An experimental evaluation of continuous testing during development

David Saff Michael D. Ernst

MIT Computer Science & Atrtificial Intelligence Lab
200 Technology Square
Cambridge, MA 02139 USA
{saff,mernst@csail.mit.edu

Abstract while errors exist in the system. Performing development
in the presence of an error lengthens the time to correct the
Continuous testing uses excess cycles on a developer'srror: more code changes must be considered to find the
workstation to continuously run regression tests in the back-changes that directly pertain to the error, the code changes
ground, providing rapid feedback about test failures as are no longer fresh in the developer's mind, and new code
source code is edited. It reduces the time and energy rewritten in the meanwhile may also need to be changed as
quired to keep code well-tested, and prevents regression erpart of the bug fix. The longer the developer is unaware of
rors from persisting uncaught for long periods of time. This the error, the worse these effects are likely to be.
paper experimentally evaluates the promise of continuous Developers can trade these two sources of wasted time
testing, based on a controlled human experiment. off against one another by testing more or less frequently.
The experiment indicates that the tool has a statistically Test case selection [8, 12] and prioritization [17, 13] can
significant effect on developer success in completing a pro-reduce the time spent waiting for tests. Editing while tests
gramming task, without affecting time worked. Develop- run can also help, but further complicates reproducing and
ers using continuous testing were three times more likely tracking down errors.
to complete the task before the deadline than those with- Continuous testing reduces both varieties of wasted time
out. Most participants found continuous testing to be useful by using real-time integration with the development envi-
and believed that it helped them write better code faster,ronment to asynchronously run tests against the current ver-
and 90% would recommend the tool to others. The partici- sion of the code and notify the developer of regression er-
pants were more resilient to distraction than we had feared,rors. It can be combined with other approaches for further
and intuitively developed ways of incorporating the feed- optimization.
back into their workflow. Previous work prospectively evaluated continuous test-
ing [14]. Developer behavior was monitored at a fine granu-
larity, including the state of all editor buffers and all on-disk
1 Introduction files, and when tests were run. These observations permit-
ted determination of thegnorance timebetween introduc-
Continuous testing uses excess cycles on a developer’sion of each regression error (in the developer’s editor) and
workstation to continuously run regression tests in the back-the developer becoming aware of the error (by running the
ground as the developer edits code. Continuous testing protest suite), and théix time between the developer becom-
vides developers rapid feedback regarding errors that theying aware of the error and fixing the error. The ignorance
have inadvertently introduced. This paper experimentally time and fix time are correlated: larger ignorance times
evaluates whether the feedback assists programmers in gield larger fix times. This suggests that reducing ignorance
programming task. time should reduce fix time; this observation, along with
The purpose of continuous testing is to reduce two va- the development history, permit prediction of how much
rieties of wasted time related to testing. The first source time could have been saved by use of a tool that reduced
of wasted time is time spent running tests: remembering toignorance time (and indirectly reduced fix time). The pre-
run them, waiting for them to complete, and returning to the vious work suggested, based on two development projects
task at hand after being interrupted to run tests. The secondy a single developer, that development time could be re-
source of wasted time is time spent performing developmentduced by 10-15%, which is substantially more than could

be achieved by changing test frequency or reordering tests.then compiled and tested the on-disk version of the code.
This paper experimentally evaluates the promise of con- In other words, the Emacs plug-in indicates problems with
tinuous testing, based on a controlled human experimentthe developer’s current view of the code.
with 17 developers, each of whom performed two unrelated The Emacs plug-in implements testing of modified
development projects. The experimental results indicatebuffers by transparently saving them to a separate shadow
that a continuous testing tool has a statistically significant directory that contains a copy of the software under de-
effect on developer success in completing a programmingvelopment, then performing compilation and testing in the
task. This paper presents both the quantitative and the qualshadow directory. This approach has the advantage of pro-

itative results of the experiment. viding earlier notification of problems. Otherwise, the de-
veloper would have no possibility of learning of problems
2 Tools until the next save, which might not occur for a long pe-

riod. Notification of inconsistent intermediate states can be
positive if it reinforces that the developer has made an in-
tended change, or negative if it distracts the developer; see
Section 5.
The continuous testing tool represents an incremental ad-
nce over existing technology in Emacs and Eclipse. By
default, Emacs indirectly indicates syntactic problems in
code via its automatic indentation, fontification (coloring
of different syntactic entities in different colors), indication
of matching parentheses, and similar mechanisms. Eclipse
provides more feedback during editing (though less than a
full compiler can), automatically compiles when the user
saves a buffer, and indicates compilation problems both in
the text editor window and in the task list. Our Emacs plug-
in provides complete compilation feedback in real time, and
both of our plug-ins provide natification of test errors.

We have implemented a continuous testing infrastructure
for the Java JUnit testing framework and for the Eclipse and
Emacs development environments.

Our JUnit extensions (used by both plug-ins) persistently
record whether a test has ever succeeded in the past. Th|§a
permits it to both change the order in which tests are run
and the order in which results are printed. For instance,
regression errors, which are typically more serious, can be
prioritized over unimplemented tests.

We have built continuous testing plug-ins for both
Eclipse and Emacs. We focus here on the Emacs plug-in
which was used in our experiment. We describe how the
user is notified of problems in his or her code and how the
plug-in decides when to run tests. We conclude this section.
with a comparison to pre-existing features in Eclipse and
Emacs.

Because Emacs does not have a standard notification) .
mechanism we indicated compilation and test errors in the3 EXperimental design
mode line. The mode line is the last line of each Emacs
text window; it typically indicates the name of the under-
lying buffer, whether the buffer has unsaved modifications,
and what Emacs modes are in use. The Emacs plug-in (

“minor mode” in Emacs parlance) uses some of the empty
space in the mode line. When there are no errors to re- Our experimental subjects were students, primarily col-
port, that space remains blank, but when there are errorslege sophomores, in MIT's 6.170 Laboratory in Soft-
then the mode line contains text such as “Compile-errors” ware Engineering coursehtfp://www.mit.edu/"6.

or “Regressions:3”. The mode line indicates whether the 170). This is the second programming course at MIT, and
code cannot be compiled; regression errors have been inthe first one that uses Java (the first programming course
troduced (tests that used to give correct answers no longeuses Scheme). Of the 100 students taking the class during
do); or some tests are unimplemented (the tests have nevethe Fall 2003 semester, 34 volunteered to participate in the
completed correctly). Because space in the mode line is atexperiment. In order to avoid biasing this sample, partici-
a premium, no further details (beyond the number of failing pants were not rewarded in any way. For logistical reasons,
tests) are provided, but the user can click on the mode linedata could be obtained from only 22 participants. There are
notification in order to see details about each error. Clicking 17 datapoints for the second problem set because 5 partici-
shows the errors in a separate window and places the curpants turned off monitoring or, more frequently, switched to
sor on the line corresponding to the first error. Additional a different development environment. On average, the par-
clicks navigate to lines corresponding to additional errors ticipants had 3 years of programming experience, and one
and/or to different frames within a backtrace. third of them were already familiar with the notions of test

The Emacs plug-in performs testing whenever there is acases and regression errors. Figure 1 gives demographic de-
sufficiently long pause; it does not require the user to savetails regarding the study participants.
the code. The Emacs plug-in indicates errors that would Figure 2 summarizes the reasons given by students who
occur if the developer were to save all modified buffers, chose not to participate; 31 of the non-participants an-

This section describes the subjects, tasks, and treatments
in our experimental evaluation of continuous testing.

&1 Participant demographics

Mean | Dev. | Min. | Max. PS1| PS2
Years programming 2.8 2.9 0.5 14.0 participants 22 17
Years Java programming 0.4 0.5 0.0 2.0 skeleton lines of code 732 | 669
Years using Emacs 1.3 1.2 0.0 5.0 written lines of code | 150 | 135
Years using a JavaIDE| 0.2 0.3 0.0 1.0 written classes 4 2

written methods 18 31

Frequencies time worked (hours) | 9.4 | 13.2
Usual environment Unix 29%; Win 38%; both 33%)))
Regression testing familiar 33%; not familiar 67% Figure 3. Properties of §tudent solutions to problem sets.' All data,
Used Emacs to compile| at least once 62%; never 38% except number of participants, are means. Students received skele-
Used Emacs for Java at least once 17%; never 83% ton files with Javadoc and method signatures for all classes to be

implemented. Students then added about 150 lines of new code to

Figure 1. Study participant demographics (N=22). “Dev” is stan- complete the programs. Files that students were provided but did
dard deviation. not need to modify are omitted from the table.

Don’t use Emacs 45% 3.2 Task

Don't use Athena 29%

Didn’t want the hassle 60% During the experiment, the participants completed the
Feared work would be hindered 44% first two assignments (problem sets) for the course. Partic-
Privacy concerns 7% ipants were treated no differently than other students. The

problem sets were not changed in any way to accommodate
the experiment, nor did we ask participants to change their
behavior when solving the problem sets. (In fact, our re-
sults are all the more impressive because a few students in
the treatment groups ignored the tools and thus gained no
swered a questionnaire regarding their decision. The 6.170benefit from them.) All students were given a 20-minute
course staff only supports use of Athena, MIT's campus- tutorial on the tools and had access to webpages explaining
wide computing environment, and the Emacs editor. In the their use.

experiment, we provided an Emacs plug-in that worked on Each problem set provided students with a partial im-
Athena, so students who used a different development enplementation of a simple program. Students were also pro-
vironment generally chose not to participate. The four non- vided with a complete test suite (see Section 3.2.1). The
Emacs development environments cited by students werepartial implementation included full implementations of
(in order of popularity): Eclipse, text editors (grouping several classes and skeleton implementations of the classes
together vi, pico, and EditPlus2), Sun ONE Studio, and remaining to be implemented. The skeletons included all
JBuilder. Students who did not complete their assignmentsJavadoc comments and method signatures, with the body
on Athena typically used their home computers. Studentof each method containing only a RuntimeException. This
use of Emacs or of Athena was not a statistically significant meant that the code compiled and ran from the time the
predictor of any measure of success (see Section 4.1.1). students received the problem sets. Initially, most of the
tests (all those that exercised any code that students were

Figure 2. Reasons for non-participation in the study (N=31). Stu-
dents could give as many reasons as they liked.

Only two factors that we measured predicted participa- . - . : , ;
tion to a statistically significant degree. First, students who intended to write) failed with a RuntimeException.
had more Java experience were less likely to participate. The first problem set required implementing four Java
Many students said this was because they already had worl!asses to complete a poker game. The second problem
habits and tool preferences regarding Java coding. OveralS€t réquired implementing two Java classes to complete a
programming experience was not a predictor of participa- graphing _polynomlal_ calculator. E_%oth problem sets also in-
tion, and neither variety of programming experience pre- volved written questions, bl_Jt we ignore those _quest|0n_s for
dicted any measure of success for participants. Second, stuth€ purposes of our experiment. Figure 3 gives statistics
dents who had experience compiling programs using Emacdeégarding the participant solutions to the problem sets.
were more likely to participate; this variety of Emacs ex-
perience did not predict any of the factors. that we mea- 35 1 Test suites
sured, however. Differences between participants and non-
participants do not affect our results, because we chose &tudents were provided with test suites prepared by the
control group (that was supplied with no experimental tool) course staff (see Figure 4). Passing these test suites cor-
from among the participants who had volunteered for the rectly accounted for 75% of the grade for the programming
study. problems in the problem set.

PS1 | PS2 an Emacs environment in which Java programs could be
tests 49 | 82 compiled with a single keystroke and in which the (staff-

:_nitial f?”ing tests 45| 46 provided) tests could be run with a single keystroke. The
Ines of code 3299 1444 continuous compilation group was additionally provided
running time (secs) 3 2

with asynchronous notification of compilation errors in
their code. The continuous testing group was further pro-
Figure 4. Properties of provided test suites. “Initial failing tests” Vided with asynchronous notification of test errors. The
indicates how many of the tests are not passed by the staff-tools are described in Section 2.

provided skeleton code. Times were measured on a typical X- For each problem set, participants were randomly as-
Windows-enabled dialup Athena server under a typical load 36 signed to one of the experimental treatments: 25% to the
hours before problem set deadline. control group, 25% to the continuous compilation group,
and 50% to the continuous testing group. Thus, most par-
ticipants were assigned to different treatments for the two
problem sets; this avoids conflating subjects with treatments
and also permits users to compare multiple treatments.

compilation time (secs] 1.4 1.4

participants| non-participants
waited until end to test 31% 51%
tested regularly throughout 69% 49%

test frequency (minutes)
mean 20 18 4 Quantitative results
min 7 3
max 40 60

Data collected from questionnaires, problem set solu-
tions, and by monitoring the participants during develop-
Figure 5. Student use of test suites, self-reported. “Participants” Ment allowed us to evaluate several hypotheses. Section 4.1
includes only participants without continuous testing. Only stu- reports which variables predicted participant success on the
dents who tested regularly throughout development reported testproblem sets. Section 4.2 confirms the hypothesis that man-
frequencies. ually discovering errors more quickly leads to fixing errors
more quickly. Section 4.3 investigates at a finer-grained
level what effects continuous testing and continuous compi-

The suites are .o'pt|m|zed for gradlng, not performange, lation had on the way that participants progressed through
coverage, or usability. However, experience from teachmgt

assistants and students suggests that the tests are quite ePe problem set solution.

fective at covering the specification students were required 4.1 Statistical tests

to meet. Compiling and testing required less than five sec-) o

onds even on a loaded dialup server, since the suites were 1hiS paper reports all, and only, effects that are statisti-

relatively small (see Figure 4). cally significant at the) = .05 level. All of our tests prop-
Several deficiencies of the provided test suites and codefTly @ccounted for mismatched group and sample sizes.

impacted their usefulness as teaching tools and students’ de- When comparing nominal (also known as classification

velopment effectiveness. The PS1 test suite made extensiv@" categorical) variables, we used the Chi-Square test, ex-

use of test fixtures (essentially, global variables that are ini- C€Pt that we used Fisher's exact test (a more conservative
tialized in a special manner), which had not been coveregtest) when 20% or more of the the cells of the classification

in lecture, and were confusing to follow even for some ex- table had expected counts less than 5, because Chi-Square is

perienced students. In PS2, the provided implementation of0t valid in such circumstances. When using nominal vari-
polynomial division depended on the students’ implemen- a.bles to predlct numeric variables, we used factorial analy-
tation of polynomial addition to maintain several represen- SIS 0f variance (ANOVA). . .
tation invariants. Failure to do so resulted in a failure of the ~ YWhen using numeric variables as predictors, we first
division test, but not the addition test. Despite these prob-dummy-coded or effect coded the numeric variables to
lems, students reported enjoying the use of the test suites@ke them nominal, then used the appropriate test listed
and found examining them helpful in developing their so- @P0ve. We did so because we were less interested in
lutions. Figure 5 gives more detail about student use of theWhether there was a correlation (which we could have ob-

provided test suites, ignoring for now participants who used tained from standard, multiple, or logistic regression) than
continuous testing. whether the effect of the predictor on the criterion variable

was statistically significant in our experiment.

3.3 Experimental treatments

. . 4.1.1 Variables compared
The experiment used three experimental treatments: a

control group, a continuous compilation group, and a con- As predictors, we used experimental treatment, problem set,
tinuous testing group. The control group was provided with and all quantities of Figures 1 and 9.

The key criterion (effect) variables for success are: Treatment N Correct

No tool 11 27%
e time worked. Because there is more work in develop- Continuous compilation 10 50%
ment than typing code, we divided wall clock time into Continuous testing 18 78%
5-minute intervals, and counted 5 minutes for each in-
terval in which the student made any edits to.thea Figure 6. Treatment predicts correctness. “N” is the number of
files comprising his or her solution. participants in each group. “Correct” means that the participant’s

e grade, as assigned by TAs. This is available only for completed program passed the provided test suite.
PS1, as PS2 had not yet been graded at the time of

writing. _ . . :
e errors. Number of tests that the student submission were prowo_led_ with no tool. Even provision of contin-
failed. uous compilation doubled the success rate.

2. Problem set predicts time worked (PS2 took 13.2 hours

e correct. True if the student solution passed all tests. . ;
of programming time on average, compared to 9.4

Participants agreed to have an additional Emacs plug- hours for PS1). Therefore, we re-ran all analyses con-
in installed on their system that monitored their behavior sidering the problem sets separately. We also re-ran all
and securely transmitted logs to a central remote server. analyses considering only successful users (those who
The log events included downloading the problem set, re- submitted correct programs).

motely turning in the problem set, changes made to buffers 3. For PS1 only, years of Java experience predicted cor-
in Emacs containing problem set source (even if changes rectness. For the first problem set, participants with
were not saved), changes to the source in the file system previous Java experience had an advantage. By one
outside Emacs, manual runs of the test suite, and clicking week later, the others had caught up (or at least were
the mode line to see errors. no longer statistically significantly behind).

This allowed us to test the effect of the predictors on 36 4. For PS1 participants with correct programs, years of
additional variables indicating the number of times users Java IDE experience predicts time worked: those who
entered the following 6 states, the period between being in had more previous Java IDE experience spent less
the states, and the absolute and relative average and total time.

time in the states. The states are: _ o o
It is worth emphasizing that we found no other statisti-

e ignorance: between unknowingly introducing an error cally significant effects. In particular, none of the predictors

and becoming aware of it via a test failure of section 4.1.1 predicted number of errors, time worked
o fixing: between becoming aware of an error and cor- (except years of Java IDE experience, for PS1 participants
recting it with correct programs), grade, or the variables measuring
e editing: between knowingly introducing an error and various development events such as number of regression
correcting it. errors.
e regression: between introducing, knowingly or un-
knowingly, and eliminating a regression error 4.2 Effect of ignorance on fix time

e compile error: between introducing and eliminating a Thi i . lation bet .
compilation error is section reports a correlation between ignorance

« testing: between starting and stopping tests: elapseoﬂme and fix time. This suggests that continuous testing

times are always very short in our experiments, but the €oU/d not only help keep code correct and reduce time
number and period are still interesting quantities wasted manually testing, but also reduce the amount of time

spent fixing regression errors, thus shortening the overall
development process.

For students who used manual testing, we could mon-
Overall, we found relatively few statistically significant ef- itor when regression errors were introduced, when they
fects. We hypothesize that the main reason for this is thewere discovered through testing, and when they were fixed.
well-known large variation among individual programmers. Of course, not all times when a previously-passing test is

This section lists all the statistically significant effects. caused to fail are due to inadvertent errors. It may also
be that the developer has knowingly, temporarily made a

1. Treatment predicts correctness (see Figure 6). This ischange that breaks the test suite, in expectation of soon
the central finding of our experiment, and is supported making another change that will bring it back to passing.
at thep < .03 level. Students who were provided To summarize the model of developer behavior put forward
with a continuous testing tool were 3 times as likely in [14], we infer that developers do not generally run tests
to complete the assignment correctly than those whowhen they are in the midst of such an editing cycle. Thus,

4.1.2 Statistical results

10000 : : 559 50 ‘ : n - :
25099 Relative to time worked
. 45 %eox no automatic help —— |
e just compilation errors ----x----
40 b X compilation and test errors x|
1000 £
. 35 -
5
e 30
3 " o ”
Q - =
2 100 S 25+
] @
£ B T, 20 ¢
o * 15 -
10 | i E
10 +
5t N
1 ; : 0 ‘ ‘ ‘ ‘
1 10 100 1000 0 20 40 60 80 100
ignorance time (seconds) time (% of total)
Figure 7. Scatter plot and best-fit line for fix time vs. ignorance Figure 8. Failing tests remaining after a given proportion of work-
time. Axes are log-scale, and the best-fit line is plotted. ing time has passed. Not all submitted solutions (time = 100%)

passed all tests.

only when a test is run at a time when the suite is failing do
we count it as a caught regression error. likely by quickly completing simple methods without paus-
Figure 7 plots ignorance time and fix time for a sin- ing to test. However, after about 20% of time has passed,
gle student (the one who was measured to have introducedhe control students begin to slow down, while those with
and fixed the most regression errors). Taking all studentscontinuous compilation and continuous testing continue on
together as a group, individual variations in programming & steadier pace. Then, near the end, students with continu-
style and other factors influencing fix time introduce more OUS testing begin to go more quickly, perhaps because the
noise, but the trend is still clear. The best fit line indicates tools help them move more quickly and confidently when
that fix time f and ignorance time are related by the for- ~ debugging the last few persistent bugs. In the end, although
mula f = 34i37. This helps to confirm the idea that re- the average number of errors is very similar for those with
ducing ignorance time by providing more frequent feedback compilation and test error notification, those with test error
may reduce the time Spent f|x|ng regression errors. notification are Significantly more ||ke|y to have removed
Section 4.1.2 reported that use of continuous testing has@ll bugs and completed the assignment (see Figure 6).
no statistically significant effect on any variety of time that
we measured in our experiment. Given the correlation, and5 Qualitative results
the faC'F that continuous testing Sh(.)UId speed discovery and We gathered qualitative feedback about the tools from
correction of regression errors, this was not the result we :
. : .. three main sources. All students were asked to complete an
expected. One possible reason for the result is that partici-~ . : - : .
online questionnaire containing multiple-choice and free-

pants spent only 4% of their overall developmenttime fixing form questions. We interviewed staff members about their

regression errors, so that is the largest amount of time thatex eriences usina the tools. heling students with them. and
continuous testing could possibly have saved. This differs P 9 - NeiPINg '

) . ! . “teaching Java while the tools were running. Finally, some
from previous projects where the proportion of regression . : . .
L : students provided direct feedback via e-mail.
fix time was higher [14].

Section 5.1 discusses the results of the multiple choice
guestions. The remainder of this section summarizes feed-
4.3 Progress patterns back about changes in work habits, positive and negative

Since students were provided with test suites that repre-MPressions, and suggestions for improvement.

sented a significant part of their grade, it is natural to mea-))

sure their progress over time in terms of the number of tests®-1 Multiple choice results

passed by their solution. Figure 8 graphs the progress of Figure 9 summarizes the multiple-choice questions

participants from when they started working on the prob- about experiences with the tools. Participants appear to

lem set to when they stopped working and turned it in. The have felt that continuous compilation provided somewhat

graph normalizes across problem sets and participant variamore benefit than continuous testing (though the statistical

tion by reporting, on the x axis, percentages of time worked. evidence of Section 4.1.2 indicates the opposite), but im-
For the majority of development, students in the con- pressions about both tools were positive overall.

trol group appear to be making better progress than those in The negative response on “l was distracted by the tool”

the other groups. They make quick gains at the beginning,is a positive indicator for the tools. In fact, 70% of con-

Continuous Continuoug mentioned enjoying being freed from the mechanical te-
compilation testing dium of frequent manual testing: “Once I finally figured out
_ (N=20) | (N=13) how it worked, | got even lazier and never manually ran the
The reported errors often surprised me 1.0 0.7 test cases myself anymore.” One said that it's “especially
: S?;;Y;fgtﬂg’glses%imgﬁ g‘;’tcekrly fg 8‘2 useful for someone extremely prone to stupid typo-style er-
| wrote better code 0:9 0:7 rors, the kind _that are opwous an.d easily fixable when you
| was distracted by the tool 05 _06 see the error line but which don’t jump out at a glance.”
| enjoyed using the tool 1.5 0.6 Staff feedback was also predominantly positive. The
The tool changed the way | worked 1.7 head TA reported, “the continuous testing worked well for
I would use the tool in 6.170 yes 94%; no 6% students. Students used the output constantly, and they also
.~ inmy own programming yes 80%; no 10% seemed to have a great handle on the overall environment.”
I would recommend the tool to others _yes 90%; no 10% Staff reported that participants who were provided the tools

: . : . ' for the first problem set and not for the second problem set
Figure 9. Questionnaire answers regarding user perceptions of the

continuous testing tool. The first 6 questions were answered on am'ssed the additional functionality.

7-point scale ranging from “strongly agree” (here reported as 3) Several participants pointed out that the first two prob-
through “neutral” (reported as 0) to “strongly disagree” (reported lem sets were a special case that made continuous testing es-
as -3). The behavior change question is on a scale of 0 (“no”) to 3 pecially useful. Full test suites were provided by the course
(“definitely”). staff before the students began coding, and passing the test
suite was a major component of students’ grades on the as-
signments. Several participants mentioned that they weren't

tinuous testing and continuous compilation participants re- . : : .
. : . . .~ sure they would use continuous testing without a provided
ported leaving the continuous testing window open. This . L .
test suite, because they were uncomfortable writing their

confirms that these participants did not find it distracting, own testing code. One said that “In my own programming

b ecause they could easily haye r.educed d|straqt|op and "there are seldom easily tested individual parts of the code.”
claimed screen space by closing it (and re-opening it on de-

L It appears that the study made participants think much more
mand when errors were indicated). . : . :
about testing and modular design, which are both impor-
)) tant parts of the goals of the class, and are often ignored by
5.2 Changes in work habits novice programmers. It's likely that the tools will become

Participants reported that their working habits changed €V€n more useful to students as they learn these concepts.
when using the tool. Several participants reported similar
habits to one who “got a small part of my code working
before moving on to the next section, rather than trying to

debug everything at the end.” Another said, “It was easier .)) : .
g ything Participants who didn’t enjoy using the tools often said

to see my errors when they were only with one method at a o
y y y that it interfered with their established working habits. One

time.” The course staff had recommended that all students

use the single-keystroke testing macro, which should havesaid “Since | had already been writing extensive Java code

provided the same benefits. However, some participants feItfor a year using emacs and an xterm, it simply got in the

they only got these benefits when even this small step wasVay of my work instead of helping me. | suppose that, if |

did not already have a set way of doing my coding, contin-

automated. testi Id have b ful” Many felt that
This blessing could also be a curse, however, exacerbat~ 0US testing could have been more usetul.” Many teit tha
the reporting of compilation errors as implemented was not

ing faults in the test suites (see Section 3.2.1): “The constanthelpful because far too often they knew about the errors

testing made me look for a quick fix rather than examine the hat were reported. Others appear to have not understood
code to see what was at the heart of the problem. Seeing th W ported. pp . v u
he documentation. Several didn't understand how to get

‘success’ message made me think too often that I'd finishedm re information about th mpile errors reported in th
a section of code, when in fact, there may be additional er- ore Information about the compiie errors reporte €

5.4 Negative feedback

rors the test cases don't catch.” modeline. o _
Some participants believed that when the tool reported a
53 Positive feedback compilation or test error, that the tool had saved and com-

piled their code. In fact, the tool was reporting what would
Participants who enjoyed using the tools noted the tools’ happen were the user to save, compile, and test the code.
ease of use and the quickness with which they felt they Some users were surprised when running the tests (without
could code. One mentioned they enjoyed watching unim- saving and compiling their work) gave different results than
plemented tests disappear as they coded correctly. Severahe hypothetical ones provided by the tool.

5.5 Suggestions for improvement One potential problem with the experiment is the rela-
Participants had many suggestions for improvement. tive inexperience of thg participgnts. They had on average

One recommended more flexibility in its configuration. (As 2-8 years of programming experience, but only 0.4 years of

provided, the tools were hardcoded to report feedback base@XPerience with Java. Two thirds of them were not initially

on the staff-provided test suite. After the study completed, familiar with the notion .of regression testing. More experi-
students were given instructions on using the tools with €nced programmers might not need the tools as much —or

their own test suite.) Another wanted even more sophisti- ey might be less confused by them and make more effec-
cated feedback, including a “guess” of why the error is oc- Ve use qf them. The level of_vo_lunteerlsm for the study
curring. Section 9 proposes integrating continuous testingWas relatively low; thus, our findings may only apply to

with Delta Debugging [18], to provide some of these hints. ulser_s who are open to new development tools and method-
ologies.

We may have failed to measure some other quantity that
predicts success; such an effect could conceivably swamp
A problem that confused some students is that the continu-the predictors that we did measure. The tool may have really
ous testing tool filtered out some information from the JU- had a positive effect, but for a reason that neither we, nor the
nit output before displaying it. In particular, it removed students we obtained feedback from, understood properly.
Java stack frames related to the JUnit infrastructure. These There are several factors that suggest that the actual re-

were never relevant to the code errors, but some users wergyits may be even better than measured by this experiment.
alarmed by the differences between the continuous testing \ve identified a number of problems with the tools (Sec-

output and the output of the tests when rundirectly. 515 5 1), Many of these could be corrected relatively eas-
Ar_lother problem was that when a test caused an_|nf|n|te”y, which would only improve the results for the partici-
loop in the code under test, no output would be provided to pants who were provided the tool.

the student to this effect. This is identical to the behavior of . .
standard JUnit, but since students did not manually run the The experiment tested three rather than two different
’ y treatments (a control group and two different tools). Had

tests, they tho_u_ght that the tool had falled. . . we omitted the continuous compilation group, more effects

Some participants reported an irreproducible error in ., - .
) would be statistically significant, but it would not have been
which the results appeared not to change to reflect the state : o
) . .. Clear whether the benefits came from the compilation or

of the code under particular circumstances. One partici- . . .

ant reported that this happened 2 or 3 times durin thethe testing portion of the tool; we have demonstrated that
b b PP 9 both are significant. Likewise, the experiment involved rel-

m:t mzeﬁozfl(;t::insttilrjlﬂg u;—izeiﬁept% réll(;l?r??rfse fSJ;urLepS%rtvig atively few participants, so only relatively large differences
y 9 ' in effects are statistically significant. There may be other

assume it was not a huge impediment to their work. g) :
) . effects that are less important (smaller in magnitude) yet
The most common complaint and improvement recom- . . C .
. . are still statistically significant. For example, neither pro-
mendation was that on compute-bound workstations (such i . 3 X dicted
as a 333-MHz Pentium Il running a modern operating sys- gramming experience nor Java experience pre icted suc-
tem and development environments, or a dialu Worksta-Cess atthe = .05 level, but both predicted success at the
P ' P p = .10 level. Perhaps with additional participants, fhe

tion shared with up to 100 other users all running X appli- value would have been lower and we would have concluded

cations), the background compilation and testing PrOCESSES, ot these effects were significant. (Or perhaps the course
could monopolize the processor, sometimes so much that)

“cursor movement and tvoing were erratic and uncontrol- instructor did a good enough job that prior experience was
lable” One said that “i)tlpnegeds 4 faster comouter to be only a rather weak predictor of experience —we are forced

o P to this conclusion by the statistics that are available to us.)
worthwhile.” However, most students found the perfor-

mance acceptable. We conclude that potential users should The experlmgnt prowdec! N some ways a worst—cas_e sce-
be warned to use a system with acceptable performance, anfario for a continuous testing tool. Continuous testing is

that additional performance optimizations are worthwhile. most useful when it relieves developers of difficult, lengthy,
or easily forgotten tasks. We believe continuous testing to

- be of most benefit for developers who are performing main-
6 Threats to validity tenance (or other tasks that are likely to introduce regression
Our experiment has produced statistically significant re- errors) on a codebase whose test suite takes a substantial
sults showing that a continuous compilation tool doubles amount of time to run. By contrast, the participants in our
the success rate of developers in creating a correct programstudy were performing initial development to a given test
and continuous testing tool triples the success rate. How-suite, the test suites completed in seconds (see Figure 4),
ever, the circumstances of the experiment must be carefullyand even members of the control and continuous compila-
considered before applying the results to a new situation. tion groups could run the test suite with a single keystroke.

5.5.1 Implementation issues

Our results demonstrate that even when not matched againsAlso, we were not evaluating the monitoring framework it-
a strawman, continuous testing is valuable, and that it doesself nor providing feedback on collected data, but monitor-
not hinder developer performance — as might be feared bying the impact of continuous testing.

someone who has never used the tool—even in a situation Several other authors use terms similar to our uses of
in which it would not be expected to have a large positive continuous compilation, continuous execution, and contin-

impact. uous testing. Siegel advocates “continuous testing”, by
which he means frequent synchronous testing during the
7 Related work development process by pairs of developers [15]. Perpetual

testing or residual testing [11] (also known as “continuous
testing” [16]) monitors software forever in the field rather
than being tested only by the developer; in the field, only
aspects of the software that were never exercised by devel-
oper testing need be monitored.

We previously introduced the notion of continuous test-
ing during development to reduce wasted development
time [14]. The previous work also presented a model of
developer belief that, along with a detailed record of a prior
development project, enabled estimation of what the effects
would have been, had the developer used a different testing
tool in the prior project. A case study with one developerin- 8 Future work
dicated that savings of 10-15% of development time should)))
be possible. This research extends the previous research by AS noted in Section 6, our tools and our experiment
implementing the continuous testing tool and performing a could be improved in several ways. However, the exper-
controlled experiment in order to measure rather than esti-Mment cannot be repeated: given the finding that users of
mate the effect of the tool, and in order to obtain qualitative cOntinuous testing are better able to complete the assign-
feedback regarding developer perceptions of the tool. ment succes'sfully before the deadline, it would be uneth-

Boehm [3] and Baziuk [1] have shown that in projects ical to deqy it to the contrql group.. It v_vould also be un-
using a traditional waterfall methodology, the number of POPular, since students enjoyed using it. However, future
project phases between the introduction and discovery of€XPeriments can be performed in new situations, where con-
a defect has a dramatic effect on the time required to fix it. INUOUS testing is as yet unproven.

We believe that similar results hold on the order of seconds We plan to conduct industrial case studies to provide ad-
rather than days or months, and this paper represents thditional qualitative information regarding continuous test-
beginning of an investigation into the veracity of our belief. ing. We will provide continuous testing tools to a company

Continuous testing can be viewed as a natural extensionP€rforming software development for real customers, then
of modern IDEs (integrated development environments). observe and interview the developers to learn how they use
These IDEs supply the developer rapid feedback by per_the t_ools_, their impressions of it, and their suggestions re-
forming continuous parsing and compilation, indicating garding it.

(some) syntactic and semantic errors immediately rather ~ This experiment relied on the fact that the test suites be-
than delaying notification until the user explicitly compiles ing used could be run very quickly, easily providing real-
the code. Continuous testing can also be viewed as a naturdime notification. There are several ways to extend this to
extension of Extreme Programming [2], which emphasizes suites that take longer to run.

the importance of unit test suites that are run very frequently ~ First, we intend to integrate our Eclipse plug-in with
to ensure that code can be augmented or refactored rapidlypne provided by Andreas Zeller that performs Delta Debug-
without regression errors. ging [18]. Continuous testing gives early indication that a

Continuous executiofp], Programming by Example [4, program change has introduced a regression error. How-
7], and Editing by Example [10, 9] all provide continuous ever, when test suites take a long time to run, there may
feedback to developers about the results of their programhave been multiple program changes between the last suc-
on one or more inputs as the program changes. Our workcessful test run and the discovery of a regression error. Delta
abstracts from the entire output to the boolean result of eachDebugging can reduce the program changes to a minimum
indvidual test case. set that causes the regression error. Both continuous testing

Johnson, et al. [6] evaluate the HackyStat client/serverand this application of Delta Debugging reduce the number
framework, which monitors individual developer activity of program changes that a user must examine in order to
and provides feedback on how development time is beingunderstand the cause of a regression error; by using contin-
spent. This information is intended to allow the individ- uous testing, then Delta Debugging, the entire process can
ual to make changes to their own development process.be made faster and more beneficial to the developer.

Our monitoring framework is similar to theirs, but provides Second, we are investigating efficient test prioritization
more data and allows deeper analysis, because it enablefor continuous testing [14], to improve performance on
recreating the state of the source code at any point in time.suites that contain a large number of small tests.

Third, some individual test cases may take a long time to [3] B. W. Boehm. Software engineerintEEE Transactions on

run; this is particularly true of system or end-to-end tests. ComputersC-25(12):1226-1241, 1976.

An environment that must wait for such tests to complete [4] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,
will not give the impression of instantaneous testing, even D. Maulsby, B. A. Myers, and A. Turransky, editoré/atch

if it prioritizes test cases perfectly. We are actively inves- What | Do: Programming by DemonstrationMIT Press,
tigating test factoringto introduce new test cases that are Cambridge, MA, 1993.

smaller and faster. Test factoring determines how a system [5] p. Henderson and M. Weiser. Continuous execution: The
test uses a particular component, then creates unit tests for VisiProg environment. INCSE pages 68—74, Aug. 1985.

the component based on that usage. If (only) the component i) p . 3onnson, H. Kou, J. M. Agustin, C. Chan, C. A. Moore,
has recently changed, the unit test is just as effective as the "~ j wjglani, S. Zhen, and W. E. Doane. Beyond the Personal
system test, but more efficient. The unit tests can be made software Process: Metrics collection and analysis for the dif-

yet more efficient by eliminating redundancies. ferently disciplined. INCSE pages 641-646, May 2003.
[7] T. Lau, P. Domingos, and D. S. Weld. Version space alge-
9 Conclusion bra and its application to programming by demonstration. In

. . . ICML, pages 527-534, Stanford, CA, June 2000.
We have shown that continuous testing is more than just

a good idea by implementing a continuous testing tool and [8] H- K. N. Leung and L. White. Insights into regression test-
experimentally evaluating its effectiveness at helping stu- ing. InICSM pages 60-69, Oct. 1989.

dents complete programming assignments. The key, statis- [9] R.C. Miller. Lightweight Structure in TexPhD thesis, Com-
tically significant, result is that participants who used con- puter Science Department, School of Computer Science,
tinuous testing were three times more likely to have suc- Carnegie Mellon University, Pittsburgh, PA, May 2002. Also

. . available as CMU Computer Science technical report CMU-
cessfully completed their problem sets than those who did CS-02-134 and CMU Human-Computer Interaction Institute

not. . C technical report CMU-HCII-02-103.
However, there was no statistically significant effect on

time worked. Previous work [14] had suggested that by re- [10] R. P- Nix. Editing by example.ACM Trans. Prog. Lang.

X . 3 \ Syst, 7(4):600-621, Oct. 1985.
ducing the amount of time spent waiting for tests and fix-
ing regression errors, continuous testing held the promisel11] C.Paviopoulou and M. Young. Residual test coverage mon-
of speeding software development. This resultindicates that ~ 1toring. InICSE pages 277-284, May 1999.
students were not burdened by the tools. We believe the lacf12] G. Rothermel and M. J. Harrold. Analyzing regression test
of improvement resulted from the fact that students were selection techniquesEEE TSE 22(8):529-551, Aug. 1996.
working not just against a functional specification, but also [13] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
against a deadline. Many students likely budgeted a certain Prioritizing test cases for regression testingEEE TSE
amount of time to the problem set before the deadline, and 27(10):929-948, Oct. 2001.

turned in whatever they had when time ran out. It's impos- [14] D. Saff and M. D. Ernst. Reducing wasted development time
sible to know for unsuccessful students how much longer it via continuous testing. IIBSRE Nov. 2003.

would have taken for them _to de"e'o_p a complet.e solution. [15] S. Siegel.Object-Oriented Software Testing: A Hierarchical
Furthermore, students liked continuous testing and be-~ " approach John Wiley & Sons, 1996.

lieved it helped them; their criticisms were minor by com-

parison to their praise. These positive results came despit

some problems with the tools and despite continuous test-

ing being used in a situation in which it does not necessarily : ! nao]

perform best: for initial development in a situation in which study of effective regression testing in practice. I#5RE

tests are easy to run and complete quickly. It is a substantial pages 264-274, Nov. 1997.

success of continuous testing that despite these obstacle$l8] A. Zeller. Yesterday, my program worked. today, it does not.

users of the tool were still significantly helped. This encour- why? InESEC/FSEpages 253-267, Sept. 1999.

ages us to extend our research on continuous testing, so it

can be used in additional academic and industrial settings.

416] M. L. Soffa. Continuous testing. Personal communication,
Feb. 2003.

[17] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A

References

[1] W. Baziuk. BNR/NORTEL: Path to improve product quality,
reliability, and customer satisfaction. IBSRE Oct. 1995.

[2] K. Beck. Extreme Programming Explained Addison-
Wesley, 1999.

10

