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Abstract

Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant detector reports likely
program invariants. An invariant is a property that holds at a certain point or points in a program; these are often used in assert
statements, documentation, and formal specifications. Examples include being constant (x = a), non-zero (x 6= 0), being in a
range (a ≤ x ≤ b), linear relationships (y = ax + b), ordering (x ≤ y), functions from a library (x = fn(y)), containment (x ∈ y),
sortedness (x is sorted), and many more. Users can extend Daikon to check for additional invariants.

Dynamic invariant detection runs a program, observes the values that the program computes, and then reports properties that
were true over the observed executions. Dynamic invariant detection is a machine learning technique that can be applied to arbitrary
data. Daikon can detect invariants in C, C + +, Java, and Perl programs, and in record-structured data sources; it is easy to extend
Daikon to other applications.

Invariants can be useful in program understanding and a host of other applications. Daikon’s output has been used for gen-
erating test cases, predicting incompatibilities in component integration, automating theorem proving, repairing inconsistent data
structures, and checking the validity of data streams, among other tasks.

Daikon is freely available in source and binary form, along with extensive documentation, at http://pag.csail.mit.edu/daikon/.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper presents Daikon — a full featured and robust implementation of dynamic invariant detection. Invariants
explicate data structures and algorithms and are helpful for manual and automated programming tasks, from design
to maintenance. For example, they identify program properties that must be preserved when modifying code. Despite
their advantages, invariants are usually missing from programs. An alternative to expecting programmers to fully
annotate code with invariants is to automatically infer likely invariants from program executions. For certain important
tasks, dynamically-inferred properties are preferable to a human-written specification.
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Daikon’s output is a set of likely invariants that are statistically justified by an execution trace. The result can be
used as documentation, added to the program source as assertions, or used as input to other tools (see Section 4).

Daikon is freely available for download from http://pag.csail.mit.edu/daikon/. The distribution includes both source
code and documentation, and Daikon’s license permits unrestricted use. This paper introduces Daikon, but its user and
developer manuals should be consulted to obtain the most complete information.

2. Example

As an example, consider a Java class StackAr that implements a stack with a fixed maximum size. It has the
following fields:

Object[] theArray; // Array that contains the stack elements.
int topOfStack; // Index of top element. -1 if stack is empty.

and implements the following methods:

void push(Object x) // Insert x
void pop() // Remove most recently inserted item
Object top() // Return most recently inserted item
Object topAndPop() // Remove and return most recently inserted item
boolean isEmpty() // Return true if empty; else false
boolean isFull() // Return true if full; else false
void makeEmpty() // Remove all items

StackAr can be exercised via the simple test class StackArTester. For example:

java DataStructures.StackArTester

The following command instruments the same run of StackAr and pipes the resulting execution trace to Daikon.

java daikon.Chicory --daikon DataStructures.StackArTester

(Chicory is Daikon’s instrumenter for Java.) The likely invariants are written to standard output (i.e., the console) and
also saved in a serialized file for later processing.

C/C + + programs are handled in a similar fashion. If a C/C + + program is normally run with the command

./program -f input

then the command

kvasir-dtrace --dtrace-file=- ./program -f input | java daikon.Daikon

will instrument the program using Kvasir (an instrumenter for C/C + +) and pipe the resulting execution trace to
Daikon.

Daikon’s output consists of procedure pre- and post-conditions and also object invariants which hold at every public
method entry and exit. Fig. 1 shows a portion of Daikon’s output, including the object invariants and the procedure
invariants for the constructor and the method isFull. The output is described below.

this.theArray != null
The reference theArray was never observed to be null after it was set in the constructor. Methods can thus

safely reference it without checking for null.
this.theArray.getClass() == java.lang.Object[].class

The runtime class of theArray is Object[]. Java permits the runtime type to be a subclass of the declared
type, but that never happened in StackAr.
this.topOfStack >= -1
this.topOfStack <= this.theArray.length - 1

topOfStack is between -1 and the maximum array index, inclusive. Thus, it indicates the last filled array
element, not the next one to be filled.
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Object invariants for StackAr

this.theArray != null
this.theArray.getClass() == java.lang.Object[].class
this.topOfStack >= -1
this.topOfStack <= this.theArray.length - 1
this.theArray[0..this.topOfStack] elements != null
this.theArray[this.topOfStack+1..] elements == null

Pre-conditions for the StackAr constructor

capacity >= 0

Post-conditions for the StackAr constructor

orig(capacity) == this.theArray.length
this.topOfStack == -1
this.theArray[] elements == null

Post-conditions for the isFull method

this.theArray == orig(this.theArray)
this.theArray[] == orig(this.theArray[])
this.topOfStack == orig(this.topOfStack)
(return == false) <==> (this.topOfStack < this.theArray.length - 1)
(return == true) <==> (this.topOfStack == this.theArray.length - 1)

Fig. 1. Daikon output for the StackAr program. The figure shows likely object invariants and the pre- and post-conditions for the constructor and
isFull method. There are no pre-conditions for isFull.

this.theArray[0..this.topOfStack] elements != null

All of the stack elements are non-null. This turns out to be a result of the test suite (which never pushes null on
the stack) and not a requirement of StackAr itself. It is still valuable to draw a programmer’s attention to this fact,
as it points out a deficiency in the test suite.

this.theArray[this.topOfStack+1..] elements == null

All of the elements in the array that are not currently in the stack are null. We can infer that the pop method
nulls out the entry after returning it, which is good practice as it permits those elements to be garbage collected.

Likely invariants are also found at each method entry and exit. These correspond to the pre- and post-conditions
for the method. There is one pre-condition for the StackAr constructor:

capacity >= 0

StackAr was never created with a negative capacity. (This particular constructor implementation would fail if
it is supplied a negative capacity.)

The post-conditions for the StackAr constructor are:

orig(capacity) == this.theArray.length

The size of the array that will contain the stack is equal to the specified capacity.

this.topOfStack == -1

this.theArray[] elements == null

Initially the stack is empty and all of its elements are null.

There are no pre-conditions for the isFull method other than the object invariants. The post-conditions are:
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this.topOfStack == orig(this.topOfStack)

this.theArray == orig(this.theArray)

this.theArray[] == orig(this.theArray[])
Neither the topOfStack index, nor the reference to the theArray array, nor the contents of the array are

modified by the method. In other words, the method is pure (an observer method).
(return == true) <==> (this.topOfStack == this.theArray.length - 1)

When isFull returns true, topOfStack indexes the last element of theArray.
(return == false) <==> (this.topOfStack < this.theArray.length - 1)

When isFull returns false, topOfStack indexes an element prior to the last element of theArray.

3. Key features of Daikon

The following subsections detail Daikon’s key features, which allow it to be used in a wide variety of contexts.

3.1. Input from many programming languages and other data formats

Daikon can compute likely invariants for programs written in C, C + +, Java, and Perl (see Section 5.1). Daikon
can also process data from spreadsheets such as Excel using CSV (comma separated value) format; this is convenient
when running Daikon on data that was not generated by a program. It is relatively easy to support new programming
languages and data formats, as several users have done (see Section 5.3).

3.2. Rich output

Daikon’s primary goal is to report expressive and useful output. Which invariants are reported depends on the
grammar of invariants that are expressible by the invariant detector, the variables over which the invariants are checked,
and the program points at which the invariants are checked. We discuss each of these factors below.

Grammar of properties. Daikon checks for 75 different invariants including those mentioned in the abstract, and
users can easily extend this list (see Section 5.3). Checking a large number of invariants makes it more likely that
the output will contain the facts that are needed by a human or a tool; however, it also increases the runtime of the
invariant detector. Daikon includes optimizations that allow it to support a large number of possible invariants (see
Section 5.2).

Daikon also can report conditional invariants or implications, such as this.left 6= null ⇒ this.left.value ≤

this.value. Daikon has certain built-in predicates that it uses for finding implications; examples are which return
statement was executed in a procedure and whether a boolean procedure returns true or false. Additionally, Daikon
can read predicates from a file and find implications based on those predicates [1]. The predicates can be produced
manually or automatically using tools distributed with Daikon, such as by static analysis of the program or by cluster
analysis of the values in the execution trace.

Grammar of variables. The invariants that an invariant detector can express must be instantiated over particular
variables or other values. For example, x ∈ y is instantiated over two variables, of which the second must be a
collection. Daikon can produce invariants over:

• procedure parameters and return values
• pre-state values (expressed as orig in Fig. 1), which permits reports of procedure side effects and input–output

relationships
• global variables
• fields (given an object a, useful additional information appears in a.f, a.f.g, etc.)
• results of calls to side-effect-free (pure, observer) methods, such as size()
• additional expressions called derived variables (25 in all). For example, given array a and integer lasti, then

invariants over a[lasti] may be of interest, even though it is not a variable and may not even appear in the
program.
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These variable types can be combined; for example, a.b[myObject.getX()]. A Daikon switch controls whether
only public fields/methods are considered (giving an external, client view of the data structure), or private
fields/methods are included (giving an internal, implementation view of the data structure). Another switch controls
the depth for examining fields and pure method calls.

Program points. Daikon checks for invariants at procedure entries and exits, resulting in likely invariants that
correspond to pre- and post-conditions. It computes likely invariants at each procedure exit (i.e., return statement)
and also at an aggregate exit point (as viewed by a client) by generalizing over the individual exit points. Likely object
or class invariants are also computed at an aggregate program point (object point). The object point generalizes over
all objects that are observed at entry to and exit from public methods of a class, that are passed into or returned from
methods of other classes, or that are stored in object fields.

3.3. Scalable

Despite the rich output described in Section 3.2, Daikon is scalable to non-trivial programs. For example, Daikon
was used to generate partial consistency specifications (see Section 4.6) for the Center-TRACON Automation System
(CTAS) developed at the NASA Ames research center [2]. CTAS is a set of air-traffic control tools that contains over
1 million lines of C and C + + code. Applying Daikon to large programs often requires focusing Daikon on a subset
of the program, or reducing the number of derived variables or even invariants that Daikon considers. All of these can
be done via command-line arguments.

3.4. Invariant filtering

Dynamic invariant detection tests potential invariants against observed runtime values. As with any dynamic
analysis or machine learning technique, there is a possibility of overfitting (overgeneralizing) by reporting properties
that are true of the training runs but are not true in general. For example, if there are an inadequate number of
observations of a particular variable, patterns observed over it may be mere coincidence. Daikon mitigates such
problems by computing a null hypothesis test (the probability that a property would appear by chance in a random
input), then reporting the property only if its probability is smaller than a user-defined confidence parameter.

Redundant invariants. Any invariant that is logically implied by other invariants can be removed from
the output with no loss of information. For example, consider the object invariant this.topOfStack <=
this.theArray.length-1 from Fig. 1. The invariant this.topOfStack < this.theArray.length is also true
but is not reported. As much as possible, Daikon does not even compute redundant invariants. This removes them both
from the output and improves Daikon’s performance (see Section 5.2). Some redundancies that cannot be handled by
the optimizations are removed from the output by post-processing.

Abstract types. Many variables in a program are not related to one another. For example, variable temp may
contain the current temperature while time contains the number of seconds since 1970. Even though invariants may
exist over these variables (e.g., temp < time), those invariants are not interesting. Daikon can use abstract type
information [3] to restrict invariants to related variables. The Daikon distribution includes tools that compute abstract
types.

3.5. Output formats

Daikon supports a wide variety of output formats. There are also easy-to-add additional formats (see Section 5.3).

Daikon. Default output format, with quantifiers and other features.
DBC. Design by contract format for Parasoft’s Jtest tool [4].
ESC. Extended static checker format for use by the ESC/Java tool [5].
IOA. IOA language for modeling input/output automata, which can also be converted into the language of the

Isabelle theorem prover.
Java. Java expressions usable in a Java program, for instance as assertions.
JML. Java Modeling Language [6] format, used by many tools [7].

Repair. Format used by automated data structure repair tools [2].
Simplify. Format of the Simplify automated theorem prover [8].

The annotate tool included with Daikon inserts likely invariants into source code as annotations.
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3.6. Portable

Daikon is portable to a wide variety of platforms. The Daikon inference engine and the Java instrumenter are
written in Java, and the Perl instrumenter is written in Perl, languages which are highly portable. One C instrumenter
is specific to Linux/x86, while a second is portable to any platform for which Purify is available, including Windows,
Linux, and several commercial Unix variants.

4. Uses

The likely invariants produced by Daikon are a dynamically-generated analogue of a program specification.
Specifications are widely acknowledged as being valuable in many aspects of program development, including design,
coding, verification, testing, optimization, and maintenance. They also enhance programmers’ understanding of data
structures, algorithms, and program operation. In practice, however, formal specifications are rarely available, because
they are tedious and difficult to write, and when available they may fail to capture all of the properties on which
program correctness depends.

A dynamically-generated specification may be different from an ideal static specification. The dynamic
specification will reveal information not only about the goal behavior, but also about the particular implementation
and about the environment (inputs) under which the program was run. For many tasks (such as improving a test suite
and certain debugging tasks), the dynamic information can be even more helpful than the static.

4.1. Documentation

Invariants characterize certain aspects of program execution and provide documentation of a program’s operation,
algorithms, and data structures. As such, they assist program understanding, some level of which is a prerequisite to
every programming-related task. Information that is automatically extracted from the implementation is guaranteed to
be up to date.

Automatically-inferred invariants are useful even for code that is already documented with comments, assert
statements, or specifications. The inferred invariants can check or refine programmer-supplied invariants; program
self-checks are often out of date, ineffective, or incorrect [9].

4.2. Avoiding bugs

Invariants can protect a programmer from making changes that inadvertently violate assumptions upon which the
program’s correct behavior depends. If the original invariant is not documented, much less the dependence, then it is
all too easy for a programmer to violate it, introducing a bug in a distant part of the program. Program maintenance
introduces errors [10,11] and many of these are due to violating invariants. When presented with Daikon’s output,
programmers are able to avoid breaking such invariants [12].

4.3. Debugging

Although it is better to avoid errors in the first place, invariants can also assist in debugging. Raz used Daikon
to check for consistent inputs in data streams [13]. Many authors have used inconsistencies in inferred invariants
between training runs and actual runs as an indicator of program bugs that should be brought to the attention of
humans [14–16].

Dynamically detected invariants can also help in understanding or localizing errors. Groce uses differences between
succeeding and failing runs to give a concise explanation of test failures [17]. Xie compares behaviors of internal
components to localize differences between program versions and isolate errors [18]. Liblit gives a light-weight
methodology for determining which properties are indicative of an error [19]. Brun uses machine learning over correct
and faulty programs to predict what properties in a different program are most likely to indicate latent errors [20].

4.4. Testing

Dynamically detected invariants can reveal as much about a test suite as about the program itself, because the
properties reflect the program’s execution over the test suite. This information is useful in testing. Insufficient coverage
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of program values is a deficiency in the test suite, even if the test suite covers every statement or path of the program.
For example, “x > 0” can indicate that zero and negative values were never tried, and “x < 10” that large values
were never tried. Furthermore, these properties indicate exactly what inputs are needed to improve the test suite. The
inferred invariants can also be used as a type of coverage metric such as for test selection and prioritization; more
coverage yields a better test suite [21,22]. Dynamically detected invariants can also assist in throwing out meaningless
tests (that violate pre-conditions) and inferring when a test has failed (by violating post-conditions) [23].

4.5. Verification

Dynamic invariant detection proposes likely invariants based on program executions, but the resulting properties
are not guaranteed to be true over all possible executions. Static verification checks that properties are always true, but
it can be difficult and tedious to select a goal and to annotate programs for input to a static checker. Combining these
techniques overcomes the weaknesses of each: dynamically detected invariants can annotate a program or provide
goals for static verification, and static verification can confirm properties proposed by a dynamic tool.

We have experimented with several program verifiers. With Java programs and ESC/Java [5], Daikon’s precision
(percentage of properties provable) was over 95%, of which the unprovable ones were generally due to prover
incompleteness, and its recall (percentage of properties needed for program verification found) was over 90% [24].
Furthermore, users who were given the Daikon output did statistically significantly better on a program verification
task [25]. With proof assistant tools, about 90% of lemmas and tactics were generated automatically [26], for proofs
of three distributed algorithms.

4.6. Data structure and control structure repair

Corrupt data structures cause incorrect or unpredictable program execution. Data structure repair updates
corrupt data structures, enabling the program to continue to execute acceptably. However, it requires user-provided
specifications. Daikon’s output has permitted the entire process to be automated while permitting human review. The
result was more robust versions of programs, at reduced cost compared to manual generation [2].

A related use is in programs that dynamically choose modalities in response to environmental inputs. Dynamically
detected invariants from training runs can indicate which modalities are correlated with which external conditions.
At runtime, occasionally overriding the program’s (inconsistent) actions improved the performance of programs in a
real-world competition by over 50% [27].

5. Architecture

Daikon discovers likely invariants from program executions by instrumenting the target program to trace certain
variables, running the instrumented program, and inferring invariants over both the instrumented variables and derived
variables not manifesting in the program. All of the steps are fully automatic (except for requirements of running the
target program, such as its inputs), and in fact the user issues only a single command that is much like running the
original program (see Section 2).

5.1. Instrumenters

Instrumenters are language specific. Currently Daikon has instrumenters for C/C + +, Java, and Perl programs.
Some of the instrumenters are source based: they create a new version of the source that is then compiled, linked, and
run. Other, binary-based instrumenters operate directly upon the executable: they are easier to use but are more likely
(at least in the case of compiled languages) to be platform specific.

The basic task of the instrumenter is to add instructions to the target program so that it will output the values of
variables (Section 3.2). The traces are piped directly to the inference engine, avoiding the necessity of disk storage.
Alternately, the traces can be output to a file, permitting repeated processing or combined processing of multiple runs.
In order to obtain good coverage, a target program sometimes needs to be run multiple times over separate inputs. In
languages such as C/C + +, it is not possible to determine if a pointer or array index is valid simply by examining
it. In this case, the instrumenter must augment the target program to determine whether each pointer refers to valid
memory and the extent of each array.
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5.2. Inference engine

The inference engine reads the trace data produced by an instrumenter and produces likely invariants. Separating
the language-specific instrumenters from the inference engine allows it to be portable and also makes it easier to
extend Daikon to new sources of data. Note that while Daikon is the name of the entire system, it is also used to refer
specifically to the inference engine.

The essential idea is to use a generate-and-check algorithm to test a set of potential invariants against the traces.
Daikon reports those invariants that are tested to a sufficient degree without falsification. As with other dynamic
approaches such as profiling, the accuracy of the results depends in part on the quality and completeness of the test
cases. Even modest test suites produce good results in practice [25,24], and techniques exist for creating good test
suites for invariant detection [21,28,22].

A simple algorithm for dynamic invariant detection represents each invariant in the invariant grammar explicitly: it
initially assumes that all potential invariants are true and tests each one against each sample. Any invariant contradicted
by a sample is discarded. Any invariants remaining at the end of processing are reported. Unfortunately, this algorithm
does not scale well.

Daikon is enhanced with a number of optimizations that allow it to scale to both large numbers of invariants
and programs of non-trivial size. These optimizations are based on the fact that the simple algorithm checks and
reports more invariants than necessary. Many invariants are redundant and do not need to be checked. Together the
optimizations reduce the number of invariants that need to be checked by 99% [29].

There are four major optimizations.

• Equal variables. If two or more variables are always equal, then any invariant that is true for one of the variables
is true for each of the variables. For example, if x = y, then for any invariant f , f (x) implies f (y).

• Dynamically constant variables. A dynamically constant variable has the same value at each observed sample.
The invariant x = a (for constant a) makes any other invariant over (only) x redundant. For example, x = 5 implies
odd(x) and x ≥ 5. Likewise for combinations of variables: x = 5 and y = 6 imply both x < y and x = y − 1.

• Variable Hierarchy. Some variable values contribute to invariants at multiple program points. For example, values
observed at (public) method exits affect not only method post-conditions but also object invariants. For two program
points A and B, if all samples for B also appear at A, then any invariant true at A is necessarily true at B and is
redundant at B.

• Suppression of weaker invariants. An invariant is suppressed if it is logically implied by some set of other
invariants. (The previous three examples of redundancy are special cases of this one.) For example, x > y implies
x ≥ y, and 0 < x < y and z = 0 imply x div y = z.

5.3. Extensibility

A primary design goal for Daikon is extensibility, since dynamic invariant detection is a new and active field.
Daikon is directly extensible in these ways:

• Instrumenters. An instrumenter for a new language or for other data merely needs to output files in Daikon’s input
format. For example, instrumenters have been added for spreadsheet data, calls to Linux library routines [30], the
Java PathFinder model checker [17], and online data feeds [13].

• Invariants. Each property in Daikon’s invariant grammar is implemented as a subclass of the abstract base class
Invariant, with further subclasses grouping similar invariants. These classes provide most of the necessary code
for an invariant. A new invariant must provide basic functionality such as the check modified method, which
checks whether a tuple of values is consistent with the invariant.

• Derived variables. A derived variable is an expression that Daikon treats as a variable (see Section 3.2). As with
invariants, the class structure makes it easy to add new derived variables by defining a few methods.

• Output formats. New output formats (see Section 3.5) require only adding a new format method to each invariant.
• Suppressions. As noted in Section 5.2, an invariant is suppressed if it is logically implied by some set of other

invariants. Each type of invariant can specify a set of possible suppressions. Each suppression is a set of antecedent
invariants that together imply the invariant. For example, {{x = y, z = 1}, {x = z, y = 1}} is a set of two
suppressions for the invariant x = y · z. An invariant is suppressed if all of the antecedents in any suppression hold.
A new suppression is added by listing the antecedent invariants that make up the suppression.
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• Modular. Daikon is designed to make it easy to use as part of another tool. Its entry points all have a corresponding
mainHelper method that can be called programmatically and that never calls System.exit(). Likely invariants
are written to a serialized file, for convenient programmatic use. More than 100 configuration options (documented
in the user manual) control Daikon’s behavior. Daikon is open source, permitting users to make changes (and to
contribute them to the project).

6. Development process

Daikon is intended as a long-term, full-featured, robust research tool. Its development process is designed to ensure
that this is possible despite the challenges of the academic research environment (e.g., many short-term developers,
each with a very specific focus). The keys to the process are:

• Monthly releases. A new version of Daikon is released every month. This ensures that the build process is clean
and that the documentation is up to date. It also serves as an incentive to address problems in a timely fashion.

• Documentation. Daikon has extensive, and frequently updated, user (156 pages) and developer (129 pages)
manuals in addition to the technical papers that describe its algorithms and uses. Portions of the manual are
automatically created from source code documentation to ensure accuracy.

• Support. Several moderated mailing lists exist for users to obtain help. Most problems are attended to within a few
days. If a change is required, that change is normally made available immediately and is also included in the next
release.

• Regression tests. Significant regression tests for both the inference engine and the instrumenters are run nightly,
and by the developers before committing code changes. Daikon has been used as a test subject in over half a dozen
published papers because of its CVS history and its regression tests.

7. Comparison to related tools

This section describes the most closely related other implementations of dynamic invariant detection. We regret that
space constraints prevent discussion of every related tool. While the other implementations use the simple algorithm
described in Section 5.2 without Daikon’s optimizations, some of them run faster than Daikon, primarily because
Daikon checks many more invariants (for example, millions of times more, on flex [29]).

The Agitator product developed by Agitar was inspired by Daikon [31]. Agitar performs dynamic invariant
detection in order to inform users about tests, and to improve those tests. The results are called “observations”, they
include equality (x = y), range (−10 ≤ x ≤ 10), non-null (x 6= null), equality (.equals), and properties gleaned from
the user’s source code. Agitar won the Wall Street Journal’s 2005 Software Technology Innovation Award.

The DIDUCE tool [14] for Java programs checks one unary invariant, which indicates all previously seen values of
every bit of the value. At each program point (a field or array reference, or a procedure call), that invariant is checked
for three values: a variable’s current and previous values and their difference. As an invariant is weakened (new values
are observed in a given bit), a message is printed. A user can look for weakenings that are printed on erroneous runs
or just before an error occurs, to find rare corner cases. The tool was used to help explain several known errors and to
reveal two new errors.

The IODINE tool [32] extracts likely design properties from hardware designs using dynamic analysis. It looks
for such properties as state machine protocols, request–acknowledge pairs, and mutual exclusion between signals.
IODINE was used to find dynamic invariants for one block of a dual-core SPARCTM processor design.

Remote program sampling [19] is a light-weight mechanism that evaluates two properties (one unary and one
binary, but instantiated for a linear rather than quadratic number of variable pairs) at assignments in C programs
(plus the predicate at each branch), counting the number of times that each property is satisfied. The properties are
checked probabilistically: on most executions of a program point, property checking is skipped. Any of the other
implementations could be so extended, sacrificing soundness (over the test suite) but gaining performance. The results
are processed statistically to indicate which properties are best correlated with faults and thus most likely to be
indicative of faults. The tool can provide early warning of errors, if one of the relatively simple properties indicates a
bug. In an experiment, the tool rediscovered 7 known errors and found one new one.

Henkel and Diwan [33,34] have built a tool that discovers algebraic specifications, which relate the meaning of
sequences of code operations, such as “pop(push(x,stack))=stack”. The tool generates many terms (test cases) from
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the signature of a Java class and proposes equations based on the results of the tests. The tool also proposes and tests
generalizations.

The SPIN model checker has been extended to check whether two variables are related by =, <,>, ≤, or ≥ [35].
The output is a graph with variables at the nodes and edges labeled by the comparison relations.

Several researchers have inferred, from program or system traces, finite state automata that represent the permitted
transitions [36–39]. Specifications written in the form of automata are complementary to the formula-based program
properties that are generated by a dynamic invariant detector.

Perracotta [40] is similar except that it looks for a set of extensions to the response property pattern rather than an
automaton.

8. Conclusion

Daikon is a full-featured, scalable, robust tool for dynamic invariant detection. It supports multiple programming
languages and is readily extensible to other languages and sources of data. The likely invariants that it produces have
been used in contexts ranging from refactoring to testing to data structure repair, and many more.

Daikon is freely available for download from http://pag.csail.mit.edu/daikon/. The distribution includes both source
code and extensive documentation, and Daikon’s license permits unrestricted use.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.scico.2007.01.015.

References

[1] N. Dodoo, L. Lin, M.D. Ernst, Selecting, refining, and evaluating predicates for program analysis, Tech. Rep. MIT-LCS-TR-914, MIT Lab
for Computer Science, 21 July, 2003.

[2] B. Demsky, M.D. Ernst, P.J. Guo, S. McCamant, J.H. Perkins, M. Rinard, Inference and enforcement of data structure consistency
specifications, ISSTA (2006) 233–243.

[3] P.J. Guo, J.H. Perkins, S. McCamant, M.D. Ernst, Dynamic inference of abstract types, ISSTA (2006) 255–265.
[4] Parasoft Corporation, Jtest version 4.5. http://www.parasoft.com/.
[5] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, R. Stata, Extended static checking for Java, PLDI (2002) 234–245.
[6] G.T. Leavens, A.L. Baker, C. Ruby, JML: A notation for detailed design, in: Behavioral Specifications of Businesses and Systems, Kluwer

Academic Publishers, Boston, 1999, pp. 175–188.
[7] L. Burdy, Y. Cheon, D. Cok, M.D. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino, E. Poll, An overview of JML tools and applications, STTT

7 (3) (2005) 212–232.
[8] D. Detlefs, G. Nelson, J.B. Saxe, Simplify: A theorem prover for program checking, Tech. Rep. HPL-2003-148, HP Labs, Palo Alto, CA, 23

Jul., 2003.
[9] N.G. Leveson, S.S. Cha, J.C. Knight, T.J. Shimeall, The use of self checks and voting in software error detection: An empirical study, IEEE

TSE 16 (4) (1990) 432–443.
[10] M. Ohba, X.-M. Chou, Does imperfect debugging affect software reliability growth? ICSE (1989) 237–244.
[11] T.L. Graves, A.F. Karr, J.S. Marron, H. Siy, Predicting fault incidence using software change history, IEEE TSE 26 (7) (2000) 653–661.
[12] M.D. Ernst, J. Cockrell, W.G. Griswold, D. Notkin, Dynamically discovering likely program invariants to support program evolution, IEEE

TSE 27 (2) (2001) 99–123.
[13] O. Raz, P. Koopman, M. Shaw, Semantic anomaly detection in online data sources, ICSE (2002) 302–312.
[14] S. Hangal, M.S. Lam, Tracking down software bugs using automatic anomaly detection, ICSE (2002) 291–301.
[15] B. Pytlik, M. Renieris, S. Krishnamurthi, S.P. Reiss, Automated fault localization using potential invariants, AADEBUG (2003) 273–276.
[16] L. Mariani, M. Pezzè, A technique for verifying component-based software, TACoS (2004) 17–30.
[17] A. Groce, W. Visser, What went wrong: Explaining counterexamples, SPIN (2003) 121–135.
[18] T. Xie, D. Notkin, Checking inside the black box: Regression testing based on value spectra differences, ICSM (2004) 28–37.
[19] B. Liblit, A. Aiken, A.X. Zheng, M.I. Jordan, Bug isolation via remote program sampling, PLDI (2003) 141–154.
[20] Y. Brun, M.D. Ernst, Finding latent code errors via machine learning over program executions, ICSE (2004) 480–490.
[21] M. Harder, J. Mellen, M.D. Ernst, Improving test suites via operational abstraction, ICSE (2003) 60–71.
[22] T. Xie, D. Notkin, Tool-assisted unit test selection based on operational violations, ASE (2003) 40–48.
[23] C. Pacheco, M.D. Ernst, Eclat: Automatic generation and classification of test inputs, ECOOP (2005) 504–527.
[24] J.W. Nimmer, M.D. Ernst, Automatic generation of program specifications, ISSTA (2002) 232–242.
[25] J.W. Nimmer, M.D. Ernst, Invariant inference for static checking: An empirical evaluation, FSE (2002) 11–20.
[26] T. Ne Win, M.D. Ernst, S.J. Garland, D. Kırlı, N. Lynch, Using simulated execution in verifying distributed algorithms, VMCAI (2003)

283–297, New York, NY.
[27] L. Lin, M.D. Ernst, Improving adaptability via program steering, ISSTA (2004) 206–216.

http://pag.csail.mit.edu/daikon/
http://pag.csail.mit.edu/daikon/
http://pag.csail.mit.edu/daikon/
http://pag.csail.mit.edu/daikon/
http://pag.csail.mit.edu/daikon/
http://pag.csail.mit.edu/daikon/
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://www.parasoft.com/


M.D. Ernst et al. / Science of Computer Programming 69 (2007) 35–45 45

[28] N. Gupta, Z.V. Heidepriem, A new structural coverage criterion for dynamic detection of program invariants, ASE (2003) 49–58.
[29] J.H. Perkins, M.D. Ernst, Efficient incremental algorithms for dynamic detection of likely invariants, FSE (2004) 23–32.
[30] S. McCamant, M.D. Ernst, Early identification of incompatibilities in multi-component upgrades, ECOOP (2004) 440–464.
[31] M. Boshernitsan, R. Doong, A. Savoia, From Daikon to Agitator: Lessons and challenges in building a commercial tool for developer testing,

ISSTA (2006) 169–179.
[32] S. Hangal, N. Chandra, S. Narayanan, S. Chakravorty, Iodine: A tool to automatically infer dynamic invariants for hardware designs, DAC

(2005) 775–778.
[33] J. Henkel, A. Diwan, Discovering algebraic specifications from Java classes, ECOOP (2003) 431–456.
[34] J. Henkel, A. Diwan, A tool for writing and debugging algebraic specifications, ICSE (2004) 449–458.
[35] M. Vaziri, G. Holzmann, Automatic detection of invariants in Spin, SPIN (1998) 129–138.
[36] J.E. Cook, A.L. Wolf, Event-based detection of concurrency, FSE (1998) 35–45.
[37] J.E. Cook, A.L. Wolf, Discovering models of software processes from event-based data, ACM TOSEM 7 (3) (1998) 215–249.
[38] G. Ammons, R. Bodı́k, J.R. Larus, Mining specifications, POPL (2002) 4–16.
[39] J. Whaley, M. Martin, M. Lam, Automatic extraction of object-oriented component interfaces, ISSTA (2002) 218–228.
[40] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, M. Das, Perracotta: Mining temporal API rules from imperfect traces, ICSE (2006) 282–291.


	The Daikon system for dynamic detection of likely invariants
	Introduction
	Example
	Key features of Daikon
	Input from many programming languages and other data formats
	Rich output
	Scalable
	Invariant filtering
	Output formats
	Portable

	Uses
	Documentation
	Avoiding bugs
	Debugging
	Testing
	Verification
	Data structure and control structure repair

	Architecture
	Instrumenters
	Inference engine
	Extensibility

	Development process
	Comparison to related tools
	Conclusion
	References


