
An experimental evaluation of continuous testing during development

David Saff Michael D. Ernst

MIT Computer Science & Artificial Intelligence Lab
200 Technology Square

Cambridge, MA 02139 USA
{saff,mernst}@csail.mit.edu

Abstract

Continuous testing uses excess cycles on a developer’s
workstation to continuously run regression tests in the back-
ground, providing rapid feedback about test failures as
source code is edited. It reduces the time and energy re-
quired to keep code well-tested, and prevents regression er-
rors from persisting uncaught for long periods of time. This
paper experimentally evaluates the promise of continuous
testing, based on a controlled human experiment.

The experiment indicates that the tool has a statistically
significant effect on developer success in completing a pro-
gramming task, without affecting time worked. Develop-
ers using continuous testing were three times more likely
to complete the task before the deadline than those with-
out. Most participants found continuous testing to be useful
and believed that it helped them write better code faster,
and 90% would recommend the tool to others. The partici-
pants were more resilient to distraction than we had feared,
and intuitively developed ways of incorporating the feed-
back into their workflow.

1 Introduction

Continuous testing uses excess cycles on a developer’s
workstation to continuously run regression tests in the back-
ground as the developer edits code. Continuous testing pro-
vides developers rapid feedback regarding errors that they
have inadvertently introduced. This paper experimentally
evaluates whether the feedback assists programmers in a
programming task.

The purpose of continuous testing is to reduce two va-
rieties of wasted time related to testing. The first source
of wasted time is time spent running tests: remembering to
run them, waiting for them to complete, and returning to the
task at hand after being interrupted to run tests. The second
source of wasted time is time spent performing development

while errors exist in the system. Performing development
in the presence of an error lengthens the time to correct the
error: more code changes must be considered to find the
changes that directly pertain to the error, the code changes
are no longer fresh in the developer’s mind, and new code
written in the meanwhile may also need to be changed as
part of the bug fix. The longer the developer is unaware of
the error, the worse these effects are likely to be.

Developers can trade these two sources of wasted time
off against one another by testing more or less frequently.
Test case selection [8, 12] and prioritization [17, 13] can
reduce the time spent waiting for tests. Editing while tests
run can also help, but further complicates reproducing and
tracking down errors.

Continuous testing reduces both varieties of wasted time
by using real-time integration with the development envi-
ronment to asynchronously run tests against the current ver-
sion of the code and notify the developer of regression er-
rors. It can be combined with other approaches for further
optimization.

Previous work prospectively evaluated continuous test-
ing [14]. Developer behavior was monitored at a fine granu-
larity, including the state of all editor buffers and all on-disk
files, and when tests were run. These observations permit-
ted determination of theignorance timebetween introduc-
tion of each regression error (in the developer’s editor) and
the developer becoming aware of the error (by running the
test suite), and thefix timebetween the developer becom-
ing aware of the error and fixing the error. The ignorance
time and fix time are correlated: larger ignorance times
yield larger fix times. This suggests that reducing ignorance
time should reduce fix time; this observation, along with
the development history, permit prediction of how much
time could have been saved by use of a tool that reduced
ignorance time (and indirectly reduced fix time). The pre-
vious work suggested, based on two development projects
by a single developer, that development time could be re-
duced by 10–15%, which is substantially more than could

1



be achieved by changing test frequency or reordering tests.
This paper experimentally evaluates the promise of con-

tinuous testing, based on a controlled human experiment
with 17 developers, each of whom performed two unrelated
development projects. The experimental results indicate
that a continuous testing tool has a statistically significant
effect on developer success in completing a programming
task. This paper presents both the quantitative and the qual-
itative results of the experiment.

2 Tools
We have implemented a continuous testing infrastructure

for the Java JUnit testing framework and for the Eclipse and
Emacs development environments.

Our JUnit extensions (used by both plug-ins) persistently
record whether a test has ever succeeded in the past. This
permits it to both change the order in which tests are run
and the order in which results are printed. For instance,
regression errors, which are typically more serious, can be
prioritized over unimplemented tests.

We have built continuous testing plug-ins for both
Eclipse and Emacs. We focus here on the Emacs plug-in,
which was used in our experiment. We describe how the
user is notified of problems in his or her code and how the
plug-in decides when to run tests. We conclude this section
with a comparison to pre-existing features in Eclipse and
Emacs.

Because Emacs does not have a standard notification
mechanism we indicated compilation and test errors in the
mode line. The mode line is the last line of each Emacs
text window; it typically indicates the name of the under-
lying buffer, whether the buffer has unsaved modifications,
and what Emacs modes are in use. The Emacs plug-in (a
“minor mode” in Emacs parlance) uses some of the empty
space in the mode line. When there are no errors to re-
port, that space remains blank, but when there are errors,
then the mode line contains text such as “Compile-errors”
or “Regressions:3”. The mode line indicates whether the
code cannot be compiled; regression errors have been in-
troduced (tests that used to give correct answers no longer
do); or some tests are unimplemented (the tests have never
completed correctly). Because space in the mode line is at
a premium, no further details (beyond the number of failing
tests) are provided, but the user can click on the mode line
notification in order to see details about each error. Clicking
shows the errors in a separate window and places the cur-
sor on the line corresponding to the first error. Additional
clicks navigate to lines corresponding to additional errors
and/or to different frames within a backtrace.

The Emacs plug-in performs testing whenever there is a
sufficiently long pause; it does not require the user to save
the code. The Emacs plug-in indicates errors that would
occur if the developer were to save all modified buffers,

then compiled and tested the on-disk version of the code.
In other words, the Emacs plug-in indicates problems with
the developer’s current view of the code.

The Emacs plug-in implements testing of modified
buffers by transparently saving them to a separate shadow
directory that contains a copy of the software under de-
velopment, then performing compilation and testing in the
shadow directory. This approach has the advantage of pro-
viding earlier notification of problems. Otherwise, the de-
veloper would have no possibility of learning of problems
until the next save, which might not occur for a long pe-
riod. Notification of inconsistent intermediate states can be
positive if it reinforces that the developer has made an in-
tended change, or negative if it distracts the developer; see
Section 5.

The continuous testing tool represents an incremental ad-
vance over existing technology in Emacs and Eclipse. By
default, Emacs indirectly indicates syntactic problems in
code via its automatic indentation, fontification (coloring
of different syntactic entities in different colors), indication
of matching parentheses, and similar mechanisms. Eclipse
provides more feedback during editing (though less than a
full compiler can), automatically compiles when the user
saves a buffer, and indicates compilation problems both in
the text editor window and in the task list. Our Emacs plug-
in provides complete compilation feedback in real time, and
both of our plug-ins provide notification of test errors.

3 Experimental design

This section describes the subjects, tasks, and treatments
in our experimental evaluation of continuous testing.

3.1 Participant demographics

Our experimental subjects were students, primarily col-
lege sophomores, in MIT’s 6.170 Laboratory in Soft-
ware Engineering course (http://www.mit.edu/˜6.

170 ). This is the second programming course at MIT, and
the first one that uses Java (the first programming course
uses Scheme). Of the 100 students taking the class during
the Fall 2003 semester, 34 volunteered to participate in the
experiment. In order to avoid biasing this sample, partici-
pants were not rewarded in any way. For logistical reasons,
data could be obtained from only 22 participants. There are
17 datapoints for the second problem set because 5 partici-
pants turned off monitoring or, more frequently, switched to
a different development environment. On average, the par-
ticipants had 3 years of programming experience, and one
third of them were already familiar with the notions of test
cases and regression errors. Figure 1 gives demographic de-
tails regarding the study participants.

Figure 2 summarizes the reasons given by students who
chose not to participate; 31 of the non-participants an-

2



Mean Dev. Min. Max.
Years programming 2.8 2.9 0.5 14.0
Years Java programming 0.4 0.5 0.0 2.0
Years using Emacs 1.3 1.2 0.0 5.0
Years using a Java IDE 0.2 0.3 0.0 1.0

Frequencies
Usual environment Unix 29%; Win 38%; both 33%
Regression testing familiar 33%; not familiar 67%
Used Emacs to compile at least once 62%; never 38%
Used Emacs for Java at least once 17%; never 83%

Figure 1. Study participant demographics (N=22). “Dev” is stan-
dard deviation.

Don’t use Emacs 45%
Don’t use Athena 29%
Didn’t want the hassle 60%
Feared work would be hindered 44%
Privacy concerns 7%

Figure 2. Reasons for non-participation in the study (N=31). Stu-
dents could give as many reasons as they liked.

swered a questionnaire regarding their decision. The 6.170
course staff only supports use of Athena, MIT’s campus-
wide computing environment, and the Emacs editor. In the
experiment, we provided an Emacs plug-in that worked on
Athena, so students who used a different development en-
vironment generally chose not to participate. The four non-
Emacs development environments cited by students were
(in order of popularity): Eclipse, text editors (grouping
together vi, pico, and EditPlus2), Sun ONE Studio, and
JBuilder. Students who did not complete their assignments
on Athena typically used their home computers. Student
use of Emacs or of Athena was not a statistically significant
predictor of any measure of success (see Section 4.1.1).

Only two factors that we measured predicted participa-
tion to a statistically significant degree. First, students who
had more Java experience were less likely to participate.
Many students said this was because they already had work
habits and tool preferences regarding Java coding. Overall
programming experience was not a predictor of participa-
tion, and neither variety of programming experience pre-
dicted any measure of success for participants. Second, stu-
dents who had experience compiling programs using Emacs
were more likely to participate; this variety of Emacs ex-
perience did not predict any of the factors that we mea-
sured, however. Differences between participants and non-
participants do not affect our results, because we chose a
control group (that was supplied with no experimental tool)
from among the participants who had volunteered for the
study.

PS1 PS2
participants 22 17
skeleton lines of code 732 669
written lines of code 150 135
written classes 4 2
written methods 18 31
time worked (hours) 9.4 13.2

Figure 3. Properties of student solutions to problem sets. All data,
except number of participants, are means. Students received skele-
ton files with Javadoc and method signatures for all classes to be
implemented. Students then added about 150 lines of new code to
complete the programs. Files that students were provided but did
not need to modify are omitted from the table.

3.2 Task

During the experiment, the participants completed the
first two assignments (problem sets) for the course. Partic-
ipants were treated no differently than other students. The
problem sets were not changed in any way to accommodate
the experiment, nor did we ask participants to change their
behavior when solving the problem sets. (In fact, our re-
sults are all the more impressive because a few students in
the treatment groups ignored the tools and thus gained no
benefit from them.) All students were given a 20-minute
tutorial on the tools and had access to webpages explaining
their use.

Each problem set provided students with a partial im-
plementation of a simple program. Students were also pro-
vided with a complete test suite (see Section 3.2.1). The
partial implementation included full implementations of
several classes and skeleton implementations of the classes
remaining to be implemented. The skeletons included all
Javadoc comments and method signatures, with the body
of each method containing only a RuntimeException. This
meant that the code compiled and ran from the time the
students received the problem sets. Initially, most of the
tests (all those that exercised any code that students were
intended to write) failed with a RuntimeException.

The first problem set required implementing four Java
classes to complete a poker game. The second problem
set required implementing two Java classes to complete a
graphing polynomial calculator. Both problem sets also in-
volved written questions, but we ignore those questions for
the purposes of our experiment. Figure 3 gives statistics
regarding the participant solutions to the problem sets.

3.2.1 Test suites

Students were provided with test suites prepared by the
course staff (see Figure 4). Passing these test suites cor-
rectly accounted for 75% of the grade for the programming
problems in the problem set.

3



PS1 PS2
tests 49 82
initial failing tests 45 46
lines of code 3299 1444
running time (secs) 3 2
compilation time (secs) 1.4 1.4

Figure 4. Properties of provided test suites. “Initial failing tests”
indicates how many of the tests are not passed by the staff-
provided skeleton code. Times were measured on a typical X-
Windows-enabled dialup Athena server under a typical load 36
hours before problem set deadline.

participants non-participants
waited until end to test 31% 51%
tested regularly throughout 69% 49%

test frequency (minutes)
mean 20 18
min 7 3
max 40 60

Figure 5. Student use of test suites, self-reported. “Participants”
includes only participants without continuous testing. Only stu-
dents who tested regularly throughout development reported test
frequencies.

The suites are optimized for grading, not performance,
coverage, or usability. However, experience from teaching
assistants and students suggests that the tests are quite ef-
fective at covering the specification students were required
to meet. Compiling and testing required less than five sec-
onds even on a loaded dialup server, since the suites were
relatively small (see Figure 4).

Several deficiencies of the provided test suites and code
impacted their usefulness as teaching tools and students’ de-
velopment effectiveness. The PS1 test suite made extensive
use of test fixtures (essentially, global variables that are ini-
tialized in a special manner), which had not been covered
in lecture, and were confusing to follow even for some ex-
perienced students. In PS2, the provided implementation of
polynomial division depended on the students’ implemen-
tation of polynomial addition to maintain several represen-
tation invariants. Failure to do so resulted in a failure of the
division test, but not the addition test. Despite these prob-
lems, students reported enjoying the use of the test suites,
and found examining them helpful in developing their so-
lutions. Figure 5 gives more detail about student use of the
provided test suites, ignoring for now participants who used
continuous testing.

3.3 Experimental treatments

The experiment used three experimental treatments: a
control group, a continuous compilation group, and a con-
tinuous testing group. The control group was provided with

an Emacs environment in which Java programs could be
compiled with a single keystroke and in which the (staff-
provided) tests could be run with a single keystroke. The
continuous compilation group was additionally provided
with asynchronous notification of compilation errors in
their code. The continuous testing group was further pro-
vided with asynchronous notification of test errors. The
tools are described in Section 2.

For each problem set, participants were randomly as-
signed to one of the experimental treatments: 25% to the
control group, 25% to the continuous compilation group,
and 50% to the continuous testing group. Thus, most par-
ticipants were assigned to different treatments for the two
problem sets; this avoids conflating subjects with treatments
and also permits users to compare multiple treatments.

4 Quantitative results
Data collected from questionnaires, problem set solu-

tions, and by monitoring the participants during develop-
ment allowed us to evaluate several hypotheses. Section 4.1
reports which variables predicted participant success on the
problem sets. Section 4.2 confirms the hypothesis that man-
ually discovering errors more quickly leads to fixing errors
more quickly. Section 4.3 investigates at a finer-grained
level what effects continuous testing and continuous compi-
lation had on the way that participants progressed through
the problem set solution.

4.1 Statistical tests
This paper reports all, and only, effects that are statisti-

cally significant at thep = .05 level. All of our tests prop-
erly accounted for mismatched group and sample sizes.

When comparing nominal (also known as classification
or categorical) variables, we used the Chi-Square test, ex-
cept that we used Fisher’s exact test (a more conservative
test) when 20% or more of the the cells of the classification
table had expected counts less than 5, because Chi-Square is
not valid in such circumstances. When using nominal vari-
ables to predict numeric variables, we used factorial analy-
sis of variance (ANOVA).

When using numeric variables as predictors, we first
dummy-coded or effect coded the numeric variables to
make them nominal, then used the appropriate test listed
above. We did so because we were less interested in
whether there was a correlation (which we could have ob-
tained from standard, multiple, or logistic regression) than
whether the effect of the predictor on the criterion variable
was statistically significant in our experiment.

4.1.1 Variables compared

As predictors, we used experimental treatment, problem set,
and all quantities of Figures 1 and 9.

4



The key criterion (effect) variables for success are:

• time worked. Because there is more work in develop-
ment than typing code, we divided wall clock time into
5-minute intervals, and counted 5 minutes for each in-
terval in which the student made any edits to the.java

files comprising his or her solution.
• grade, as assigned by TAs. This is available only for

PS1, as PS2 had not yet been graded at the time of
writing.

• errors. Number of tests that the student submission
failed.

• correct. True if the student solution passed all tests.

Participants agreed to have an additional Emacs plug-
in installed on their system that monitored their behavior
and securely transmitted logs to a central remote server.
The log events included downloading the problem set, re-
motely turning in the problem set, changes made to buffers
in Emacs containing problem set source (even if changes
were not saved), changes to the source in the file system
outside Emacs, manual runs of the test suite, and clicking
the mode line to see errors.

This allowed us to test the effect of the predictors on 36
additional variables indicating the number of times users
entered the following 6 states, the period between being in
the states, and the absolute and relative average and total
time in the states. The states are:

• ignorance: between unknowingly introducing an error
and becoming aware of it via a test failure

• fixing: between becoming aware of an error and cor-
recting it

• editing: between knowingly introducing an error and
correcting it.

• regression: between introducing, knowingly or un-
knowingly, and eliminating a regression error

• compile error: between introducing and eliminating a
compilation error

• testing: between starting and stopping tests; elapsed
times are always very short in our experiments, but the
number and period are still interesting quantities

4.1.2 Statistical results

Overall, we found relatively few statistically significant ef-
fects. We hypothesize that the main reason for this is the
well-known large variation among individual programmers.
This section lists all the statistically significant effects.

1. Treatment predicts correctness (see Figure 6). This is
the central finding of our experiment, and is supported
at thep < .03 level. Students who were provided
with a continuous testing tool were 3 times as likely
to complete the assignment correctly than those who

Treatment N Correct
No tool 11 27%
Continuous compilation 10 50%
Continuous testing 18 78%

Figure 6. Treatment predicts correctness. “N” is the number of
participants in each group. “Correct” means that the participant’s
completed program passed the provided test suite.

were provided with no tool. Even provision of contin-
uous compilation doubled the success rate.

2. Problem set predicts time worked (PS2 took 13.2 hours
of programming time on average, compared to 9.4
hours for PS1). Therefore, we re-ran all analyses con-
sidering the problem sets separately. We also re-ran all
analyses considering only successful users (those who
submitted correct programs).

3. For PS1 only, years of Java experience predicted cor-
rectness. For the first problem set, participants with
previous Java experience had an advantage. By one
week later, the others had caught up (or at least were
no longer statistically significantly behind).

4. For PS1 participants with correct programs, years of
Java IDE experience predicts time worked: those who
had more previous Java IDE experience spent less
time.

It is worth emphasizing that we found no other statisti-
cally significant effects. In particular, none of the predictors
of section 4.1.1 predicted number of errors, time worked
(except years of Java IDE experience, for PS1 participants
with correct programs), grade, or the variables measuring
various development events such as number of regression
errors.

4.2 Effect of ignorance on fix time

This section reports a correlation between ignorance
time and fix time. This suggests that continuous testing
could not only help keep code correct and reduce time
wasted manually testing, but also reduce the amount of time
spent fixing regression errors, thus shortening the overall
development process.

For students who used manual testing, we could mon-
itor when regression errors were introduced, when they
were discovered through testing, and when they were fixed.
Of course, not all times when a previously-passing test is
caused to fail are due to inadvertent errors. It may also
be that the developer has knowingly, temporarily made a
change that breaks the test suite, in expectation of soon
making another change that will bring it back to passing.
To summarize the model of developer behavior put forward
in [14], we infer that developers do not generally run tests
when they are in the midst of such an editing cycle. Thus,

5



1

10

100

1000

10000

1 10 100 1000

fix
 ti

m
e 

(s
ec

on
ds

)

ignorance time (seconds)

2x0.99

Figure 7. Scatter plot and best-fit line for fix time vs. ignorance
time. Axes are log-scale, and the best-fit line is plotted.

only when a test is run at a time when the suite is failing do
we count it as a caught regression error.

Figure 7 plots ignorance time and fix time for a sin-
gle student (the one who was measured to have introduced
and fixed the most regression errors). Taking all students
together as a group, individual variations in programming
style and other factors influencing fix time introduce more
noise, but the trend is still clear. The best fit line indicates
that fix timef and ignorance timei are related by the for-
mula f = 34i0.37. This helps to confirm the idea that re-
ducing ignorance time by providing more frequent feedback
may reduce the time spent fixing regression errors.

Section 4.1.2 reported that use of continuous testing has
no statistically significant effect on any variety of time that
we measured in our experiment. Given the correlation, and
the fact that continuous testing should speed discovery and
correction of regression errors, this was not the result we
expected. One possible reason for the result is that partici-
pants spent only 4% of their overall development time fixing
regression errors, so that is the largest amount of time that
continuous testing could possibly have saved. This differs
from previous projects where the proportion of regression
fix time was higher [14].

4.3 Progress patterns

Since students were provided with test suites that repre-
sented a significant part of their grade, it is natural to mea-
sure their progress over time in terms of the number of tests
passed by their solution. Figure 8 graphs the progress of
participants from when they started working on the prob-
lem set to when they stopped working and turned it in. The
graph normalizes across problem sets and participant varia-
tion by reporting, on the x axis, percentages of time worked.

For the majority of development, students in the con-
trol group appear to be making better progress than those in
the other groups. They make quick gains at the beginning,

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

er
ro

rs

time (% of total)

Relative to time worked
no automatic help

just compilation errors
compilation and test errors

Figure 8. Failing tests remaining after a given proportion of work-
ing time has passed. Not all submitted solutions (time = 100%)
passed all tests.

likely by quickly completing simple methods without paus-
ing to test. However, after about 20% of time has passed,
the control students begin to slow down, while those with
continuous compilation and continuous testing continue on
a steadier pace. Then, near the end, students with continu-
ous testing begin to go more quickly, perhaps because the
tools help them move more quickly and confidently when
debugging the last few persistent bugs. In the end, although
the average number of errors is very similar for those with
compilation and test error notification, those with test error
notification are significantly more likely to have removed
all bugs and completed the assignment (see Figure 6).

5 Qualitative results

We gathered qualitative feedback about the tools from
three main sources. All students were asked to complete an
online questionnaire containing multiple-choice and free-
form questions. We interviewed staff members about their
experiences using the tools, helping students with them, and
teaching Java while the tools were running. Finally, some
students provided direct feedback via e-mail.

Section 5.1 discusses the results of the multiple choice
questions. The remainder of this section summarizes feed-
back about changes in work habits, positive and negative
impressions, and suggestions for improvement.

5.1 Multiple choice results

Figure 9 summarizes the multiple-choice questions
about experiences with the tools. Participants appear to
have felt that continuous compilation provided somewhat
more benefit than continuous testing (though the statistical
evidence of Section 4.1.2 indicates the opposite), but im-
pressions about both tools were positive overall.

The negative response on “I was distracted by the tool”
is a positive indicator for the tools. In fact, 70% of con-

6



Continuous Continuous
compilation testing

(N=20) (N=13)
The reported errors often surprised me 1.0 0.7
I discovered problems more quickly 2.0 0.9
I completed the assignment faster 1.5 0.6
I wrote better code 0.9 0.7
I was distracted by the tool −0.5 −0.6
I enjoyed using the tool 1.5 0.6
The tool changed the way I worked 1.7
I would use the tool in 6.170 yes 94%; no 6%

. . . in my own programming yes 80%; no 10%
I would recommend the tool to others yes 90%; no 10%

Figure 9. Questionnaire answers regarding user perceptions of the
continuous testing tool. The first 6 questions were answered on a
7-point scale ranging from “strongly agree” (here reported as 3)
through “neutral” (reported as 0) to “strongly disagree” (reported
as -3). The behavior change question is on a scale of 0 (“no”) to 3
(“definitely”).

tinuous testing and continuous compilation participants re-
ported leaving the continuous testing window open. This
confirms that these participants did not find it distracting,
because they could easily have reduced distraction and re-
claimed screen space by closing it (and re-opening it on de-
mand when errors were indicated).

5.2 Changes in work habits

Participants reported that their working habits changed
when using the tool. Several participants reported similar
habits to one who “got a small part of my code working
before moving on to the next section, rather than trying to
debug everything at the end.” Another said, “It was easier
to see my errors when they were only with one method at a
time.” The course staff had recommended that all students
use the single-keystroke testing macro, which should have
provided the same benefits. However, some participants felt
they only got these benefits when even this small step was
automated.

This blessing could also be a curse, however, exacerbat-
ing faults in the test suites (see Section 3.2.1): “The constant
testing made me look for a quick fix rather than examine the
code to see what was at the heart of the problem. Seeing the
‘success’ message made me think too often that I’d finished
a section of code, when in fact, there may be additional er-
rors the test cases don’t catch.”

5.3 Positive feedback

Participants who enjoyed using the tools noted the tools’
ease of use and the quickness with which they felt they
could code. One mentioned they enjoyed watching unim-
plemented tests disappear as they coded correctly. Several

mentioned enjoying being freed from the mechanical te-
dium of frequent manual testing: “Once I finally figured out
how it worked, I got even lazier and never manually ran the
test cases myself anymore.” One said that it’s “especially
useful for someone extremely prone to stupid typo-style er-
rors, the kind that are obvious and easily fixable when you
see the error line but which don’t jump out at a glance.”

Staff feedback was also predominantly positive. The
head TA reported, “the continuous testing worked well for
students. Students used the output constantly, and they also
seemed to have a great handle on the overall environment.”
Staff reported that participants who were provided the tools
for the first problem set and not for the second problem set
missed the additional functionality.

Several participants pointed out that the first two prob-
lem sets were a special case that made continuous testing es-
pecially useful. Full test suites were provided by the course
staff before the students began coding, and passing the test
suite was a major component of students’ grades on the as-
signments. Several participants mentioned that they weren’t
sure they would use continuous testing without a provided
test suite, because they were uncomfortable writing their
own testing code. One said that “In my own programming,
there are seldom easily tested individual parts of the code.”
It appears that the study made participants think much more
about testing and modular design, which are both impor-
tant parts of the goals of the class, and are often ignored by
novice programmers. It’s likely that the tools will become
even more useful to students as they learn these concepts.

5.4 Negative feedback

Participants who didn’t enjoy using the tools often said
that it interfered with their established working habits. One
said “Since I had already been writing extensive Java code
for a year using emacs and an xterm, it simply got in the
way of my work instead of helping me. I suppose that, if I
did not already have a set way of doing my coding, contin-
uous testing could have been more useful.” Many felt that
the reporting of compilation errors as implemented was not
helpful, because far too often they knew about the errors
that were reported. Others appear to have not understood
the documentation. Several didn’t understand how to get
more information about the compile errors reported in the
modeline.

Some participants believed that when the tool reported a
compilation or test error, that the tool had saved and com-
piled their code. In fact, the tool was reporting what would
happen were the user to save, compile, and test the code.
Some users were surprised when running the tests (without
saving and compiling their work) gave different results than
the hypothetical ones provided by the tool.

7



5.5 Suggestions for improvement
Participants had many suggestions for improvement.

One recommended more flexibility in its configuration. (As
provided, the tools were hardcoded to report feedback based
on the staff-provided test suite. After the study completed,
students were given instructions on using the tools with
their own test suite.) Another wanted even more sophisti-
cated feedback, including a “guess” of why the error is oc-
curring. Section 9 proposes integrating continuous testing
with Delta Debugging [18], to provide some of these hints.

5.5.1 Implementation issues

A problem that confused some students is that the continu-
ous testing tool filtered out some information from the JU-
nit output before displaying it. In particular, it removed
Java stack frames related to the JUnit infrastructure. These
were never relevant to the code errors, but some users were
alarmed by the differences between the continuous testing
output and the output of the tests when run directly.

Another problem was that when a test caused an infinite
loop in the code under test, no output would be provided to
the student to this effect. This is identical to the behavior of
standard JUnit, but since students did not manually run the
tests, they thought that the tool had failed.

Some participants reported an irreproducible error in
which the results appeared not to change to reflect the state
of the code under particular circumstances. One partici-
pant reported that this happened 2 or 3 times during the
two weeks of the study. These participants still reported
that they would continue using the tools in the future, so we
assume it was not a huge impediment to their work.

The most common complaint and improvement recom-
mendation was that on compute-bound workstations (such
as a 333-MHz Pentium II running a modern operating sys-
tem and development environments, or a dialup worksta-
tion shared with up to 100 other users all running X appli-
cations), the background compilation and testing processes
could monopolize the processor, sometimes so much that
“cursor movement and typing were erratic and uncontrol-
lable.” One said that “it needs a faster computer to be
worthwhile.” However, most students found the perfor-
mance acceptable. We conclude that potential users should
be warned to use a system with acceptable performance, and
that additional performance optimizations are worthwhile.

6 Threats to validity
Our experiment has produced statistically significant re-

sults showing that a continuous compilation tool doubles
the success rate of developers in creating a correct program,
and continuous testing tool triples the success rate. How-
ever, the circumstances of the experiment must be carefully
considered before applying the results to a new situation.

One potential problem with the experiment is the rela-
tive inexperience of the participants. They had on average
2.8 years of programming experience, but only 0.4 years of
experience with Java. Two thirds of them were not initially
familiar with the notion of regression testing. More experi-
enced programmers might not need the tools as much — or
they might be less confused by them and make more effec-
tive use of them. The level of volunteerism for the study
was relatively low; thus, our findings may only apply to
users who are open to new development tools and method-
ologies.

We may have failed to measure some other quantity that
predicts success; such an effect could conceivably swamp
the predictors that we did measure. The tool may have really
had a positive effect, but for a reason that neither we, nor the
students we obtained feedback from, understood properly.

There are several factors that suggest that the actual re-
sults may be even better than measured by this experiment.

We identified a number of problems with the tools (Sec-
tion 5.5.1). Many of these could be corrected relatively eas-
ily, which would only improve the results for the partici-
pants who were provided the tool.

The experiment tested three rather than two different
treatments (a control group and two different tools). Had
we omitted the continuous compilation group, more effects
would be statistically significant, but it would not have been
clear whether the benefits came from the compilation or
the testing portion of the tool; we have demonstrated that
both are significant. Likewise, the experiment involved rel-
atively few participants, so only relatively large differences
in effects are statistically significant. There may be other
effects that are less important (smaller in magnitude) yet
are still statistically significant. For example, neither pro-
gramming experience nor Java experience predicted suc-
cess at thep = .05 level, but both predicted success at the
p = .10 level. Perhaps with additional participants, thep
value would have been lower and we would have concluded
that these effects were significant. (Or perhaps the course
instructor did a good enough job that prior experience was
only a rather weak predictor of experience — we are forced
to this conclusion by the statistics that are available to us.)

The experiment provided in some ways a worst-case sce-
nario for a continuous testing tool. Continuous testing is
most useful when it relieves developers of difficult, lengthy,
or easily forgotten tasks. We believe continuous testing to
be of most benefit for developers who are performing main-
tenance (or other tasks that are likely to introduce regression
errors) on a codebase whose test suite takes a substantial
amount of time to run. By contrast, the participants in our
study were performing initial development to a given test
suite, the test suites completed in seconds (see Figure 4),
and even members of the control and continuous compila-
tion groups could run the test suite with a single keystroke.

8



Our results demonstrate that even when not matched against
a strawman, continuous testing is valuable, and that it does
not hinder developer performance — as might be feared by
someone who has never used the tool — even in a situation
in which it would not be expected to have a large positive
impact.

7 Related work
We previously introduced the notion of continuous test-

ing during development to reduce wasted development
time [14]. The previous work also presented a model of
developer belief that, along with a detailed record of a prior
development project, enabled estimation of what the effects
would have been, had the developer used a different testing
tool in the prior project. A case study with one developer in-
dicated that savings of 10–15% of development time should
be possible. This research extends the previous research by
implementing the continuous testing tool and performing a
controlled experiment in order to measure rather than esti-
mate the effect of the tool, and in order to obtain qualitative
feedback regarding developer perceptions of the tool.

Boehm [3] and Baziuk [1] have shown that in projects
using a traditional waterfall methodology, the number of
project phases between the introduction and discovery of
a defect has a dramatic effect on the time required to fix it.
We believe that similar results hold on the order of seconds
rather than days or months, and this paper represents the
beginning of an investigation into the veracity of our belief.

Continuous testing can be viewed as a natural extension
of modern IDEs (integrated development environments).
These IDEs supply the developer rapid feedback by per-
forming continuous parsing and compilation, indicating
(some) syntactic and semantic errors immediately rather
than delaying notification until the user explicitly compiles
the code. Continuous testing can also be viewed as a natural
extension of Extreme Programming [2], which emphasizes
the importance of unit test suites that are run very frequently
to ensure that code can be augmented or refactored rapidly
without regression errors.

Continuous execution[5], Programming by Example [4,
7], and Editing by Example [10, 9] all provide continuous
feedback to developers about the results of their program
on one or more inputs as the program changes. Our work
abstracts from the entire output to the boolean result of each
indvidual test case.

Johnson, et al. [6] evaluate the HackyStat client/server
framework, which monitors individual developer activity
and provides feedback on how development time is being
spent. This information is intended to allow the individ-
ual to make changes to their own development process.
Our monitoring framework is similar to theirs, but provides
more data and allows deeper analysis, because it enables
recreating the state of the source code at any point in time.

Also, we were not evaluating the monitoring framework it-
self nor providing feedback on collected data, but monitor-
ing the impact of continuous testing.

Several other authors use terms similar to our uses of
continuous compilation, continuous execution, and contin-
uous testing. Siegel advocates “continuous testing”, by
which he means frequent synchronous testing during the
development process by pairs of developers [15]. Perpetual
testing or residual testing [11] (also known as “continuous
testing” [16]) monitors software forever in the field rather
than being tested only by the developer; in the field, only
aspects of the software that were never exercised by devel-
oper testing need be monitored.

8 Future work

As noted in Section 6, our tools and our experiment
could be improved in several ways. However, the exper-
iment cannot be repeated: given the finding that users of
continuous testing are better able to complete the assign-
ment successfully before the deadline, it would be uneth-
ical to deny it to the control group. It would also be un-
popular, since students enjoyed using it. However, future
experiments can be performed in new situations, where con-
tinuous testing is as yet unproven.

We plan to conduct industrial case studies to provide ad-
ditional qualitative information regarding continuous test-
ing. We will provide continuous testing tools to a company
performing software development for real customers, then
observe and interview the developers to learn how they use
the tools, their impressions of it, and their suggestions re-
garding it.

This experiment relied on the fact that the test suites be-
ing used could be run very quickly, easily providing real-
time notification. There are several ways to extend this to
suites that take longer to run.

First, we intend to integrate our Eclipse plug-in with
one provided by Andreas Zeller that performs Delta Debug-
ging [18]. Continuous testing gives early indication that a
program change has introduced a regression error. How-
ever, when test suites take a long time to run, there may
have been multiple program changes between the last suc-
cessful test run and the discovery of a regression error. Delta
Debugging can reduce the program changes to a minimum
set that causes the regression error. Both continuous testing
and this application of Delta Debugging reduce the number
of program changes that a user must examine in order to
understand the cause of a regression error; by using contin-
uous testing, then Delta Debugging, the entire process can
be made faster and more beneficial to the developer.

Second, we are investigating efficient test prioritization
for continuous testing [14], to improve performance on
suites that contain a large number of small tests.

9



Third, some individual test cases may take a long time to
run; this is particularly true of system or end-to-end tests.
An environment that must wait for such tests to complete
will not give the impression of instantaneous testing, even
if it prioritizes test cases perfectly. We are actively inves-
tigating test factoringto introduce new test cases that are
smaller and faster. Test factoring determines how a system
test uses a particular component, then creates unit tests for
the component based on that usage. If (only) the component
has recently changed, the unit test is just as effective as the
system test, but more efficient. The unit tests can be made
yet more efficient by eliminating redundancies.

9 Conclusion

We have shown that continuous testing is more than just
a good idea by implementing a continuous testing tool and
experimentally evaluating its effectiveness at helping stu-
dents complete programming assignments. The key, statis-
tically significant, result is that participants who used con-
tinuous testing were three times more likely to have suc-
cessfully completed their problem sets than those who did
not.

However, there was no statistically significant effect on
time worked. Previous work [14] had suggested that by re-
ducing the amount of time spent waiting for tests and fix-
ing regression errors, continuous testing held the promise
of speeding software development. This result indicates that
students were not burdened by the tools. We believe the lack
of improvement resulted from the fact that students were
working not just against a functional specification, but also
against a deadline. Many students likely budgeted a certain
amount of time to the problem set before the deadline, and
turned in whatever they had when time ran out. It’s impos-
sible to know for unsuccessful students how much longer it
would have taken for them to develop a complete solution.

Furthermore, students liked continuous testing and be-
lieved it helped them; their criticisms were minor by com-
parison to their praise. These positive results came despite
some problems with the tools and despite continuous test-
ing being used in a situation in which it does not necessarily
perform best: for initial development in a situation in which
tests are easy to run and complete quickly. It is a substantial
success of continuous testing that despite these obstacles,
users of the tool were still significantly helped. This encour-
ages us to extend our research on continuous testing, so it
can be used in additional academic and industrial settings.

References
[1] W. Baziuk. BNR/NORTEL: Path to improve product quality,

reliability, and customer satisfaction. InISSRE, Oct. 1995.

[2] K. Beck. Extreme Programming Explained. Addison-
Wesley, 1999.

[3] B. W. Boehm. Software engineering.IEEE Transactions on
Computers, C-25(12):1226–1241, 1976.

[4] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,
D. Maulsby, B. A. Myers, and A. Turransky, editors.Watch
What I Do: Programming by Demonstration. MIT Press,
Cambridge, MA, 1993.

[5] P. Henderson and M. Weiser. Continuous execution: The
VisiProg environment. InICSE, pages 68–74, Aug. 1985.

[6] P. M. Johnson, H. Kou, J. M. Agustin, C. Chan, C. A. Moore,
J. Miglani, S. Zhen, and W. E. Doane. Beyond the Personal
Software Process: Metrics collection and analysis for the dif-
ferently disciplined. InICSE, pages 641–646, May 2003.

[7] T. Lau, P. Domingos, and D. S. Weld. Version space alge-
bra and its application to programming by demonstration. In
ICML, pages 527–534, Stanford, CA, June 2000.

[8] H. K. N. Leung and L. White. Insights into regression test-
ing. In ICSM, pages 60–69, Oct. 1989.

[9] R. C. Miller. Lightweight Structure in Text. PhD thesis, Com-
puter Science Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, May 2002. Also
available as CMU Computer Science technical report CMU-
CS-02-134 and CMU Human-Computer Interaction Institute
technical report CMU-HCII-02-103.

[10] R. P. Nix. Editing by example.ACM Trans. Prog. Lang.
Syst., 7(4):600–621, Oct. 1985.

[11] C. Pavlopoulou and M. Young. Residual test coverage mon-
itoring. In ICSE, pages 277–284, May 1999.

[12] G. Rothermel and M. J. Harrold. Analyzing regression test
selection techniques.IEEE TSE, 22(8):529–551, Aug. 1996.

[13] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing.IEEE TSE,
27(10):929–948, Oct. 2001.

[14] D. Saff and M. D. Ernst. Reducing wasted development time
via continuous testing. InISSRE, Nov. 2003.

[15] S. Siegel.Object-Oriented Software Testing: A Hierarchical
Approach. John Wiley & Sons, 1996.

[16] M. L. Soffa. Continuous testing. Personal communication,
Feb. 2003.

[17] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. InISSRE,
pages 264–274, Nov. 1997.

[18] A. Zeller. Yesterday, my program worked. today, it does not.
why? InESEC/FSE, pages 253–267, Sept. 1999.

10


