of source-code properties, and section 2.2 describes
our continuous compliance approach. Each subsection highlights
three key phases of the workflow for comparison:
• development of the source code,
• preparation for an audit, and
• review by auditors.
As a running example, consider the industry compliance stan-

dard for AES encryption, which is to use the 256-bit mode. This
rule corresponds to Testing Procedure 3.6.1.b in the PCI DSS [61].

2.1 Traditional audit workflow
While developers develop software, they must keep in mind the
compliance rules and mentally check their code as they write it. Be-
cause compliance failures are very serious, significant code review
effort is also expended toward keeping the codebase compliant.

To prepare for the review, an internal compliance officer re-
quests evidence that the program uses 256-bit keys. Each engineer-
ing team must take time to respond to this request. Typically, the
developers search the codebase for encryption keys, API usages,
and related code. The evidence they provide is screenshots like
fig. 1 or links into their codebase.

At the time of the review, the human auditor randomly samples
these code snippets and checks the selected snippets manually. If the
auditor has a concern about the code, they contact the engineering
team responsible and question them about the code. If the engineers
are unable to satisfy the auditor, then the auditor refuses to certify
compliance. This process is dependent on the auditor’s judgment
and trust in the engineering teams—the auditor only examines a
small part of the code directly.

2.2 Audit workflow with continuous compliance
While developers develop software, they write and maintain light-
weight machine-checked specifications of its behavior. In a case
study at AWS, these specifications consisted of 9 annotations across
107,628 lines of code (section 8.1.1). The verification tool runs on
every commit and, optionally, every time the developer compiles
the code. If the tool issues a warning, the developer examines it. If
the warning is a true positive—that is, the code is incorrect—the
developer fixes the code. If the warning is a false positive, the de-
veloper suppresses the warning and writes a brief explanation as a

Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, mySecretKey);
return cipher.doFinal(message);

Figure 2: Code example for encrypting a message. A common com-
pliance requirement is that the algorithm name that is passed to
Cipher.getInstancemust be FIPS compliant [1].

code comment, which creates an easily searchable audit trail in the
code. Suppressing a warning was necessary only once in over 68
million lines of source code at AWS (see section 8).

No action is needed to prepare for a review.
At the time of the review, the auditor rejects the code if the

verification tool outputs any warnings. If developers suppressed
any warnings, the auditor inspects the code near the suppressed
warning (they are automatically searchable). The auditor can also
check the implementation of the verification tool, which is very
short, changes rarely, and is publicly available. In our experience,
auditors are willing to accept that the tool is part of the trusted
computing base, in much the same way that they do not inspect
the compiler.

3 CONTINUOUS COMPLIANCE CONTROLS
We have implemented verification tools for the following controls.

3.1 Cryptographic key length
The PCI DSS and other compliance regimes require strong encryp-
tion keys to be used. In practice, a control used for this requirement
is that encryption keys must be sufficiently long. Our analysis han-
dles 4 key-generation libraries.

For javax.crypto.spec, a SecretKeySpec object may be constructed
using a length parameter ≥ 32 (since it is specified in bytes) or a
byte array that is at least 32 bytes long.

For java.security.SecureRandom, the nextBytes(byte[])method must
be passed an array of at least 32 bytes, and next(int)must be passed
an integer ≥ 256. Both methods are often used to generate keys.

For org.bouncycastle.crypto, every KeyGenerationParameters object
must be constructed with a strength argument that is ≥ 256.

For AWS’s Key Management Service (KMS) [19], a data key must
be at least 256 bits long. A client sets the size of the generated data
key by calling methods on a “key request object”:
• call withNumberOfBytes(int) with a value ≥ 32, or
• call withDataKeySpec(String) with the string "AES_256", or
• call withDataKeySpec(DataKeySpec) with DataKeySpec.AES_256.

3.2 Cryptographic algorithms
Another common requirement in compliance regimes is the use

of strong cryptographic algorithms [61]. Figure 2 shows a use of
encryption in Java. A compliance control for this code is that the
string passed into the JCE method Cipher.getInstancemust be on an
allow list from the compliance regime [1, 10].

AWS had previously written a lexical analysis to validate uses
of cryptographic APIs, but it was not sufficient. In figs. 1 and 2, a
literal is the argument to a key-generation routine, but this was
rarely the case at AWS, whose default style guide suggests the use
of static final fields. These fields are not necessarily in the same
class as the method call, and the values can be held in variables and

ASE ’20, September 21–25, 2020, Virtual Event, Australia Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst

passed around the program. Another failed attempt at AWS was to
search for all string literals in the program and reject the program if
any literal string was not on the compliance allow list. This suffered
too many false positives that required human examination, because
different algorithms are permitted for different uses. These issues
motivated the need for a semantic analysis like ours.

3.3 Web requests
PCI DSS requirement 4.1 [61] mandates that communication across
open networks be encrypted; other compliance regimes have similar
requirements. A common control for these requirements is that web
requests be made over HTTPS rather than over HTTP. In practice,
this control is satisfied in Java code by checking that strings passed
to the URL constructor start with “https”. A syntactic check is
insufficient: a URL might be constructed by concatenating several
variables, or might be stored in a field far from its use.

3.4 Cloud data store initialization
Data subject to compliance requirements is sometimes stored in
the cloud. Even if the cloud provider has the appropriate compli-
ance certification, there are often additional controls on how cloud
services are used.

For example, third-party guidelines for HIPAA-compliant use of
Amazon S3 [5, 57], a popular object storage service, include:

• new buckets must not be, and cannot become, world-readable,
• new buckets must be encrypted, and
• new buckets are versioned, so that data is not lost if overwritten.

Enforcing these guidelines requires checking that the correspond-
ing setter methods of the builder used to construct the bucket are
called, and that their arguments are certain constant values.

3.5 Hard-coded credentials
Credentials—passwords, cryptographic keys, etc.—must not be hard-
coded in source code. The PCI DSS has an entire section (§8) devoted
to requirements on passwords [61]. Hard-coded credentials violate
several of these requirements: that passwords must be unreadable
during storage and transmission (§8.2.1) and that credentials not
be shared between multiple users (§8.5).

Our analysis handles these APIs:

• In the java.security package, SecureRandommust not be initialized
with a hard-coded seed. KeyStore’s store and loadmethods must
not use a hard-coded password.

• In the javax.crypto.spec package, these must not be hard-coded:
SecretKeySpec’s key parameter, PBEKeySpec’s password parameter,
PBEParameterSpec’s salt parameter, and IvParameterSpec’s iv pa-
rameter.

3.6 Other controls
Our vision for continuous compliance—that is, automated checking
of source-code compliance properties—is broad. The above are just
a few examples of controls that can be enforced using continuous
compliance. We believe that any compliance requirement currently
controlled by manual audits of source code could be automated
using our proposed approach of lightweight verification tools. The

audit procedure is designed to be tractable for a human unfamil-
iar with the source code, so the property to be checked is usually
simple and local—which both make it likelier to be amenable to
program analysis. Two further examples that we have prototyped
are that data must be encrypted at rest (that is, when stored on disk
as opposed to in RAM) and data must be protected by a checksum.

The procedure to implement a new analysis (which we followed
for the above) is: talk to the auditors, find a check they currently
enforce with manual code audits, then formalize and implement it.

4 TECHNICAL APPROACH
In order to satisfy the requirements of section 1.2, we designed
dataflow analyses to perform verification.

4.1 Dataflow analysis via typechecking
We chose to implement each analysis as a type system. The continu-
ous compliance approach can be instantiated with other automated
verification techniques, such as abstract interpretation or symbolic
execution. We chose type-checking because it was already familiar
to the Java developers at AWS. Type-checking is also modular, fast,
and scalable. Pluggable type-checking is sound [30], and the proof
extends directly to all the type systems in this paper (proofs omitted
for space).

Our implementation uses the Checker Framework [59], a frame-
work for building pluggable typecheckers for Java. Our implemen-
tation handles all Java features, including polymorphism. It per-
forms local type inference within a method body, so developers
write annotations only at method boundaries, where they serve as
machine-checked documentation.

As with any type system, every assignment to a variable must
be from an expression whose type is a subtype of the variable’s
declared type. For example, when a formal parameter type has a
qualifier, it is a type error if any call site’s argument does not satisfy
the given property.

4.2 An enhanced constant value analysis
Our analysis needs to estimate, for each expression in the program,
whether the expression’s value is any of the following:
• single integer value.
• single string value.
• sets of values. For example, an expression might be known at
compile time to evaluate to one of the strings "aes/cbc/pkcs5padding",
"aeswrap", or "rsa/ecb/oaeppadding".

• integer ranges, including unbounded ones.
• estimates of array lengths, and sets of them.
• user-defined enumerated types, and sets of them.
• regular expressions to represent sets of strings, and sets of
regular expressions so users do not need to write disjunctions
within regexes.
A traditional constant propagation and folding analysis [81]

handles the first two features. We use an enhanced constant folding
and interval analysis that handles the third and fourth features [23].
We use an array indexing analysis that handles the fifth feature [44].
We made numerous bug fixes and enhancements to the existing
tools to improve precision. We designed and implemented the last
two features (sections 4.3 and 4.4).

Continuous Compliance ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 1: Examples of annotations from [23] that are used by our veri-
fication tool. All annotation arguments are compile-time constants.

Declaration Meaning

@IntVal(42) int x x has exactly the value 42
@StringVal({"a", "b"}) String s s has the value "a" or "b"
@IntRange(from=0, to=9) int x x’s value is in the range [0,9]
byte @ArrayLen(32) [] a a contains exactly 32 elements

Our implementation expresses abstract values as types. For ex-
ample, @IntVal({-1, 1}) is a type qualifier, and the type “@IntVal({-1,
1}) int” represents an integer whose run-time value is either -1 or
1; equivalently, it represents the set {−1, 1}. Table 1 shows the most
important abstractions of the constant value analysis. Our type
systems use and/or extend these abstractions. The type hierarchy
appears in [23, 44]; our extensions fit in naturally.

4.3 Enums
To handle enums, we repurposed the existing handling of strings
(the @StringVal annotation). Our implementation treats the enum
name as the string value. This implementation approach re-uses
existing logic without the need for code duplication.

4.4 Regular expressions
We added a new abstraction @MatchesRegex that expresses a possibly-
infinite set of strings via a set of regular expressions. For exam-
ple [68]:
class Cipher {
static Cipher getInstance(@MatchesRegex({"aes/gcm.*", "rsa/ecb.*"})

String algorithm);
}

The type of the algorithm parameter is @MatchesRegex(...) String, and
it restricts the values that may be passed as arguments.

Subtyping for regular expression types is a hard problem. Sub-
sumption for regular expressions is EXPTIME-complete [69]. Stan-
dard (but not regular) features such as backreferences make even
regex matching NP-hard [26]. Precise subtyping for regular expres-
sion types [33, 37] is as least as hard as these problems. However, we
need a fast, decidable algorithm that is understandable to develop-
ers. Our implementation imposes the following sound, approximate
subtyping relationship (𝑆1 and 𝑆2 are sets of regular expressions):

𝑆1 ⊆ 𝑆2
@MatchesRegex(𝑆1) String <: @MatchesRegex(𝑆2) String

This approximation was always adequate in our case studies.
A type qualified by @StringVal can be a subtype of one qualified

by @MatchesRegex (𝑠𝑘 is a string and 𝑟𝑘 is a regular expression):

∃𝑖, 𝑗 : 𝑠𝑖.matches(𝑟 𝑗)

@StringVal({𝑠1,...,𝑠𝑚}) String
<: @MatchesRegex({𝑟1,...,𝑟𝑛}) String

No other types are subtypes of @MatchesRegex(...) String. If another
type flows to an expression with such a type (including string values
not in the allow list), the tool issues a warning.

4.5 Type inference
We implemented a whole-program type inference tool [24] that
infers types via fixpoint analysis. The Checker Framework imple-
ments local (intra-method) type inference. The type inference tool
repeatedly runs a type-checker, records the results of local type
inference, and applies them to the next iteration. The annotations
are stored in a side file to avoid changing programmers’ source
code. When a fixed point is reached, the user is shown the final
results of type-checking.

For example, consider the following program:

int id(int y) { return y; }
int x = 1;
id(x, ...);

Type inference on the possible integer values in this program would
produce three @IntVal(1) annotations:

• one on the field x, because 1 is assigned to x,
• one on the parameter y, because id is called with x as an argu-
ment, and

• one on the return value of id, because the return value flows
from the parameter

To annotate the above program, our type inference approach
would take three rounds, one for each of the required annotations,
because each is dependent on the previous one. Note that this type
inference approach is sound, because it still runs the verifier on the
annotated code: it has the same interface to the verifier as a human
annotator. By the same token, inference can write overly-restrictive
types, as in the example above (id’s parameter and return type are
annotated as @IntVal(1), but a human would have instead written a
polymorphic specification).

Type inference is useful to auditors who otherwise would be ill-
equipped to reason about source code. It also enables type systems
whose annotation burden would be impractical for a human (see
section 5.5).

5 VERIFYING COMPLIANCE CONTROLS
This section details the verification tools we built to verify that
Java programs are compliant with the controls in section 3. Our
framing of the problem made it simple to express and implement
the dataflow analyses.

5.1 Cryptographic key length
Our key-length typechecker is just an application of our enhanced
constant value analysis.

Any analysis requires a specification of library APIs. This one-
time, manual process is performed by a verification engineer work-
ing with a compliance officer. Once written, the specification can be
re-used until the library interface changes (which is highly unlikely)
or the compliance regime is updated (which is rare).

Figure 3 is the full specification for the KMS API. When these
restrictions on all uses of the API are enforced at compile time, no
data key can be generated that is smaller than 256 bits, meeting the
compliance control in section 3.1. The specifications for the other
libraries of section 3.1 are similar but simpler; fig. 3 is the largest.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst

package com.amazonaws.services.kms.model;

class GenerateDataKeyRequest {
withKeySpec(@StringVal("AES_256") String keySpec);
withKeySpec(@StringVal("AES_256") DataKeySpec keySpec);
withNumberOfBytes(@IntRange(from=32) Integer numberOfBytes);
setKeySpec(@StringVal("AES_256") String keySpec);
setKeySpec(@StringVal("AES_256") DataKeySpec keySpec);
setNumberOfBytes(@IntRange(from=32) Integer numberOfBytes);

}

class GenerateDataKeyWithoutPlaintextRequest {
withKeySpec(@StringVal("AES_256") String keySpec);
withKeySpec(@StringVal("AES_256") DataKeySpec keySpec);
withNumberOfBytes(@IntRange(from=32) Integer numberOfBytes);
setKeySpec(@StringVal("AES_256") String keySpec);
setKeySpec(@StringVal("AES_256") DataKeySpec keySpec);
setNumberOfBytes(@IntRange(from=32) Integer numberOfBytes);

}

Figure 3: Our full specification for AWS KMS. These library annota-
tions guarantee that the keys KMS generates are 256 bits or more.

5.2 Cryptographic algorithms
Our cryptographic algorithm typechecker is implemented on top
of the enhanced constant value analysis.

We annotated library methods that accept cryptographic algo-
rithms as input, such as javax.crypto.Cipheror java.security.Signature,
with an allow list of accepted algorithm names.

For user convenience, our tool defines @CryptoAllowed as an alias
for @MatchesRegex. @CryptoAllowed behaves identically but makes it
clear to readers that the code is cryptographically relevant.

Our tool has aliases of particular @CryptoAllowed annotations for
each compliance regime. @CryptoAllowedPCI, for example, corresponds
to the requirements of the PCI DSS. Each alias is defined once, by a
cryptography expert and a compliance officer together. A welcome
side effect of centrally-defined allow-listing annotations is that ad-
justing the analysis to changes in compliance requirements is easy:
the regular expressions in the allow list can be updated without
changing any program source code, not even type annotations.

5.3 Web requests
Ourweb request typechecker is a simple extension to constant value
analysis that introduces a new annotation. @StartsWith("x") is syntac-
tic sugar for @MatchesRegex("x.*"). For example, @StartsWith("https://")
matches "https://www.foo.com" but not "foo" or "http://www.foo.com".

5.4 Cloud data store initialization
To prove that a new Amazon S3 bucket is properly initialized, two
kinds of facts are necessary:
• setter methods for the required properties on the Bucket or

BucketProps builder object must have been called, and
• the arguments to the setter methods must be certain constants.

For example, to show that a bucket is versioned, the versioned(boolean)

method must be called, and its argument must be true.
For the former, our analysis must track the set of methods that

have definitely been called on the builder object, and check that the
required methods are all included in the set when build is called.
An accumulation analysis [45], a restricted form of typestate anal-
ysis [73] that does not require a whole-program alias analysis for

soundness, can verify that all required methods are called on a
builder. We used the implementation from [45] and wrote specifi-
cations for Bucket and BucketProps.

Our enhanced constant value analysis handles the latter.

5.5 Hard-coded credentials
We implemented a dataflow analysis (similar to taint tracking [39])
to track the flow of manifest literals through the program. The
sources in our taint analysis are manifest literals in the program
text (strings like "abcd", integers like 5, byte arrays like {0xa, 0x1},
etc.). The sinks are calls to the APIs in section 3.5. The typechecker
enforces that manifest literals do not flow to the sinks.

Our type system has two type qualifiers:
• @MaybeDerivedFromConstant is the type of any manifest literal, and
of any expression into which a manifest literal might flow. For
example, "abcd" and x + 1 have this type.

• @NonConstant is the type of any other expression in the program.
It is the default qualifier, meaning that an unannotated type
like String actually means @NonConstant String.

@NonConstant is a subtype of @MaybeDerivedFromConstant. Thismeans that
a program may assign a non-constant value to a variable whose
type is qualified with @MaybeDerivedFromConstant, but not vice-versa.

5.5.1 Using whole-program type inference. This taint-tracking type
system requires substantially more user-written annotations than
the preceding constant-propagation type systems, because many
variables and values in programs are derived from constants.

In general, type inference for taint-tracking is difficult, because a
human must first locate all the sources and all the sinks. In our case,
however, the sources can be identified automatically (manifest liter-
als in the program), and the sinks are known ahead of time (the APIs
listed in section 3.5). The inference tool (section 4.5) can therefore
determine whether each program element might have been derived
from a constant, without the need for human intervention—that is,
all required annotations can be derived automatically.

6 CASE STUDY ON OPEN-SOURCE SOFTWARE
To permit reproduction, we open-sourced our tools [6, 7, 18, 58]
and applied them to open-source software. The scripts and data
used for sections 6 and 7 are available at https://doi.org/10.5281/
zenodo.3976221.

6.1 Methodology
For each API mentioned in section 3, we searched GitHub for
projects that contain at least one use of the relevant API. We used
all projects for which running a standard Maven or Gradle build
task (mvn compile or gradle compileJava) in the root directory succeeds,
under either Java 8 or Java 11.

Running our tool requires supplying a -processor argument to
each invocation of javac. We augmented do-like-javac [43] for that
purpose. It first runs the build system in debug mode and scans
the logs for invocations of javac. Then, it replays those invocations,
with the -processor command-line argument added, in the same
environment—for example, after other build steps that compilation
may depend on. Sometimes, replaying the build is not success-
ful; this is reported as “infrastructure error” in table 2. The most

https://doi.org/10.5281/zenodo.3976221
https://doi.org/10.5281/zenodo.3976221

Continuous Compliance ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Our verification tools, run on open-source projects that use
relevant APIs. Ver is verified projects. TP is projects with true pos-
itives, but no false positives. T&FP is projects with both true and
false positives. FP is projects with false positives, but no true posi-
tives. IE is “infrastructure errors”: projects on which do-like-javac
fails. TO is timeouts (1-hour limit). Total is the total number of
projects. The LoC column omits infrastructure errors and timeouts.
Throughout, LoC is non-comment, non-blank lines of Java code.

API Ver TP T&FP FP IE TO Total LoC
Key Length 27% 22% 12% 9% 8% 23% 78 373K
Crypto. Algos. 19% 42% 8% 3% 11% 17% 237 2.4M
Web Request 56% 6% 13% 6% 0% 19% 16 6K
Cloud Data 21% 68% 0% 5% 0% 5% 19 5K
Credentials 26% 15% 15% 22% 15% 7% 304 3.0M
Total 157 176 77 82 78 84 654 5.7M

24% 27% 12% 13% 12% 13% 100%

common reasons are that the project’s custom build logic is not
idempotent, there are no observable javac commands, or the project
uses javac options that are incompatible with the -processor flag.

To fully automate the process, we ran all verifiers with whole-
program inference (section 4.5) enabled. We set a timeout of one
hour. Our verifiers are fast, but inference might not terminate. Our
typecheckers contain widening operators to prevent infinite ascend-
ing chains, but do not contain corresponding narrowing operators.
In some cases, inference therefore introduces an infinite descending
chain, leading to a timeout.

We manually inspected each warning issued by each verifier, and
classified it as a true positive (a failure to conform to a compliance
requirement) or a false positive (a warning issued by the tool that
does not correspond to a compliance violation). We counted crashes
and bugs in the Checker Framework as false positives.

6.2 Findings
Table 2 shows the results. The key takeaways of our study were:
• Much open-source software, in its default configuration, con-
tains compliance violations. Compliance officers should review
open-source software before it handles customer data.

• Most warnings were true positives. A major attraction of un-
sound bug-finding tools is that they tend to have low false-
positive rates, but our sound verification tools do reasonably
well (see section 7 for a direct comparison to bug-finding tools).

The majority (72%) of false positives are issued by the credentials
checker. The relatively high rate of false positives from this checker
is due to the limitations of the type inference tool (section 4.5):
it cannot always infer the appropriate type qualifiers for type ar-
guments (Java generics). Any time it is incorrect, the credentials
checker issues a false positive.

6.3 Example compliance violations
Figure 4 shows two examples of compliance violations:
(a) An HSM (Hardware Security Module) simulator [38] uses the

DES encryption algorithm. An HSM is a physical device used
for managing encryption keys. Practical brute-force attacks
against DES were public knowledge as early as 1998 [31].

if (sCommand.contains("#S#>")) {
SecretKey sk_w_key_VNN = new SecretKeySpec(b_w_key_VNN, "DES");
...

}

(a) An example use of an insecure encryption algorithm.

private static final String KEY = "j8m2gnzbvkavx7c2a94g";
...
byte[] keyBytes = KEY.getBytes("UTF-8");
MessageDigest sha = MessageDigest.getInstance("SHA-1");
keyBytes = sha.digest(keyBytes);
SecretKeySpec secretKeySpec = new SecretKeySpec(keyBytes, "AES");

(b) An example use of a hard-coded key.

Figure 4: Example compliance violations our checkers found.

(b) A command-line email client [70] uses a hard-coded key. The
SecretKeySpec thus generated is used to encrypt user passwords,
a major security risk.

The maintainers of these projects might not consider these com-
pliance violations to be bugs, because they might not care about
whether their projects are usable in contexts that require compli-
ance certification, such as education, healthcare, commerce, or gov-
ernment work. However, if these projects were to be used in such
contexts, each compliance violation would be a serious concern.

7 COMPARISON TO OTHER TOOLS
We compared our tool to previous tools for preventing misuse
of cryptographic APIs. Previous tools do not warn about short
key lengths or misuse of cloud APIs, so our evaluation focuses on
selecting cryptographic algorithms, hard-coded credentials, and the
use of HTTP vs. HTTPS. The developers of CryptoGuard [65] have
developed a microbenchmark set of misuses of cryptography, which
they call CryptoAPIBench [3]. Their paper evaluates CryptoGuard
against SpotBugs, Coverity, and CogniCrypt𝑆𝐴𝑆𝑇 . We repeated
their experiments, and extended them to include our verification
tools, for the subset of their evaluation that our tools cover (11/16
categories of cryptographic misuse). We evaluated on two versions
of the benchmark: the original and a version whose labeling of safe
and unsafe code reflects compliance rules.

7.1 Tools compared
We compared our verifier to four state-of-the-art tools that detect
misuses of cryptographic APIs.
• SpotBugs [25] is the successor of FindBugs [8], a heuristic-based
static analysis tool that uses bug patterns. Some bug patterns
relate to cryptography. It is heavily used in industry. We used
two versions of SpotBugs, configured differently: the standard
desktop version 4.0.2 (SpotBugsD), and version 3.1.12 config-
ured with the ruleset from the SWAMP [74], which contains
additional security bug patterns (SpotBugsS). For both versions,
we only enabled warnings in the SECURITY category.

• Coverity [13] is a commercial bug-finding tool. We used Cover-
ity’s free trial in April 2020 for the experiments in this section.
They provided no version number.

• CogniCrypt𝑆𝐴𝑆𝑇 [47] is a tool that checks user-written specifi-
cations (in the custom CrySL language) consisting of typestate

ASE ’20, September 21–25, 2020, Virtual Event, Australia Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst

Table 3: Comparison of tools for finding misuses of cryptographic
APIs, on relevant parts of CryptoAPIBench.

Spot- Spot- Cover- Cogni- Crypto- This
BugsD BugsS ity Crypt Guard paper

Original Labeling
Precision - 0.46 0.67 0.69 0.86 0.78
Recall 0.0 0.24 0.29 0.66 0.93 1.0
Compliance Labeling
Precision - 0.69 1.0 0.79 1.0 0.97
Recall 0.0 0.32 0.38 0.61 0.88 1.0

properties, required predicates, forbidden methods, and con-
straints on method parameters using synchronized push-down
systems. We used CrySL version 2.7.1 for these experiments,
with the included JCA rules.

• CryptoGuard [65] is a bug-finding tool augmentedwith a slicing
algorithm to allow it find more bugs. Its design emphasizes
maintaining a low false positive rate while scaling to realistic
programs. We built CryptoGuard from source code [22].

These tools were designed to prevent misuse of cryptography1, not
to support the compliance certification process. These two goals are
related—both aim to reduce the number and cost of vulnerabilities
that occur in the wild—but lead to different design choices:
• Bug-finding tools like the above four tools aim for low false
positive rates (high precision, or high confidence that each
reported warning is useful), even at the cost of false nega-
tives (unsoundness) [40]. By contrast, automated compliance
requires verification—no false negatives. Given an unsound
tool, the code would still need to be audited by hand in case the
tool missed an error. Put another way, auditors prefer sound
approaches over manual examination, and they prefer manual
examination over unsound tools.

• Compliance requirements can be stronger than typical devel-
oper guidelines. For example, section 3.1 describes the compli-
ance requirement to use a 256-bit key. None of the above tools
implements this check, so (to avoid disadvantaging those tools)
we did not use it in our comparison.

7.2 Results
Table 3 shows the results of the comparison. Precision and recall
are defined identically to CryptoAPIBench [3]. Our numbers differ
from [3] slightly because we used newer versions of the tools. Only
our verifier achieves 100% recall; the other tools are unsound.

From a compliance perspective, CryptoAPIBench misclassifies
some unsafe code as safe:
• CryptoAPIBench labels 19 unsafe calls in unexecuted code,
similar to fig. 5, as safe.

• CryptoAPIBench’s “insecure asymmetric encryption” require-
ment allows any RSA algorithm, so long as the key is not 1024
bits. Our compliance controls also specify the padding scheme
because there are published attacks against the default padding
scheme used by Java [14]. CryptoAPIBench labels 11 calls to
Cipher.getInstance("RSA") that use the default padding as safe.

1The tools also have other capabilities, but our evaluation focuses on this aspect of
their functionality.

public SecretKey getKMSKey(final int keyLength) {
GenerateDataKeyRequest request = new GenerateDataKeyRequest();
if (keyLength == 128) {
request.withKeySpec(DataKeySpec.AES_128);

} else {
request.withKeySpec(DataKeySpec.AES_256);

}
// set other parameters...
GenerateDataKeyResponse response = awsKMS.generateDataKey(request);
...

}

Figure 5: Code from a service with a code path that could have been
used to generate a 128-bit key.

The “compliance labeling” in table 3 reclassifies these calls to reflect
compliance rules.

Overall, the results show the promise of sound approaches to
detecting and preventing program errors, such as misuses of cryp-
tography, with high precision while maintaining soundness.

8 CASE STUDIES AT AWS
We performed two case studies at Amazon Web Services (AWS).

In the first case study, 7 teams with a compliance requirement
ran the key-length verifier (section 3.1) on each commit. If the veri-
fier fails to prove compliance, their continuous delivery process is
blocked. This case study shows that the verifier is robust enough
to be deployed in a realistic setting, and that developers and com-
pliance officers see enough value in it to opt into a verification tool
that could block deployment.

In a second case study, we ran both the key-length verifier and
the cryptographic algorithm verifier as part of large-scale security
scanning infrastructure. This second case study shows that both
verifiers can be easily integrated in an automated system, and that
they produce high-quality findings.

8.1 Continuous delivery case study
This case study investigates whether a) compliance officers care
about the output of our verifier, and b) developers accept a verifica-
tion tool as part of their continuous integration. Some key findings
of this case study were:
• The verifier reports no warnings on any of the core AWS ser-
vices that were subject to compliance requirements.

• Old manual audit workflows missed compliance-relevant code.
• Using verification tools saved time and effort for developers.
• Developers who were initially skeptical of formal verification
technology were convinced of its value by our tool’s ease of
use and effectiveness.

8.1.1 Results. The key-length verifier was easy to use. Develop-
ers had to write only 9 type qualifiers in 107,628 lines of code: 3
@StringVal annotations, 4 @IntVal annotations, and 2 @IntRange anno-
tations. The tool issued only 1 warning that the compliance officers
did not consider a true positive. This was an easy decision for them:
the code was manifestly not compliance related. We determined
that it was caused by the Checker Framework’s overly-conservative
polymorphic (that is, Java generics) type inference algorithm [54].

While running the verifiers, developers found several services
that were compliant but error-prone or confusing. As one example,

Continuous Compliance ASE ’20, September 21–25, 2020, Virtual Event, Australia

consider the code in fig. 5. This code can generate a 128-bit key,
but its clients never cause it to do so. A developer verified this
fact by changing the type of the keyLength parameter from int to
@IntVal(256) int and running our verification tool. It verified every
client codebase, proving that the keyLength == 128 codepath is not
used. Without a verification tool like ours that can run on each
commit, the presence of such code paths, even if unused, is danger-
ous: a developer might change client code, or write new client code,
without considering the compliance requirement. Our tool allows
developers to discover unsafe code paths, and also to be certain
that they are not being used when they are discovered.

At the time of writing, the continuous integration job has run
1426 times and has issued a warning 3 times, each of which was
quickly fixed. The small number of failures is probably because
most developers run it on their local machines before committing.
We do not know how many of those local runs have revealed a
problem with the code.

Another discovery while typechecking was that four services
had provided incomplete evidence to auditors: the evidence did not
cover every part of their codebase that generated encryption keys.
Developers explained that they had not realized that those parts of
the code were compliance-relevant. By contrast, our verifier checks
all of the code. The external auditors were particularly excited by
this finding: one said that “it eliminates a lot of the trust” that
auditors previously needed to have in engineering teams to provide
them with complete evidence.

External auditors were excited to be on the cutting edge of au-
tomation for compliance: they can advertise as providing higher
assurance than other auditors, and their costs go down. The AWS
internal compliance officers can continuously monitor compliance
via continuous integration jobs triggered on every commit.2

AWS encourages its customers, and providers of third-party
services, to use these tools [83].

8.1.2 Developers’ reactions. We began rolling out our verification
tools to compliance-relevant services at AWS in September 2018.
To our surprise, we encountered little resistance as we began the
rollout—the first team we contacted immediately integrated the
key-length verifier and enabled it in their continuous integration
process, and then canceled themeetingwe had scheduledwith them.
These early-adopting developers told us that they were frustrated
by compliance’s ongoing cost: gathering evidence is an irritating
distraction from their regular work.

Other engineering teams are also convinced. Each team saves
time by not having to prepare for audits. One developer told us,
“The Checker Framework solution is a great mechanism and step
toward automating audit evidence requests. This has saved my
team 2 hours every 6 months and we also don’t have to worry
about failing an audit control.” (The 2-hour savings is per team,
per control, for the developers alone.) The effort of onboarding a
project to use a verification tool is less than the engineering cost of
providing evidence for the very first audit, not to mention savings to
compliance officers and the external auditor. After that, the savings
accumulate.

2They set up a second CI service, so that compliance is monitored even if the engi-
neering team were to disable the verifier in their CI setup.

Table 4: Running the key length and crypto algorithm verifiers at
AWS. The key length verifier is only run on packages that use the
specific library routine. The crypto algorithm verifier is run on a
subset of all Java code at AWS.

Key length Crypto algorithms

Verified, no annotations 215 packages 37,077 packages
Verified, annotations 23 packages 0 packages
True positive warning 15 packages 158 packages
False positive warning 1 package 0 packages
Total 254 packages 37,235 packages

8,481,188 LoC 68,416,620 LoC

8.2 Scanning-at-scale case study
In the second case study, a security team ran two of our verifiers
(key-length and crypto algorithms, sections 5.1 and 5.2) on code
beyond what needs to be audited. This case study demonstrates that
our approach requires few developer-written annotations and that
warnings often reveal interesting issues. Our verifiers are integrated
into a system that scans a set of highly-used packages on a fixed
schedule. Findings of these scans are reported to security engineers
and triaged manually. The security team is interested in analyzers
that report security-related findings that can be triaged without
in-depth code knowledge, and that have a signal-to-noise ratio that
is manageable by a security engineer.

Table 4 categorizes each package into one of four categories:
Verified, no annotations: The verifier completed successfully

without any manually written annotations. If subject to a com-
pliance regime, these codebases would be verifiable without any
human onboarding effort.

Verified, annotations: The verifier initially issued an error on
these codebases. After writing one or more type annotations in the
codebase, the verifier succeeds. If subject to a compliance regime,
these projects would be verifiable with human onboarding effort. In
23 cases (once in each of 23 packages), the call to a key generation
library was wrapped by another method; a developer had to write
one annotation to specify each wrapper method. Because type-
checking is intraprocedural, an annotation must be placed where
relevant dataflows cross procedure boundaries or enter the heap.
The typechecker issues a warning if a needed annotation is missing.
Thus, developers can use the tool to identify these locations. Note
that developer-written annotations are checked, not trusted. The
only trusted annotations are those for libraries (e.g., fig. 3).

True positive: The verifier issued an error that corresponds to
a compliance violation, if that codebase were to be subjected to
a compliance audit. The key length verifier found 15 instances of
code that used 128-bit keys. The crypto algorithm verifier found
158 uses of weak or outdated crypto algorithms. AWS’s internal
compliance officers confirmed that none of these codebases were
actually subject to audits. All true positives were examined by a
security engineer to ensure that the findings were correct and that
no production code was affected. The crypto algorithm verifier
received positive feedback from security engineers since it is easy
to configure and outperformed an existing text-based check that
was running in the scanning infrastructure.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst

False positive: The verifier issued an error, indicating that it
cannot prove a property. Manual examination determined that the
code never misbehaves at run time, but for a reason that is beyond
the capabilities of the verification tool. The key length verifier
reported 1 false positive: the key length was hard-coded correctly,
but was loaded via dependency injection, which our verifier does
not precisely model.

We computed the compile-time overhead of using our tools. We
randomly sampled 52 projects using the key length verifier and 87
projects using the cryptographic algorithm verifier from those in
table 4. We recorded their run time with and without our tools. On
average, our tools increased the full compile time for the project
from 51 to 134 seconds (2.6×). As part of a continuous integration
workflow, developers found this overhead acceptable.

9 THREATS TO VALIDITY
Our verification tools check only some properties; a program they
approve might fail unrelated compliance controls or might contain
other bugs. It does not check native code, and a verified program
may be linked with unverified libraries. It has modes that adopt un-
soundnesses from Java, such as covariant array subtyping and type
arguments in casts. Like any implementation, it may contain bugs.

Our sample programs may not be representative. We mitigated
this threat by considering over 70 million lines of code from a
variety of projects, but it is all Java code.

10 LESSONS LEARNED
Verification is a good fit for compliance. A key contribution of

this work is the observation that source-code compliance is a good
target for verification. Existing compliance controls are informal
specifications that are already being checked by humans. These
properties are relatively simple. Yet, the domain is mission-critical.
Though researchers have struggled to make verification appealing
to developers, we have discovered another customer for verification
technology—compliance auditors.

Because controls are designed to be checked by a human un-
familiar with the source code, most are amenable to verification.
There are two properties of compliance controls that make them
more verification-friendly:

• the controls are usually local, so that a human can check them
quickly.

• the controls are usually simple, so that a human without in-
depth knowledge of the code can check them.

Both of these properties make it more likely that a given control
can be automated. We believe that any compliance property that is
currently checked by manual examination of source code can be
automated.

Does someone else ever have to read the code? Compliance certifi-
cation is an example of a code reading task: someone other than the
developer examines the code to check for a specific property. Other
code reading tasks are also amenable to automation. For example,
checking the formatting of code is another code reading task which
has already been automated.

Using verification tools changes developer attitudes. This work
has had a significant effect in changing attitudes toward verifica-
tion. Developers and compliance officers started out skeptical of
formal methods, but now they are enthusiastic. Equally importantly,
developers on teams not subject to compliance requirements are
observing their peers using verification. The adoption of new tech-
nology is fundamentally a social process [41], and social pressure is
an important factor influencing whether security tools are adopted
by practitioners [82]. We believe that simple, scalable techniques
are both a research contribution and the best way to widely dis-
seminate formal verification. We encourage other researchers who
are interested in impact to deploy their tools in ways that reduce
developers’ workload by eliminating existing tasks that developers
must perform regularly.

Verification can save time for developers. When developers con-
sider using verification technologies in isolation, they must trade
off developer time (to write annotations, run the verification tool,
etc.) against improved software quality. The developers we worked
with at AWS are busy, and some were initially skeptical of verifica-
tion. They believed that a formal verification tool would have two
serious costs3:
• Developers would have to spend a lot of time annotating the
codebase before seeing benefits from the tool.

• The verification tool would issue false positives that would
waste engineering time to investigate, then rewrite the code or
the annotations.

These fears were grounded in experience with formal verification
tools like OpenJML [49] that are designed to prove complex proper-
ties. Because developers must already do the work to certify their
software as compliant, they found the introduction of verification
to automate that task a welcome change. Rather than verification
becoming an extra task for them, verification replaced an existing,
unpleasant task. We encourage other verification researchers inter-
ested in impact in practice to use verification to replace existing
tasks developers must perform.

Move other non-testing task to continuous integration. In much the
same way that continuous integration improves software quality
by running tests more frequently, continuous compliance increases
the confidence of auditors that compliance is maintained between
audits.We believe that researchers should explore whether there are
other software-adjacent tasks that can bemoved into the continuous
integration workflow, as we have done for compliance using our
verification tools.

Verification is useful for stakeholders other than programmers.
Compliance auditors are a non-traditional customer of verification
technology. Nevertheless, we found that auditors readily accepted
verification and that it fit well into their workflow. Compliance,
like verification, is concerned with soundness—the cost of a failed
audit is astronomical, especially for a company like AWSwith many
customers who must remain compliant themselves. This similarity
in thinking and goals between compliance and verification made
our success possible. We encourage other verification research

3The developers were not concerned about code clutter; they were used to the benefits
of annotations from using tools like Lombok, Guice, and Spring.

Continuous Compliance ASE ’20, September 21–25, 2020, Virtual Event, Australia

interested in impact in practice to investigate other stakeholders in
the correctness of software besides the developers themselves.

11 RELATEDWORK
Practitioners and researchers recognize the current limitations of
manual compliance audits, and they are actively seeking improve-
ments. We classify previous work into manual approaches, testing,
run-time checking, and static analysis.

Manual. The industry-standard approach to code-level compli-
ance is manual examination. There has been some work on improv-
ing the current manual audit approach by simplifying the software
inspection process [55]. By contrast, our approach aims to replace
parts of the manual process with an automated one.

Testing. Most previous research on source-code level compliance
has aimed to apply automated or semi-automated testing [11, 36,
72, 76]. Automated tests reduce costs and prevent mistakes made
while manually executing the tests (but not those in designing and
implementing the tests). However, tests are still incomplete: tests
can show the presence of defects, but not their absence.

E-commerce merchants who must be compliant with the PCI
DSS can use an Approved Scanning Vendor (ASV) to automatically
certify that their websites meet some parts of the PCI DSS. Recent
work [64] has shown that extant ASVs are unsound and mis-certify
many vulnerable websites in practice. Further, most (∼86%) mer-
chant websites have one or more “must-fix” vulnerability, showing
the need for sound verification tools like ours.

Run-time checking. A recent approach is “proactive” compliance,
which is analogous to run-time checking. Even if run-time checks
are exhaustive and correct, a violation causes the program to crash.
Research in this area aims to improve run-time performance and
retain interoperability with uninstrumented code [15, 51, 52].

Static analysis. To our knowledge, our work is the first to use au-
tomated, sound static analysis (lightweight verification) for source-
code compliance properties like those described in section 3.

A recent literature review split compliance automation into three
categories: retroactive (i.e. log scanning), intercept-and-check (i.e.
at run time, check operations for compliance), and proactive (which
they describe as like intercept-and-check, but with some precom-
putation to reduce the run-time burden) [52]. They do not mention
sound verification. Ullah et al. describe a framework for building an
automated cloud security compliance tool [76]. Their framework
does not include sound static analysis per se, but does have a place
for ASVs, which they regard as best-effort bug finders. Recent work
on designing a cloud service which could be continuously compliant
did not consider using a verification tool to achieve that goal [50].

Formal methods like process modeling have been applied to
compliance problems, especially in safety-critical domains such as
railway [12] and automotive systems [9]. The COMPAS project [27]
is a collection of formal approaches to business process modeling
applied to compliance. Kokash and Arbab modeled processes in the
Reo language and analyzed them for compliance [46]. Tran et al.
developed a framework for expressing compliance requirements in
a service-oriented architecture [75]. These approaches are comple-
mentary to ours. They check properties about a process or about a
model of the system, but they give no guarantees about its source
code or its implementation.

There is a wealth of specification and verification work that is
not related to compliance requirements. Pavlova et al. developed
a technique for inferring JML annotations that encode security
policies of JavaCard applets [60]. Their approach utilizes the JACK
proof assistant, so it is neither automated nor usable by workaday
programmers or auditors. Furthermore, the security policies they
check do not overlap with the requirements of compliance regimes.

Our work assumes cooperation between a developer and an
auditor. A similar assumption is made by the SPARTA [29] toolkit
for statically verifying that Android apps did not contain malicious
information flows, which posits a hypothetical high-assurance app
store. We address a different domain—compliance—and we report
on wide-scale, real-world usage.

Analyzing uses of cryptography APIs. Most (90% or more) Java
applications that use cryptography misuse it [20], and most (>80%)
security vulnerabilities related to cryptography are due to improper
usage of cryptographic APIs [48]. CogniCrypt𝑆𝐴𝑆𝑇 [47] is a tech-
nique based on synchronized push-down systems for finding unsafe
uses of cryptography APIs. CryptoGuard [65] is a heuristic-based
tool based on program slicing for finding unsafe uses of cryptogra-
phy APIs. We compare to both in section 7.

12 CONCLUSION
Compliance is an excellent domain to show that verification tools
are ready for real-world deployment to solve real-world problems,
especially to developers who might otherwise be skeptical of the
value of verification. Lightweight verification tools like typecheck-
ers are a good fit for compliance: they provide much higher assur-
ance than either manual audits or unsound bug-finding tools, at
lower cost. Sound verifiers can be narrowly scoped to individual
properties like compliance controls. This makes them simple to
design and implement. It also maintains a low annotation burden,
making them as easy to use as unsound bug-finding tools.

Our experience shows that verification scales to industrial soft-
ware at AWS, and that the business derived significant value from
our efforts. As long as verification automates work they are already
doing, developers are enthusiastic about adopting it.

We look forward to a future in which verification technology is
widespread—both for compliance and for correctness. Our tools—
running in production at AWS for a large cohort of real developers,
saving them time and effort—are a step towards that goal.
Acknowledgments:We thank the developers and compliance officers at
AWS who participated and provided feedback, especially Zaanjana Sreeku-
mar. Thanks to Sean McLaughlin for his help with this project. Thanks to
Ranjit Jhala for comments on a draft of this paper.

REFERENCES
[1] 2002. FIPS PUB 140-2, Security Requirements for Cryptographic Modules.

U.S.Department of Commerce/National Institute of Standards and Technology.
[2] Bhargav Acharya. 2016. Why Cloud Providers Need a SOC Report. https:

//www.schellman.com/blog/why-cloud-providers-need-a-soc-report. Accessed
28 March 2019.

[3] Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. 2019. CryptoAPI-Bench:
A Comprehensive Benchmark on Java Cryptographic API Misuses. In 2019 IEEE
Cybersecurity Development (SecDev). IEEE, 49–61.

[4] AICPA. 2017. SOC 2 examinations and SOC for Cybersecurity examinations:
Understanding the key distinctions. https://www.aicpa.org/content/dam/
aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/
cybersecurity/soc-2-vs-cyber-whitepaper-web-final.pdf. Accessed 1 February
2019.

https://www.schellman.com/blog/why-cloud-providers-need-a-soc-report
https://www.schellman.com/blog/why-cloud-providers-need-a-soc-report
https://www.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/cybersecurity/soc-2-vs-cyber-whitepaper-web-final.pdf
https://www.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/cybersecurity/soc-2-vs-cyber-whitepaper-web-final.pdf
https://www.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/cybersecurity/soc-2-vs-cyber-whitepaper-web-final.pdf

ASE ’20, September 21–25, 2020, Virtual Event, Australia Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst

[5] Amazon Web Services, Inc. 2006. Amazon S3. https://aws.amazon.com/s3/.
Accessed 17 April 2020.

[6] aws-kms-compliance-checker Developers. 2020. awslabs/aws-kms-compliance-
checker. https://github.com/awslabs/aws-kms-compliance-checker. Accessed
11 August 2020.

[7] awslabs/aws-crypto-policy-compliance-checker Developers. 2020. awslabs/aws-
crypto-policy-compliance-checker. https://github.com/awslabs/aws-crypto-
policy-compliance-checker. Accessed 11 August 2020.

[8] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using static analysis to find bugs. IEEE Software 25, 5
(September 2008), 22–29.

[9] Ghada Bahig and Amr El-Kadi. 2017. Formal verification of automotive design in
compliance with ISO 26262 design verification guidelines. IEEE Access 5 (2017),
4505–4516.

[10] Elaine B. Barker, William C. Barker, William E. Burr, W. Timothy Polk, and
Miles E. Smid. 2007. SP 800-57. Recommendation for Key Management, Part 1:
General (Revised). Technical Report. Gaithersburg, MD, United States.

[11] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. State of the
art: Automated black-box web application vulnerability testing. In 2010 IEEE
Symposium on Security and Privacy. IEEE, 332–345.

[12] Cinzia Bernardeschi, Alessandro Fantechi, Stefania Gnesi, Salvatore Larosa, Gior-
gio Mongardi, and Dario Romano. 1998. A formal verification environment for
railway signaling system design. Formal Methods in System Design 12, 2 (1998),
139–161.

[13] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to find bugs in the real world. Commun.
ACM 53, 2 (2010), 66–75.

[14] Daniel Bleichenbacher. 1998. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS# 1. In Annual International Cryptology
Conference. Springer, 1–12.

[15] Sören Bleikertz, Carsten Vogel, Thomas Groß, and Sebastian Mödersheim. 2015.
Proactive security analysis of changes in virtualized infrastructures. In Proceed-
ings of the 31st annual computer security applications conference. ACM, 51–60.

[16] Grady Booch. 1991. Object Oriented Design with Applications. Benjamin/Cum-
mings.

[17] KA Briski, Poonam Chitale, Valerie Hamilton, Allan Pratt, B Starr, J Veroulis, and
B Villard. 2008. Minimizing code defects to improve software quality and lower
development costs. Development Solutions. IBM. Crawford, B., Soto, R., de la Barra,
CL (2008).

[18] bucket-complaince-checker Developers. 2020. kelloggm/bucket-compliance-
checker. https://github.com/kelloggm/bucket-compliance-checker. Accessed 11
August 2020.

[19] Matthew Campagna. 2015. Aws key management service cryptographic details.
[20] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and

Christos Xenakis. 2016. Evaluation of cryptography usage in android applications.
In International Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS). 83–90.

[21] PCI Security Standards Council. 2020. Qualified Security Assessors. https://www.
pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors.
Accessed 14 April 2020.

[22] CryptoGuard Developers. 2020. CryptoGuardOSS/crypto-
guard. https://github.com/CryptoGuardOSS/cryptoguard/commit/
2898b5b5ec25d94bbedda271638385c0fa6e0c9c. Accessed 26 April 2020.

[23] Checker Framework Developers. 2019. Constant Value Checker. https://
checkerframework.org/manual/#constant-value-checker. Accessed 10 August
2019.

[24] Checker Framework Developers. 2020. Whole-program Inference. https:
//checkerframework.org/manual/#whole-program-inference. Accessed 17 April
2020.

[25] SpotBugs Developers. 2020. SpotBugs. https://spotbugs.github.io/. Accessed 24
April 2020.

[26] Mark Jason Dominus. 2001. Perl regular expression matching is NP-hard. https:
//perl.plover.com/NPC/.

[27] Schahram Dustdar. 2010. COMPAS: Compliance-driven Models,
Languages, and Architectures for Services: Publishable Summary.
https://cordis.europa.eu/docs/projects/cnect/5/215175/080/reports/001-
publishablesummarylongversion1.pdf. Accessed 4 April 2019.

[28] Stacy English and Susannah Hammond. 2018. Cost of Compliance
2018. https://legal.thomsonreuters.com/content/dam/ewp-m/documents/legal/
en/pdf/reports/cost-of-compliance-special-report-2018.pdf. Accessed 26 Febru-
ary 2019.

[29] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han,
Paul Vines, and Edward X. Wu. 2014. Collaborative verification of information
flow for a high-assurance app store. In CCS 2014: Proceedings of the 21st ACM
Conference on Computer and Communications Security. Scottsdale, AZ, USA, 1092–
1104.

[30] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A theory of
type qualifiers. In PLDI ’99: Proceedings of the ACM SIGPLAN ’99 Conference on
Programming Language Design and Implementation. Atlanta, GA, USA, 192–203.

[31] Electronic Frontier Foundation. 1998. Cracking DES: Secrets of encryption
research, wiretap politics and chip design.

[32] Martin Fowler and Matthew Foemmel. 2006. Continuous integration.
[33] Alain Frisch and Luca Cardelli. 2004. Greedy regular expression matching. In

Automata, Languages and Programming: 31st International Colloquium, ICALP
2004. Turku, Finland, 618–629.

[34] Dan Fritsche and Bhavana Sasne. 2015. Whitepaper: The Costs of Failing a PCI-
DSS Audit. https://www.hytrust.com/wp-content/uploads/2015/08/HyTrust_
Cost_of_Failed_Audit.pdf. Accessed 18 March 2019.

[35] GSA. 2017. FedRAMP SECURITY ASSESSMENT FRAMEWORK, Version
2.4. https://www.fedramp.gov/assets/resources/documents/FedRAMP_Security_
Assessment_Framework.pdf. Accessed 31 January 2019.

[36] Hossein Homaei and Hamid Reza Shahriari. 2019. Athena: A framework to
automatically generate security test oracle via extracting policies from source
code and intended software behaviour. Information and Software Technology 107
(2019), 112–124.

[37] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. 2005. Regular Expres-
sion Types for XML. ACM Transactions on Programming Languages and Systems
27, 1 (January 2005), 46–90. https://doi.org/10.1145/1053468.1053470

[38] hsm-simulator Developers. 2019. gjyoung1974/hsm-
simulator. https://github.com/gjyoung1974/hsm-simulator/blob/
432b2b6e9fd63936347293743e54a8e572367fda/src/com/goyoung/crypto/
hsmsim/commands/crypto/GenerateVISAWorkingKey.java. Accessed 5 May
2020.

[39] Wei Huang, Yao Dong, and Ana Milanova. 2014. Type-based taint analysis for
Java web applications. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 140–154.

[40] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
ICSE 2013, Proceedings of the 35th International Conference on Software Engineering.
San Francisco, CA, USA, 672–681.

[41] Elena Karahanna, Detmar W Straub, and Norman L Chervany. 1999. Information
technology adoption across time: a cross-sectional comparison of pre-adoption
and post-adoption beliefs. MIS quarterly (1999), 183–213.

[42] Audrey Katcher. 2019. Understanding How Users Would Make Use of a SOC2 Re-
port. https://www.rubinbrown.com/soc2_user_document_111710.pdf. Accessed
28 March 2019.

[43] Martin Kellogg. 2020. do-like-javac. https://github.com/kelloggm/do-like-javac.
Accessed 24 April 2020.

[44] Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst. 2018.
Lightweight verification of array indexing. In ISSTA 2018, Proceedings of the
2018 International Symposium on Software Testing and Analysis. Amsterdam,
Netherlands, 3–14.

[45] Martin Kellogg, Manli Ran, Manu Sridharan, Martin Schäf, and Michael D. Ernst.
2020. Verifying Object Construction. In ICSE 2020, Proceedings of the 42nd Inter-
national Conference on Software Engineering. Seoul, Korea.

[46] Natallia Kokash and Farhad Arbab. 2008. Formal behavioral modeling and compli-
ance analysis for service-oriented systems. In International Symposium on Formal
Methods for Components and Objects. Springer, 21–41.

[47] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. 2018.
CrySL: An extensible approach to validating the correct usage of cryptographic
APIs. In ECOOP 2018 — Object-Oriented Programming, 32nd European Conference.
Amsterdam, Netherlands, 10:1–10:27.

[48] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014. Why does
cryptographic software fail?: a case study and open problems. In Asia-Pacific
Workshop on Systems. ACM, 7.

[49] Gary T Leavens, Albert L Baker, and Clyde Ruby. 2006. Preliminary design of JML:
A behavioral interface specification language for Java. ACM SIGSOFT Software
Engineering Notes 31, 3 (2006), 1–38.

[50] Sebastian Lins, Stephan Schneider, and Ali Sunyaev. 2018. Trust is good, control
is better: Creating secure clouds by continuous auditing. IEEE Transactions on
Cloud Computing 6, 3 (2018), 890–903.

[51] Suryadipta Majumdar, Yosr Jarraya, Momen Oqaily, Amir Alimohammadifar,
Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. 2017. Leaps: Learning-
based proactive security auditing for clouds. In European Symposium on Research
in Computer Security. Springer, 265–285.

[52] Suryadipta Majumdar, Taous Madi, Yosr Jarraya, Makan Pourzandi, LingyuWang,
and Mourad Debbabi. 2018. Cloud Security Auditing: Major Approaches and
Existing Challenges. In Symposium on Foundations & Practice of Security.

[53] Mastercard. 2017. Site Data Protection (SDP) Program, Frequently Asked Ques-
tions. https://globalrisk.mastercard.com/wp-content/uploads/2017/03/Site-Data-
Protection-SDP-Program-FAQs-1-March-2017.pdf. Accessed 18 March 2019.

[54] Suzanne Millstein. 2016. Implement Java 8 type argument inference. https:
//github.com/typetools/checker-framework/issues/979. Accessed 17 April 2020.

https://aws.amazon.com/s3/
https://github.com/awslabs/aws-kms-compliance-checker
https://github.com/awslabs/aws-crypto-policy-compliance-checker
https://github.com/awslabs/aws-crypto-policy-compliance-checker
https://github.com/kelloggm/bucket-compliance-checker
https://www.pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors
https://www.pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors
https://github.com/CryptoGuardOSS/cryptoguard/commit/2898b5b5ec25d94bbedda271638385c0fa6e0c9c
https://github.com/CryptoGuardOSS/cryptoguard/commit/2898b5b5ec25d94bbedda271638385c0fa6e0c9c
https://checkerframework.org/manual/#constant-value-checker
https://checkerframework.org/manual/#constant-value-checker
https://checkerframework.org/manual/#whole-program-inference
https://checkerframework.org/manual/#whole-program-inference
https://spotbugs.github.io/
https://perl.plover.com/NPC/
https://perl.plover.com/NPC/
https://cordis.europa.eu/docs/projects/cnect/5/215175/080/reports/001-publishablesummarylongversion1.pdf
https://cordis.europa.eu/docs/projects/cnect/5/215175/080/reports/001-publishablesummarylongversion1.pdf
https://legal.thomsonreuters.com/content/dam/ewp-m/documents/legal/en/pdf/reports/cost-of-compliance-special-report-2018.pdf
https://legal.thomsonreuters.com/content/dam/ewp-m/documents/legal/en/pdf/reports/cost-of-compliance-special-report-2018.pdf
https://www.hytrust.com/wp-content/uploads/2015/08/HyTrust_Cost_of_Failed_Audit.pdf
https://www.hytrust.com/wp-content/uploads/2015/08/HyTrust_Cost_of_Failed_Audit.pdf
https://www.fedramp.gov/assets/resources/documents/FedRAMP_Security_Assessment_Framework.pdf
https://www.fedramp.gov/assets/resources/documents/FedRAMP_Security_Assessment_Framework.pdf
https://doi.org/10.1145/1053468.1053470
https://github.com/gjyoung1974/hsm-simulator/blob/432b2b6e9fd63936347293743e54a8e572367fda/src/com/goyoung/crypto/hsmsim/commands/crypto/GenerateVISAWorkingKey.java
https://github.com/gjyoung1974/hsm-simulator/blob/432b2b6e9fd63936347293743e54a8e572367fda/src/com/goyoung/crypto/hsmsim/commands/crypto/GenerateVISAWorkingKey.java
https://github.com/gjyoung1974/hsm-simulator/blob/432b2b6e9fd63936347293743e54a8e572367fda/src/com/goyoung/crypto/hsmsim/commands/crypto/GenerateVISAWorkingKey.java
https://www.rubinbrown.com/soc2_user_document_111710.pdf
https://github.com/kelloggm/do-like-javac
https://globalrisk.mastercard.com/wp-content/uploads/2017/03/Site-Data-Protection-SDP-Program-FAQs-1-March-2017.pdf
https://globalrisk.mastercard.com/wp-content/uploads/2017/03/Site-Data-Protection-SDP-Program-FAQs-1-March-2017.pdf
https://github.com/typetools/checker-framework/issues/979
https://github.com/typetools/checker-framework/issues/979

Continuous Compliance ASE ’20, September 21–25, 2020, Virtual Event, Australia

[55] Deepti Mishra and Alok Mishra. 2009. Simplified software inspection process in
compliance with international standards. Computer Standards & Interfaces 31, 4
(2009), 763–771.

[56] MS 325E.64. 2007. Access Devices; Breach of Security. Minnesota Statutes (2018):
Chapter 325E, Section 64.

[57] Jacob Nemetz and Brett Lieblich. 2019. Dash Compliance Automation — S3 Secu-
rity Controls. https://www.dashsdk.com/docs/aws/hipaa/amazon-s3/. Accessed
8 April 2020.

[58] no-literal-checker Developers. 2020. kelloggm/no-literal-checker. https://github.
com/kelloggm/no-literal-checker. Accessed 11 August 2020.

[59] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. 2008. Practical pluggable types for Java. In ISSTA 2008, Proceed-
ings of the 2008 International Symposium on Software Testing and Analysis. Seattle,
WA, USA, 201–212.

[60] Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman, and Jean-Louis
Lanet. 2004. Enforcing high-level security properties for applets. In Conference
on Smart Card Research and Advanced Applications. Springer, 1–16.

[61] PCI Security Standards Council. 2018. Payment Card Industry (PCI) Data Security
Standard, v. 3.2.1. https://www.pcisecuritystandards.org/documents/PCI_DSS_
v3-2-1.pdf. Accessed 26 February 2019.

[62] PCI Security Standards Council. 2018. PCI DSS v3.2.1 Template for Report on
Compliance. https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2_1-
ROC-Reporting-Template.pdf. Accessed 4 April 2019.

[63] Ponemon Institute LLC. 2011. The True Cost of Compliance. https://www.
ponemon.org/local/upload/file/True_Cost_of_Compliance_Report_copy.pdf. Ac-
cessed 3 April 2019.

[64] Sazzadur Rahaman, Gang Wang, and Danfeng Yao. 2019. Security Certification
in Payment Card Industry: Testbeds, Measurements, and Recommendations. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 481–498.

[65] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng (Daphne) Yao. 2019. CryptoGuard: High preci-
sion detection of cryptographic vulnerabilities in massive-sized Java projects. In
CCS 2019: Proceedings of the 21st ACM Conference on Computer and Communica-
tions Security. London, UK, 2455–2472.

[66] RCW 19.255.020. 2010. Liability of processors, businesses, and vendors. Revised
Code of Washington, Title 19, Chapter 19.255, Section 19.255.020.

[67] David Saff and Michael D. Ernst. 2003. Reducing wasted development time via
continuous testing. In ISSRE 2003: Fourteenth International Symposium on Software
Reliability Engineering. Denver, CO, 281–292.

[68] Martin Schaef. 2019. Example of how to whitelist crypto algo-
rithms. https://github.com/awslabs/aws-crypto-policy-compliance-
checker/blob/master/stubs/javax.crypto.astub. Accessed 11 August 2020.

[69] Helmut Seidl. 1990. Deciding Equivalence of Finite Tree Automata. SIAM J.
Comput. 19, 3 (June 1990), 424–437. https://doi.org/10.1137/0219027

[70] sendmail Developers. 2015. NewSaigonSoft/sendmail. https://github.com/
NewSaigonSoft/sendmail/blob/e31d9a86c7f863c59fc51d5fd2c1b60cc4586faf/src/
main/java/com/newsaigonsoft/sendmail/SecurePassword.java. Accessed 5 May
2020.

[71] Square, Inc. 2017. PCI Compliance: What You Need to Know. https://squareup.
com/guides/pci-compliance. Accessed 18 March 2019.

[72] Philipp Stephanow and Christian Banse. 2017. Evaluating the performance of
continuous test-based cloud service certification. In International Symposium on
Cluster, Cloud and Grid Computing. IEEE Press, 1117–1126.

[73] Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on Software Engi-
neering SE-12, 1 (January 1986), 157–171.

[74] The SWAMP Team. 2020. Welcome To The SWAMP. https://continuousassurance.
org/. Accessed 24 April 2020.

[75] Huy Tran, Ta’id Holmes, Ernst Oberortner, Emmanuel Mulo, Ag-
nieszka Betkowska Cavalcante, Jacek Serafinski, Marek Tluczek, Aliaksandr
Birukou, Florian Daniel, Patricia Silveira, et al. 2010. An end-to-end framework
for business compliance in process-driven SOAs. In 2010 12th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE,
407–414.

[76] Kazi Wali Ullah, Abu Shohel Ahmed, and Jukka Ylitalo. 2013. Towards building an
automated security compliance tool for the cloud. In Trust, Security and Privacy
in Computing and Communications (TrustCom). IEEE, 1587–1593.

[77] Ciske van Oosten, Anne Turner, Cynthia B. Hanson, Dyana Pearson, Ronald
Tosto, and Andi Baritchi. 2018. Verizon 2018 Payment Security Report. Accessed
26 February 2019.

[78] Steven VanRoekel. 2011. Security Authorization of Information Systems in
Cloud Computing Environments. https://www.fedramp.gov/assets/resources/
documents/FedRAMP_Policy_Memo.pdf. Accessed 31 January 2019.

[79] vault Developers. 2020. NitorCreations/vault. https://github.com/NitorCreations/
vault/blob/3c3ec65879c82bb353b4cf4d22898abb0b7b578f/java/src/main/java/
com/nitorcreations/vault/VaultClient.java. Accessed 8 May 2020.

[80] VISA, Inc. 2017. Data Security Compliance Requirements for Service
Providers. https://usa.visa.com/dam/VCOM/download/merchants/data-security-
compliance-service-providers.pdf. Accessed 31 January 2019.

[81] Mark N Wegman and F Kenneth Zadeck. 1991. Constant propagation with
conditional branches. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 2 (1991), 181–210.

[82] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. 2015. Quantifying developers’ adoption of
security tools. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 260–271.

[83] Chad Woolf, Byron Cook, and Tom McAndrew. 2019. Automate Compliance
Verification on AWS Using Provable Security. https://www.youtube.com/watch?
v=BbXK_-b3DTk. Accessed 25 August 2020.

https://www.dashsdk.com/docs/aws/hipaa/amazon-s3/
https://github.com/kelloggm/no-literal-checker
https://github.com/kelloggm/no-literal-checker
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2_1-ROC-Reporting-Template.pdf
https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2_1-ROC-Reporting-Template.pdf
https://www.ponemon.org/local/upload/file/True_Cost_of_Compliance_Report_copy.pdf
https://www.ponemon.org/local/upload/file/True_Cost_of_Compliance_Report_copy.pdf
https://github.com/awslabs/aws-crypto-policy-compliance-checker/blob/master/stubs/javax.crypto.astub
https://github.com/awslabs/aws-crypto-policy-compliance-checker/blob/master/stubs/javax.crypto.astub
https://doi.org/10.1137/0219027
https://github.com/NewSaigonSoft/sendmail/blob/e31d9a86c7f863c59fc51d5fd2c1b60cc4586faf/src/main/java/com/newsaigonsoft/sendmail/SecurePassword.java
https://github.com/NewSaigonSoft/sendmail/blob/e31d9a86c7f863c59fc51d5fd2c1b60cc4586faf/src/main/java/com/newsaigonsoft/sendmail/SecurePassword.java
https://github.com/NewSaigonSoft/sendmail/blob/e31d9a86c7f863c59fc51d5fd2c1b60cc4586faf/src/main/java/com/newsaigonsoft/sendmail/SecurePassword.java
https://squareup.com/guides/pci-compliance
https://squareup.com/guides/pci-compliance
https://continuousassurance.org/
https://continuousassurance.org/
https://www.fedramp.gov/assets/resources/documents/FedRAMP_Policy_Memo.pdf
https://www.fedramp.gov/assets/resources/documents/FedRAMP_Policy_Memo.pdf
https://github.com/NitorCreations/vault/blob/3c3ec65879c82bb353b4cf4d22898abb0b7b578f/java/src/main/java/com/nitorcreations/vault/VaultClient.java
https://github.com/NitorCreations/vault/blob/3c3ec65879c82bb353b4cf4d22898abb0b7b578f/java/src/main/java/com/nitorcreations/vault/VaultClient.java
https://github.com/NitorCreations/vault/blob/3c3ec65879c82bb353b4cf4d22898abb0b7b578f/java/src/main/java/com/nitorcreations/vault/VaultClient.java
https://usa.visa.com/dam/VCOM/download/merchants/data-security-compliance-service-providers.pdf
https://usa.visa.com/dam/VCOM/download/merchants/data-security-compliance-service-providers.pdf
https://www.youtube.com/watch?v=BbXK_-b3DTk
https://www.youtube.com/watch?v=BbXK_-b3DTk

	Abstract
	1 Introduction
	1.1 Problems with manual audits
	1.2 Our approach: continuous compliance
	1.3 Contributions

	2 Compliancecertificationworkflow
	2.1 Traditional audit workflow
	2.2 Audit workflow with continuous compliance

	3 Continuous compliance controls
	3.1 Cryptographic key length
	3.2 Cryptographic algorithms
	3.3 Web requests
	3.4 Cloud data store initialization
	3.5 Hard-coded credentials
	3.6 Other controls

	4 Technical approach
	4.1 Dataflow analysis via typechecking
	4.2 An enhanced constant value analysis
	4.3 Enums
	4.4 Regular expressions
	4.5 Type inference

	5 Verifying compliance controls
	5.1 Cryptographic key length
	5.2 Cryptographic algorithms
	5.3 Web requests
	5.4 Cloud data store initialization
	5.5 Hard-coded credentials

	6 Case study on open-source software
	6.1 Methodology
	6.2 Findings
	6.3 Example compliance violations

	7 Comparison to other tools
	7.1 Tools compared
	7.2 Results

	8 Case studies at AWS
	8.1 Continuous delivery case study
	8.2 Scanning-at-scale case study

	9 Threats to Validity
	10 Lessons learned
	11 Related Work
	12 Conclusion
	References

