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Abstract
Writing correct distributed systems code is difficult, especially
for novice programmers. The inherent asynchrony and need
for fault-tolerance make errors almost inevitable. Industrial-
strength testing and model checking have been shown to be
effective at uncovering bugs, but they come at a cost — in
both time and effort — that is far beyond what students can
afford. To address this, we have developed an efficient model
checking framework and visual debugger for distributed sys-
tems, with the goal of helping students find and fix bugs in
near real-time. We identify two novel techniques for reducing
the search state space to more efficiently find bugs in student
implementations. We report our experiences using these tools
to help over two hundred students build a correct, linearizable,
fault-tolerant, dynamically-sharded key–value store.

CCS Concepts • Software and its engineering → Model
checking; Software testing and debugging; • Social and pro-
fessional topics → Computing education; • Computer sys-
tems organization → Dependable and fault-tolerant sys-
tems and networks; Client-server architectures; • Computing
methodologies → Distributed computing methodologies.
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1 Introduction
Distributed systems are a fundamental element of the modern
computing landscape. An increasing number of applications
and system services are being designed for the cloud, often
involving distribution across multiple data centers, with many
services designed to operate at huge scale. Multi-tenant data
centers alone are now a $60 B/year business [37].

However, it is challenging to correctly implement a scal-
able and fault-tolerant distributed service. These systems
must tolerate failing machines and adverse network condi-
tions without violating correctness constraints, losing data,
or compromising performance. Moreover, reasoning about
distributed systems is notoriously difficult. The behavior of
a system is the result of its input along with the network
behavior: in a completely asynchronous setting, all possible
patterns of message delays, drops, duplications, and reorder-
ings must be considered. In the face of these challenges, even
experts frequently make mistakes. For example, significant
bugs have been found in published protocols implementing
Paxos and Viewstamped Replication [28], as well as in the
production code for Sprite [35], Chord [42], Raft [33], and
BerkeleyDB [41].

Our motivation is to develop tools and a methodology to
help novice distributed systems programmers (i.e., students)
design and implement correct and performant distributed sys-
tems. Our requirements for such a methodology are that it:
(i) can find common bugs in the systems students are asked
to implement, (ii) uses tools which run in a timely fashion,
(iii) finds errors reliably and repeatably, (iv) helps students
understand and fix problems when they are found, (v) has stu-
dents implement real systems which can run efficiently across
multiple machines, and (vi) uses programming languages in
wide use and tools which can be quickly and easily learned.

Testing is a standard approach to software validation. How-
ever, ad hoc testing is unlikely to uncover all errors that can
occur in a distributed system, even for a relatively small sys-
tem. Initially, we tried providing students a set of hand-written
stress tests for each of our lab assignments. Student submis-
sions often passed all of these tests, but some students still
found further errors when using their solutions as a compo-
nent in later labs. Although we added tests to catch specific
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issues as we learned of them, we found it difficult to keep up
with the diversity of possible student errors. Students often
(incorrectly) believe their code works once it passes a test
suite, leaving them with a false sense of mastery.

Code review is another common approach. Among solu-
tions that passed all of our tests, our course staff was often
able to find additional bugs by inspection. Of course, code
review is expensive, it requires a high level of training, it is
not scalable, and in practice it provides feedback to students
far too late to be useful.

At the opposite end of the spectrum, Verdi [39] and Iron-
Fleet [13] have demonstrated formal verification of dis-
tributed system implementations. Formal verification can
eliminate entire classes of bugs, but the learning curve for
these tools is steep. Correctness proofs often require multiple
person-years of effort even for relatively simple implementa-
tions.

Faced with the challenges of building robust distributed
systems and the inadequacies of other methodologies, both
academic research and industry have increasingly turned to
model checking to validate system correctness. Model check-
ing overcomes the weakness of ad hoc testing by system-
atically exploring all possible executions, but without the
high labor cost of formal verification. Industry leaders such
as Amazon and Microsoft report that they use explicit state
model checking [15] to validate protocol specifications before
they are implemented [18, 31].

One commonly used tool for specifying and model check-
ing distributed systems is TLA+ [19]. While TLA+ has been
used in industry and academic settings to great effect, it is
difficult to master within a single term, and distributed sys-
tems specifications in TLA+ do not produce executable code.
Instead, after model checking in TLA+, developers must re-
implement their systems in an efficient runtime language like
C or Java, leaving open a potential mismatch between the
specification and the implementation.

Some research systems, such as MaceMC [16] and
MoDist [41], model check implementations of distributed
systems, and we initially thought we could use or adapt their
techniques. A challenge for model checking concurrent sys-
tems is state space explosion: the number of possible execu-
tions is often exponential in the number of steps. Moreover,
bugs in distributed systems are often complex, requiring many
execution steps, making model checking prohibitively expen-
sive. A common technique is to couple exhaustive search with
periods of random exploration of the state space. Even so,
search times can be large: the Mace model checker, which
makes use of random exploration, can take over a day to
execute [16]. While long-running validation is often appro-
priate as the last step before production code is released, we
needed a solution that can check code and provide feedback
to students in near real-time.

This paper introduces DSLabs, a framework for writing,
testing, model checking, running, and debugging distributed

systems, along with a sequence of assignments written to
use the framework. DSLabs defines a simple, single-threaded
message-passing API in Java for students to use. Because each
node in our programming model runs in a single-threaded
event loop, the DSLabs model checker can systematically
explore all possible executions of student code (including
message reorderings, drops, and duplications) at the coarsest
granularity possible.

Our approach to model checking integrates a gray-box
testing paradigm with guided search techniques. Gray-box
testing allows us, as test developers, to write tests in terms of
the problem specification and limited information about the
implementation, while leaving most of the design decisions to
students. Guided search allows us to leverage domain-specific
knowledge to more efficiently model check student implemen-
tations. We specifically exercise student code in areas where
we expect errors, rather than simply searching randomly or by
brute force. We introduce two new techniques, pruning likely
irrelevant states from the state graph and using a punctuated
search approach where the model checker first finds states
matching some intermediate constraint before restarting the
search and continuing deeper into the state graph. Another
key component of our approach is to teach students how to
design for model checking efficiency and require a certain
amount of efficiency from their implementations, allowing
for deeper and more thorough checking.

Using these techniques, DSLabs makes model checking
accessible to students by reliably and quickly finding many
common bugs in student implementations of distributed sys-
tems, even bugs which are rare or unlikely to occur in practice.

When our model checker discovers a safety violation, it
outputs a counterexample trace that yields the erroneous be-
havior. To simplify the task of understanding and reproducing
failures, we developed a visual debugger called Oddity and
integrated it with the model checker. Oddity is unique in that
it allows students to explore the consequences of alternate
executions for a distributed system, much as a sequential
step-through debugger enables a developer to reach a deeper
understanding of program behavior.

We designed a set of assignments to teach distributed sys-
tems concepts and prepare students to build ambitious and
correct distributed systems. Our assignments are based on,
but go beyond, a similar set of labs developed by Robert
Morris and colleagues at MIT [29]. Over the course of a ten-
week quarter we ask students to build a transactional, scalable
(sharded), highly available, externally consistent (linearizable)
key–value store with key migration and multi-key updates.
The labs are specified at a high level; for example, students
can choose their own consensus algorithm (e.g., Paxos or
Raft), their own leader election algorithms, and their own
message formats. The course staff solution is 2641 lines of
code.

We have used the framework and labs to scale our under-
graduate distributed systems class to 175 students per year;



Teaching Rigorous Distributed Systems With Efficient Model Checking

we have also used it to teach 50 professional masters students.
This paper reports on our experiences with guiding students
through the DSLabs assignments using our framework. Al-
most all students were able to produce a working version of
replicated key–value storage with dynamic sharding in a quar-
ter; the stronger students also added multi-key transactions.

The rest of the paper describes DSLabs and our experi-
ences with it in more detail. Section 2 outlines the program-
ming, network, and failure model. Section 3 illustrates how
our system would find a specific bug. Section 4 overviews
the techniques we used to make tractable the task of model
checking student code, and Section 5 discusses how to design
distributed systems for efficient model checking. Section 6
describes our visual debugger and how it complements our
model checker. Section 7 describes our experiences with hav-
ing large numbers of students use our system to develop com-
plex distributed systems code. Section 8 discusses DSLabs in
relation to previous work, and Section 9 concludes.

2 Background
First, we begin by reviewing the distributed programming
model, introducing the specifics of the DSLabs API, and re-
viewing the specific form of model checking used by DSLabs.

2.1 Programming Model
A distributed system in the DSLabs framework consists of a
group of nodes. Each node can access its own memory, com-
municate with other nodes by sending and receiving messages,
and set timers to take some action after a certain amount of
time has elapsed. A programmer implements a distributed
protocol by defining message and timer handlers — as well
as defining a special handler for the initialization event.

Figure 1 shows the Java programming interface. Nodes
run as single-threaded event loops; that is, they are I/O au-
tomata [26, 27] or distributed actors [14]. Event handlers
must appear, from the standpoint of other nodes, to be atomic
actions and should run to completion without waiting.

Clients vs. Servers Our assignments are based around a
client–server model in which there can be an unbounded num-
ber of clients, while the core of the system is handled by
the servers. These clients’ behavior will differ based on the
particular implementation of a protocol, however. Therefore,
in DSLabs we model clients using client nodes (henceforth
simply “clients”), relatively thin nodes which implement the
client interface, allowing external code (e.g., end-to-end tests)
to send inputs (called commands) and receive outputs (called
results) from the system. The client interface is asynchro-
nous; it prescribes methods for sending commands, checking
whether a result for the previously sent command exists, and
retrieving that result. Students are responsible for implement-
ing both the client and server node classes for each system.

public abstract class Node {

/* event handlers, which students implement */

public abstract void init();

public abstract void handleMessage(

Message message, Address sender);

public abstract void onTimer(Timer timer);

/* provided methods */

protected final void send(Message message,

Address to) { }

protected final void set(Timer timer,

int duration) { }

protected final void set(Timer timer,

int minDuration, int maxDuration) { }

}

Figure 1. The DSLabs API. Students create subclasses of Node,
each of which implements 3 handlers to define behavior upon ini-
tialization, receiving a message, or receiving a timer. A handler can
modify internal state, send messages, and set timers. There is also a
sub-node feature, which allows for composition and code reuse.

Workers Important to the way the DSLabs testing frame-
work works is our use of worker nodes, the implementation
for which is provided by the framework itself. A worker is
initialized with a client node as well as a workload (a list of
commands). Workers run in a closed-loop; upon initializa-
tion, the worker sends the first command from the workload
through the client. The worker passes all messages and timers
it receives to the underlying client, and if one of those events
causes the client to report having a result for the previously
sent command, the worker sends the next command from
the workload. The worker keeps track of the results returned
by the client, which can be used by the testing infrastruc-
ture to check the correctness of the system. Worker nodes
are just nodes; they do not themselves implement the client
interface. Rather, they take clients written by students and
transform them into nodes which send a pre-defined series of
commands.

Network Model The weakest model typically assumed
in the distributed computing literature is the asynchronous
model in which messages can be delivered out of order,
dropped, arbitrarily delayed, and even duplicated. Moreover,
in an asynchronous system, there is no bound on the rela-
tive speeds of nodes; there is no guarantee that the durations
of timers correspond to real time in a way that is meaning-
ful across nodes. Timers are, however, delivered in an order
consistent with the monotonicity of the local clock. Other,
stronger network models (e.g., exactly-once or FIFO delivery)



EuroSys ’19, March 25–28, 2019, Dresden, Germany Michael et al.

are compatible with our programming interface and imple-
mentable in DSLabs. For generality, however, we assume an
asynchronous network for all of the lab assignments.

Failure Model The DSLabs framework allows for crash
(i.e., non-Byzantine) failures, which are inherent to the asyn-
chronous network model — a crashed node is equivalent to
one whose messages are always dropped. We do not currently
support nodes restarting after crashing, however. Support for
restarts would require a model of stable storage and an inter-
face to interact with it, which we eschew in order to focus
on the core challenges posed by the distributed setting. This
restriction is not fundamental, however, and a model of stable
storage could be integrated with the DSLabs framework (and
may be in the future).

Node Composition Finally, like other actor frameworks,
DSLabs provides a way to compose nodes — by adding one
node as a sub-node of another. From the standpoint of the rest
of the system, these function together as a single logical node.
This feature enables re-use of code and lets students build
increasingly complicated systems over the course of several
labs.

2.2 Exploratory Model Checking
One of the benefits of the single-threaded event loop approach
to distributed systems is that it lends itself to more systematic
testing, namely model checking. By allowing the test harness
to interpose on all concurrency in the system and make sched-
uling decisions — ordering the events delivered at each node
— we give it the flexibility to explore many possible schedules,
even ones unlikely to occur under normal conditions.

First, we define the state graph of a distributed system.
Each vertex in this graph is a particular state of the entire
system — consisting of the internal states of all nodes, the
state of the network (which messages can be delivered), and
the state of the nodes’ timer queues (which timers are waiting
to be delivered). There is a directed edge from s to s′ if s′ is
the resulting state after delivering a single event (a message
or timer) to a single node in state s. The initial state of the
system is the state of all nodes after the initialization event
(but before they have handled any other events). The state
graph of the system, then, is the graph of all states reachable
from this initial state. Figure 2 shows a portion of an example
state graph.

Note that this graph is merely conceptual; it is not explicitly
constructed during the execution of a distributed system. Also
note that vertices in the state graph are defined by the state of
the system, not by the order of events which produced them.
Some events, in fact, necessarily commute because they are
concurrent — i.e., they are not ordered by the happens-before
relation [20]. Finally, note that this graph is distinct from the
execution lattice associated with a particular distributed exe-
cution [4]. The state graph captures all possible executions of

s0

s1

s2

s3 s4

m 1
→

p 1

m
2 →

p
2

m
2 →

p
2

m 1
→

p 1

m3 →
p1

t1 → p1

t1 → p1

Figure 2. A portion of a state graph. The initial state is s0. In this
example, edges are labeled by their corresponding events (i.e., e → p
denotes event e being delivered to p). Some executions necessarily
lead to the same state based on the commutativity inherent to the
distributed programming model (e.g., delivering messages m1, m2
in either order starting from s0). Others lead to the same state by
accident of the specific implementation (e.g., delivering either m3 or
m1 followed by timer t1 starting from s2).

a distributed system; an execution corresponds to a particular
path in this graph, starting from the initial state.

Now, we can define explicit-state model checking, which
is the systematic exploration of the state graph, checking
that each state satisfies certain properties set forth by the
specification.

Generally speaking, an implementation of a distributed
system is correct if it meets the safety and liveness criteria
of the specification [3]. Safety properties describe the “bad
things” that must not happen during any execution. Liveness
properties, on the other hand, describe the “good things” that
must eventually happen in all executions. Whereas running
a distributed system is equivalent to taking a single path
through the state graph, model checking is the systematic
exploration of this graph, checking that it meets the given
criteria. In DSLabs, we restrict our model checking efforts to
checking safety properties expressed through state invariants
— predicates which must be true of all reachable states.

The simplest form of model checking is breadth-first search
of the state graph. Using breadth-first search guarantees that
when the model checker finds an invariant-violating state, it
can produce a trace (a path through the graph) which demon-
strates the error, and that trace will be of minimal length. For
example, in Figure 2 if s4 violated an invariant, the model
checker would return the trace m2;m3 rather than m2;m1; t1.
Moreover, unlike tests which rely on running the system to
find invariant violations, systematic exploration of the state
graph will reliably find bugs which rely on precise (and un-
likely) orderings of events.

The DSLabs model checker is stateful — it maintains the
set of discovered states and a queue of states to explore. It
explores the successors of a state by taking each pending
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event, cloning the state, and then delivering that event to the
appropriate node in the clone. Importantly, the model checker
tests whether the new state is equivalent to any previously-
discovered state (as discussed in Section 4.1.1), avoiding
wasting work exploring duplicate states.

3 Testing and Model Checking in DSLabs
Now that we have defined the DSLabs programming model
and reviewed the basics of explicit-state model checking for
distributed systems, we will briefly describe the DSLabs test-
ing infrastructure and provide a motivating example for its
use of model checking.

There are currently four assignments in DSLabs. The first
asks students to implement an exactly-once RPC protocol
on top of an asynchronous message-passing layer. The next
has students implement a primary-backup system, and in the
third lab, students implement the Paxos protocol. Finally, stu-
dents layer on their Paxos implementation a reconfiguration
and atomic commitment protocol (two-phase commit) across
multiple groups of servers to create a scalable, transactional
key–value storage system. The latter three labs are based
on the labs developed by Robert Morris and colleagues at
MIT [29]. Our labs go further by asking students to imple-
ment multi-key transactions in the fourth lab, and there are
significant differences in all three stemming from the differing
programming models.

For each lab, we provide a suite of automated tests. The
tests we provide generally fall into two categories: those based
on running the system and those based on model checking.
All tests will setup a particular configuration (e.g., how many
servers and clients there are, the workloads to be used with
each client, etc.) and then check that the output meets the as-
signment specification. Execution-based tests vary, for exam-
ple, based on the behavior of the network (e.g., by configuring
it to drop a percentage of all messages) and the failure pattern
specified by the test. Model checking tests, on the other hand,
vary based on the initial configuration of the system as well
as the way the search is guided (described in Section 4.3.2).

As we discuss below, execution-based tests are good for
exercising the “normal case” of a particular implementation,
as well as testing that progress can still be made even under
adverse conditions. Model checking, on the other hand, tests
all cases systematically and is well suited to finding violations
of safety properties in the asynchronous, message-passing
setting.

3.1 Example
In the third assignment, students implement a fault-tolerant,
linearizable replicated state machine using the Paxos proto-
col [21] to agree on the sequence of commands to be executed
— that is, a shared log. The servers receive commands from
clients and place them in consecutive slots in their logs, exe-
cuting commands once they have been chosen (permanently

p1 p2 p3 p4 p5

CHOSEN

p1 p2 p3 p4 p5

CHOSEN

CHOSEN

Figure 3. Two executions of an incorrect version of the Paxos proto-
col in which second phase replies contain only values. The left trace
shows p1 successfully completing both phases of the protocol and
choosing the blue value, as it should. The trace on the right actually
demonstrates the error, showing p1 and p5 choosing for the first slot
in the log both the blue and red values, respectively.

fixed) for their respective slots. In order to meet the safety
requirement (linearizability), no two servers should ever exe-
cute different commands in the same log slot. Briefly, each
Paxos server has an associated (infinite) set of proposal num-
bers it can use to propose values (i.e., commands sent by
clients); these proposal numbers are totally ordered and each
is unique to the node which owns it. Before a node is allowed
to use a proposal number, it must first contact a quorum of
nodes (usually a simple majority) to ensure: (1) that no pro-
posal with a lower proposal number will ever be accepted by
those nodes, and (2) that it discovers any proposals already
accepted by those nodes. If the node discovers any already
accepted proposals, it must use the value corresponding to the
highest proposal number seen during phase one; otherwise
it can use the client’s value. Assuming it receives phase one
responses from a quorum, the node can then send a proposal —
a tuple with the value, index in the log, and proposal number.
If that proposal is accepted by a quorum, then the value is
chosen (permanently fixed) for that index in the log.

Now, consider the following bug in an implementation
of Paxos. During the second phase of the algorithm when a
node accepts a value being proposed, it only includes (and
the proposer only checks) the accepted value in the response,
rather than the proposal number. While this might seem like
a benign modification to the Paxos protocol, it introduces a
fatal error. If a node fails to get its proposed value accepted
by a majority because of a competing proposer and proposes
that same value with a higher proposal number, it could later
receive a delayed message from a node responding to its orig-
inal proposal (with a smaller proposal number). This would
mean the node could decide that a value has been permanently
chosen (accepted by a majority with the same proposal num-
ber) when, in fact, some other value could have been chosen.
Figure 3 shows a trace demonstrating the error. This bug is
realistic; misunderstanding how to check for responses is a
common error in student implementations of Paxos.
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While this bug could cause a violation of linearizability,
witnessing such a violation would be rare. For an error to
occur, there would have to be a precise ordering of mes-
sage deliveries, including a significantly delayed message.
Even an execution-based test in which messages are randomly
dropped, duplicated, and delayed would be unlikely to trigger
this specific sequence of events. The error would either never
be caught or only be caught in a tiny fraction of executions.
In light of our goal of providing a thorough suite of tests, not
being able to find a common bug like this one is problematic!

On the other hand, model checking can find this bug reli-
ably. Using state graph exploration, along with optimizations
described in Section 4, we designed a model checking test
which can reliably find this particular error. The fact that it is
an unlikely outcome, based on runtime characteristics of the
system, is irrelevant to the model checker.

Note, however, that both execution-based tests and model
checking tests have roles to play in the testing infrastructure.
For example, live-lock is always possible in an implementa-
tion of Paxos [6]; whether it occurs in practice (under ideal
network conditions) is largely a question of how well the first
phase is implemented (e.g., tuning the durations of the various
timers). Execution-based tests, unlike model checking, are
well suited to testing these kinds of liveness properties. More-
over, as we will discuss in Section 4, model checking tests
using breadth-first search of the state graph are primarily lim-
ited in the depth to which they can explore. Execution-based
tests give us the ability to check safety properties on much
longer runs of students’ systems, albeit without the degree of
thoroughness and repeatability provided by model checking.

4 Designing a Model Checker for Students
Model checking brings many advantages over execution-
based testing. However, existing approaches to model check-
ing distributed systems either come with significant learning
curves or are not able to find common bugs in distributed sys-
tems in a timely fashion. One of the primary goals of DSLabs
is to make the framework accessible and useful to novice dis-
tributed systems programmers, so that they can spend more
of their time focusing on the subject material.

4.1 Simplifying Implementation
Like previous work on model checking distributed systems,
the DSLabs model checker makes assumptions about the
systems it checks (e.g., handler determinism [10]). In order
to simplify the student’s task of writing acceptable code, we
mechanize the process as much as possible.

4.1.1 Collapsing Equal States
One of the goals of the DSLabs framework is to make it as
frictionless as possible for students to begin writing code; for
that reason, we chose to use Java, a mature language most

computer science students are already familiar with. How-
ever, in order to collapse equivalent states and avoid wasting
work during model checking, we need to be able to compare
student-created data structures with each other for equality.
Having students implement the equals and hashCode
methods themselves is cumbersome and error prone. The
Project Lombok [2] library solves this problem; it provides
the @EqualsAndHashCode annotation for classes which
generates those methods at compile time. We annotate all
classes in the provided skeleton code and give students a sim-
ple rule: if you create a class, add @EqualsAndHashCode.

4.1.2 Testing Determinism
One requirement of the model checker is that the event
handlers students write are deterministic. That is, the re-
sulting state after the execution of a handler should only
depend on the original state and the event being han-
dled. Without determinism, the DSLabs model checker
can miss invariant-violating states. Some sources of non-
determinism are obvious (e.g., generating an integer through
new Random().nextInt()), while others are more sub-
tle (e.g., HashMap iteration order). In order to help students
write deterministic code, we added an optional flag to our
model checker. When enabled, this causes the model checker
to clone each state and deliver each event twice, once to
each clone. If the resulting states are not equal, there is some
sequence of events with a non-deterministic outcome.

We test that students correctly apply
@EqualsAndHashCode using the same flag. Dur-
ing model checking, we clone every state reached and check
that the clone is equal to and has the same hash as the original.
Similarly, we also test that message handlers are idempotent,
a useful — but not necessary — property for a distributed
system running in an asynchronous environment.

4.1.3 Supporting Randomness
While determinism is useful for model checking, access to
randomness is often useful in distributed protocols [5, 23, 34].
One potential resolution to this tension is to allow a node to
make pseudo-random choices by maintaining a seed as part
of its state (bootstrapping the seed using its Address, which
is guaranteed to be unique). While this approach is safe, it can
lead to an unnecessary explosion in the size of the state graph.
Another potential resolution is to allow programmers to ex-
pose all non-deterministic choices in event handlers to the
model checker. However, this would significantly complicate
the programming interface.

DSLabs avoids these drawbacks by only supporting the
most common and practical use of nondeterminism in dis-
tributed systems, random timer durations, which previous
work has shown can yield substantial performance bene-
fits [34]. The framework provides a method for specifying
the minimum and maximum durations when setting a timer
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(see Figure 1). During execution-based tests, the framework
chooses the actual duration of the timer from a uniform distri-
bution. However, whenever the model checker is running, all
locally consistent delivery orders are considered.

4.2 Defining Gray Boxes
When designing distributed systems assignments, there is a
choice to be made about the amount of detail in the specifi-
cation and provided skeleton code. At one extreme, we can
specify a distributed system only in terms of its externally
visible behavior. This can make it difficult to perform any-
thing but brute-force model checking, however. At the other
extreme, we can provide students with the full definitions of
all message and timer types to be used (and even the data
structures to be kept at each node). This would enable fine-
grained, isolated testing of each handler but would obviate
many of the challenges we would like students to solve. The
DSLabs assignments take a middle gray-box approach of
prescribing limited aspects of the system while leaving most
design decisions up to students.

4.2.1 Commands and Results
One source of information about the states of distributed
systems common to all labs is the workload given to and
results returned by worker nodes. The automated tests use
this information to check correctness — for all assignments,
we require linearizability. For example, for a simple key–
value store, we can construct a test where multiple workers
are given a sequence of append-and-get operations to the
same key. Linearizability of these append-and-get operations
can be stated as follows. First, when all workers’ result lists
are combined and sorted by length, each value should be
equal to the previous value concatenated with the value from
the corresponding append-and-get operation. And second, no
result in this combined result list should have been returned
by its client before the command for a previous result in the
list had been sent.1

4.2.2 Intermediate Information
While the client interface is important for specifying and
checking the end-to-end correctness of student implementa-
tions, we often want even more insight into system states,
either for testing the correctness of individual components
or to enable the optimizations discussed Section 4.3.2. This
information takes two basic forms in DSLabs. In early labs,
we define some of the message types used by students. This is
primarily done for pedagogical reasons, as a gentle introduc-
tion to programming in the DSLabs framework. However, this
information can then be used by the tests, and we can write
predicates in terms of the messages present in the network.

1This second condition can usually be elided. For append-and-get workloads,
a violation of linearizability but not serializability would require the system
to predict a value to be appended before it is sent.

For example, in the primary-backup lab, the provided code
completely specifies the messages sent to and received from
the view server (the node that maintains configuration infor-
mation); nodes can only become the primary or backup by
receiving a message from this server. Using this information,
we can define predicates on states describing whether or not
the view server has started a given configuration.

In later assignments, we provide less skeleton code. In
order to get more information about the system states, we
specify limited informational interfaces to be implemented by
student node classes. For instance, in the Paxos lab, we have
the Paxos servers implement a method which will return the
status (either tentatively accepted, chosen, empty, or garbage
collected) of a given slot in their logs, as well as the command
in that slot, should it exist.2 This lets us write invariants in
terms of this information. For example, there should never
be two different commands chosen in the same slot. Another
example invariant is that if a node believes a command has
been chosen in a slot, it must be present (or already garbage
collected) at a majority of servers.

It is worth noting that because students have full infor-
mation about their implementations, they can go beyond the
gray-box approach we describe above. Using the DSLabs test-
ing framework, they can write their own predicates in terms
of any piece of their system’s state and test their own assump-
tions about their systems either through model checking or
execution-based tests.

4.3 Dealing with State Explosion
Systematic search of the state graph, while useful in uncover-
ing some bugs, is not a panacea; model checking is up against
a fundamentally hard problem. For most distributed systems,
the state graph is infinite, and the number of unique states
reachable in n steps is exponential in n. This poses a particular
challenge for our use-case. We want the model checker to
reliably find issues in student code, guiding them towards a
correct implementation, and we want it to do so in a timely
fashion. The naïve approach of breadth-first search from the
initial state through certain number of states or for a certain
amount of time might miss many of the bugs model checking
was supposed to catch! Moreover, randomized approaches
to search have the same problem as execution-based tests:
they can fail to reliably find bugs which only occur in a small
fraction of states.

The DSLabs tests use two basic strategies to find as many
bugs as possible: searching for progress and using a guided
search strategy.

2This particular interface is a subset of the one defined in the MIT distributed
systems labs [29]. Theirs defined additional methods and was functional,
rather than informational, and thus constrained student design decisions.
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4.3.1 Pairing Progress with Safety
One challenge facing the DSLabs model checker is that dif-
ferent implementations of the same basic protocol can have
drastically different state graphs, impacting the performance
of the model checker. We will discuss the ways we encourage
students to design for model checking efficiency in Section 5,
but we would like to avoid situations in which the model
checker, presented with buggy and inefficient code, exits
without reporting an error.

One way to gain some certainty that the model checker can
get far enough into the state graph to find invariant-violating
states, should they exist, is to also search for states in which
progress has been made. For instance, in the Paxos lab, we
first search for a state where a worker has received results for
a small number of sequential commands. Then, we search
for invariant-violating states, with similar limitations (e.g.,
time). The intuition as to why this pairing of progress and
safety searches is helpful is that if a buggy system can take
“good” actions in a certain number of steps, it is often (but
not always) the case that it can take “bad” actions in a similar
number of steps.

4.3.2 Guiding the Search
While pairing progress and safety searches can help rule
out needlessly inefficient implementations, some bugs in dis-
tributed systems can require lengthy traces. For instance, the
bug described in Section 3, when injected into our Paxos
implementation, takes a minimum of 36 steps to trigger a
violation of end-to-end linearizability. Using the slot-validity
invariants defined in Section 4.2.2, we can reduce that to
23 steps. However, this is still far deeper than our model
checker can search exhaustively within a reasonable time
bound (see Table 1). In DSLabs, we address this challenge by
using knowledge about each system’s specification to guide
the model checker’s search towards interesting, error-prone
areas of the state space.

First, we specify prunes — predicates telling the model
checker which states not to expand. For example, worker
nodes are given finite workloads in most model checking
tests. When checking properties of their result lists (e.g., lin-
earizability), we can safely prune away states in which all
worker nodes have finished.

Second, we take an iterative approach to model checking
we call punctuated search, in which we first search for a state
satisfying some intermediate constraint and then restart the
search from there. In the primary-backup lab, for example,
little of interest happens until both a primary and backup have
been initialized. Therefore, one of our model checking tests
first searches for a state in which both have been initialized
and all clients have been informed of this, and then begins a
new search from this point, allowing it to search much deeper
into a more error-prone region of the state graph.

Furthermore, punctuated search also allows test developers
to design model checking tests targeted at specific classes of
bugs. For instance, one of our Paxos tests guides the model
checker through a sequence of leader changes necessary to
produce the bug from Section 3. Indeed, our tests can success-
fully find the bug in student implementations. Reliably finding
such a bug would not be possible, at least with reasonable
cost, without punctuated search.

In the most extreme case, we can even proceed one step at a
time through a particular execution known to be problematic,
while still leaving the flexibility to do a full breadth-first
search from the end state if necessary.

4.4 Improving Understandability
Model checking can uncover bugs in student code, but if
students cannot interpret the output of the model checker,
then it is of limited utility.

4.4.1 Annotating State Predicates
First, if the model checker finds an invariant-violating state,
students need to be able to understand the invariant. While
they do have full access to the test code, some of our predi-
cates are built out of reusable pieces, and we initially found
that students had a hard time reading them. Therefore, we
modified the DSLabs test infrastructure so that state pred-
icates return a tuple with a boolean — whether or not the
predicate is satisfied — along with an optional explanatory
string. This allows predicates to return detailed information
about exactly why they were or were not satisfied, and allows
us to display more useful information to students.

4.4.2 Producing Understandable Traces
Although model checking using breadth-first search produces
small traces, they are not necessarily intuitive traces. When
humans write explanations of bugs in systems, they tend to
pair events with their immediate consequences. However, in
traces produced by the model checker, concurrent events will
be randomly ordered. These traces are hard to follow, as they
can have many “context switches.”

Therefore, we implemented a post-processing phase for
traces returned by the DSLabs model checker that reorders
concurrent events into a more intuitive order. First, it takes
the original trace and builds its execution graph, the graph
of events (rather than states). The edges between events are
defined by the happens-before relation [20]. It then performs
depth-first, topological sort of this graph to produce an equiv-
alent trace which pairs events with their immediate successors
whenever possible.

5 Designing Systems for Model Checking
One of the goals of DSLabs is for students to create runnable
distributed systems. We would like students to consider the
performance characteristics of their systems, and our tests
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check that their designs attain reasonable run-time perfor-
mance. We believe this makes our lab assignments compelling
and allows students the sense of accomplishment in imple-
menting realistic distributed systems.

It would be nice if students did not have to take model
checking into consideration (aside from ensuring that their
systems meet the basic requirements described in Section 4.1).
If this were true, the model checking tests we provide would
simply be better tests which reliably caught tricky distributed
systems bugs. However, system design decisions can have a
large impact on the performance of the model checker, and
thus its ability to find bugs within a reasonable amount of
time. A fundamental aspect of distributed systems is that
nodes often need to reason about the state at other nodes [12];
depending on how that state is represented and transmitted
between nodes, it can easily explode the state space even
further and reduce the effectiveness of the model checker.

This is particularly noticeable with certain performance
optimizations. There is a natural tension between design-
ing systems which perform well at run time and those that
can be efficiently model-checked. Roughly speaking, model
checking works better on simpler systems, while run-time op-
timizations often add complexity. Luckily, code that is readily
model checkable usually corresponds to the kind of code we
want students to write — code that is as simple as possible
with respect to its state graph. For instance, we encourage stu-
dents to write idempotent message handlers, which generally
correspond to both simpler code and checkability. We also
encourage students to avoid keeping or sending unnecessary
state, as it can create extraneous states for the model checker
to examine.3 However, some common optimizations and tech-
niques can cause poor model checking performance, limiting
the design space artificially.

For example, some optimizations have the same informa-
tion sent over the network in multiple different forms. In
Paxos, when a node is attempting to help another node catch
up, it is natural to batch decisions and send them in a single
message rather than as a series of small messages. However,
if those decisions also exist as individual messages in the net-
work, then the batched message can create unnecessary states,
and the situation is often worse since each prefix of a list of
decisions could be sent in its own message. Generally, the
model checker can tolerate some amount of batching; indeed,
our reference implementation of Paxos batches decisions as
described above. However, incautious application of these
techniques can lead to problems.

The number of events required for a system to make
progress can also impact model checking performance. Most

3In the case of state kept purely for debugging purposes, students can choose
to disregard fields when determining hashes and state equality using the
exclude parameter on the @EqualsAndHashCode annotation. We do
not recommend this, however, as it is error-prone.

Paxos implementations elect a leader, where the leader han-
dles all client requests and other nodes only attempt to be-
come leader if they suspect the leader has failed — i.e., if
they haven’t heard from the leader within a certain amount
of time. This means that another node would need to receive
two timer events in a row before attempting to become leader.

Viewstamped Replication (VR) [24, 32] takes a different
approach to leader election; instead of letting each node at-
tempt to elect itself leader, leadership is assigned on a round-
robin basis. This has the practical benefit of reducing con-
tention for leadership, but in some cases it can be disastrous
for model checking performance. In a deployment with five
VR nodes, it can take up to twelve sequential events for a
particular node to become leader, making complicated failure
patterns unreachable.

In the end, we have found that the best heuristic to give
to students to ensure model checkability of their systems is
the following: Favor simplicity above all else. Do not keep or
send unnecessary state. Explore performance optimizations,
but not at the expense of significant added complexity. Finally,
consider the number of events it takes for your system to make
progress from any state; ensure that number is reasonably
close to the minimum.

6 Oddity Visual Debugger
To help students better understand the behavior of their pro-
grams and to make model checking more accessible to stu-
dents, we developed a graphical, interactive debugger for
distributed systems, called Oddity. Oddity enables developers
to discover and diagnose bugs in their distributed systems
by controlling the order in which messages and timers are
delivered. Oddity supports time-travel, allowing developers to
explore multiple executions of the same system. We have in-
cluded Oddity in our distributed systems labs, and integrated
it with the testing framework. Students can easily start Oddity
on their systems in order to explore their behavior. Oddity
also starts automatically when the model checker finds an
invariant violation; students can then step through the vio-
lating trace. Unlike other trace visualization tools, Oddity
also enables students to branch off of the violating trace and
explore alternate executions in order to better understand the
error.

Oddity’s execution model is compatible with the execution
model of the labs: the debugger supports event-based systems
with handlers that run in response to messages and timers.
Rather than executing these handlers as a result of predefined
tests or as part of an exhaustive search through the system,
Oddity executes them (via a shim layer that connects student
handlers to the Oddity debugger over the network) in response
to the user’s commands in the debugger.

Figure 4 shows a screenshot of the Oddity interface. Odd-
ity’s interface uses “inboxes” to model the messages and
timers waiting in a network. When a new message is sent, or
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Figure 4. The debugger window. Each node (A) is displayed, along
with an inbox (B) of messages and timers waiting to be delivered at
that node. The user can control delivery by clicking on timers and
messages, and can also inspect the contents of any message or timer
or the state at any node. Using the branching history view (C), the
user can navigate the states of the system they have explored. The
user can reset the debugger to a previous state by clicking on it; this
resets the system to that state so that the user can explore further
from there.

a timer is set, it immediately goes into the receiving node’s
inbox. Any message or timer in an inbox can be delivered at
any time; messages can also be dropped or duplicated. The
user controls the delivery order of messages and timers by
clicking on them. The user can also click on a node, message,
or timer to inspect its contents, allowing them to investigate
how the system’s state evolves as it runs. The user can navi-
gate through the history of previously-explored system states
using the branching history view. They can easily explore
multiple executions, investigating what happens if messages
or timers are reordered.

Students completing the DSLabs assignments can use Odd-
ity in multiple ways. The first is to simply run their system
attached to the Oddity debugger and explore from the initial
state. This enables hypothesis testing — does the system be-
have as expected in the normal case, or under various failure
scenarios? Oddity makes it easy to discover simple bugs: if a
node fails to respond to a message, or sends an unexpected
message, it is immediately obvious. For instance, using Odd-
ity, a student immediately discovered a bug in their Paxos
implementation in which after receiving “prepare” replies
from a quorum, a leader would send extra “accept” requests
after each subsequent “prepare” reply. Since the bug impacted
the system’s performance but not its safety, they would have
been unlikely to discover it without Oddity.

Search Guided
Assignment LOC Kops/s Test (s) Depth Depth
Exactly once RPC 164 116 56 Exh. N/A
Primary-backup 355 64 275 25 41
Multi-Paxos 647 46 293 13 26
Dynamic sharding 878 117 423 12 24
Transactions 597 4.3 355 12 24
Framework API 810
Automated tests 4106
Model checker 4322
Oddity debugger 2139

Table 1. For the solution set to each assignment in DSLabs, lines of
code (including comments), key–value operation throughput (opera-
tions per second), total time for all tests in seconds, and maximum
search depth (breadth first and guided). Model checking for lab 1
was exhaustive. For comparison, we also list the lines of code for
the DSLabs framework, the automated tests, the model checker, and
the Oddity debugger.

Oddity is also used to visualize counterexamples to invari-
ants found by the model-checker. When such a counterex-
ample is discovered, the lab framework automatically starts
Oddity on the system and passes it the execution trace (modi-
fied, as discussed in Section 4.4.2). The student can then step
through the trace in order to see what went wrong. Since the
trace is running in Oddity, the student can explore other possi-
ble executions simultaneously, perhaps to determine whether
a possible bug-fix is actually correct.

7 Experiences
In this section we summarize some of our initial experiences
using DSLabs to teach distributed systems. We start by evalu-
ating our own reference solution set and then describe some
of the student experiences from our most recent offering of
the course.

7.1 Code Complexity and Performance
To validate the DSLabs assignments and model checking
framework, we implemented a solution set in Java. Table 1
lists the lines of code (including comments) in our reference
implementation of each assignment. For comparison, we also
list the lines of code in the framework API, the assignments’
automated tests, the model checker itself, and the Oddity
visual debugger.

First, the code needed for the assignments is tractable for
students to complete in a single term. The restriction to deter-
ministic event handlers had minimal effect on code complex-
ity. A solution implemented in TLA+ would likely be smaller,
but only modestly so, at the expense of students needing to
learn a completely new language. Comparatively, the testing
infrastructure is substantial; asking students to implement
their own testing framework is likely a non-starter.

Unlike TLA+, our Java implementation can run in pro-
duction mode. Table 1 also gives the maximum throughput
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attained by the solution set when run on a cluster of server
class machines, each with two Intel Xeon E5-2680v3 CPUs
(2.5GHz, 30M Cache, 24 hyperthreads) and 64GB DRAM.
The primary-backup lab was, of course, run with an active
primary and backup. For the Paxos lab, we used a 3 replica
cluster. For the dynamic sharding and transactions labs, we
used 7 groups of 3 replicas each, distributed across 7 server
machines. The transaction workload consisted of transactional
reads to two randomly selected keys and transactional writes
to two randomly selected keys, at a 9:1 ratio. There were
10 times as many keys as closed-loop workers, and the keys
were selected from a uniform distribution, ensuring a low but
non-negligible amount of contention. Our implementations,
even though they are not highly optimized, are reasonably
performant.

7.2 Rapid Feedback
To test the execution time of our automated tests, we ran it
against our solution set on one of the aforementioned servers.
Table 1 lists the wall clock time for testing the solution set
for each assignment, along with the maximum search depth
reached by the model checker. Note that student code is likely
to be less efficient, taking longer to reach a given search depth.
The execution time is moderate, in a range of three to seven
minutes for the various assignments.

A key reason for our efficiency is guided search. We apply
constraints on intermediate states of the execution to focus
the model checker on particularly interesting execution paths.
In the primary-backup assignment, for example, we wanted
to demonstrate that student implementations correctly handle
multiple reconfigurations. With guided search, we were able
to walk students’ systems through a series of reconfigurations,
checking that they can maintain safety throughout and still
make progress from the resulting state. Guided search allows
the model checker to check student code to a much deeper
level than otherwise possible.

This supports our goal of giving students timely feedback
on whether their solutions worked. Prior to adding model
checking, it was common for students to find bugs in their
Paxos implementation only when they tried to use that im-
plementation in a later lab. By catching student errors more
quickly, we reduce the amount of re-work needed. For ex-
ample, one student wrote, referring to the old, pre-model
checking version of the labs:

“Just 3 days before the deadline of the project, my partner
and I discovered that our Paxos failed 1 of 100,000 tests.
Though it’s very unlikely that our program will crash when
graded, we still decided to debug. However, we realized that
the bug comes from our optimization of duplicate request
detection before putting request on the Paxos operation log
which means we need to rewrite fifty percent of the whole
project but we did not give up. Finally, after 30 hours of work
in 2 days, we fixed the design flaw and eliminated the bug.
We were so excited that we started to dance in the lab.”

While we do not have any direct evidence about the inci-
dence of undetected bugs with and without model checking,
after adding model checking we had zero reports where stu-
dents found errors in their earlier assignments when complet-
ing later labs.

7.3 Thoroughness
A goal of our testing framework was to find likely student
errors, even those that would be only rarely encountered in
practice. Here, we evaluate the performance of the model
checker on our solution set; the unguided and guided depth
the model checker reached in each assignment is shown in
Table 1. For these tests, all searches were time-limited to
between 15 and 30 seconds.

For the primary-backup assignment, the protocol is simple
enough that we were able to search relatively deeply, even
without guided search. In the protocol, configuration state (the
identities of the primary and backup) is centralized at a view
server and distributed to the participants. Commands are not
processed in a certain configuration until both the primary and
backup have acknowledged the new configuration. Further, all
messages are tagged with the configuration state of the sender;
messages from old configurations are discarded. This reduces
the set of states to be explored. For example, delivery of old
messages to up-to-date participants has no effect, allowing
the model-checker to quickly move on to other events. By
contrast, in Paxos any node can trigger an election, and the
state used for leader election is distributed across all nodes.
Lagging nodes can continue communicating with each other
long after other nodes have moved on. A consequence of
having more options at every step is that the unguided search
depth is shallower.

Through our use of gray-box testing (Section 4.2) and
guided search (Section 4.3.2), however, we were able to sub-
stantially improve the depth to which we were able to search.

7.4 Comparison to Unguided Methods
In order to evaluate the effectiveness of our model checking
techniques as compared to black-box, unguided methods, we
take the bug described in Section 3 as a case-study. Specifi-
cally, we compare against a pure breadth-first search as well
as random exploration. The previously described Paxos bug is
typical of many errors seen in student implementations, and
an invariant-violating trace is complicated — requiring a min-
imum of 36 steps and 4 leader elections — but not abnormally
so.

In the DSLabs testing framework, we implemented a sim-
ple random exploration strategy which continuously takes
random walks starting from the initial state and running for a
pre-determined number of steps (in this case, 1000). Random
exploration was able to uncover the bug injected into our
implementation of Paxos. However, over 5 runs, it took an
average of 12 hours to do so.
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Pure breadth-first search fared even worse and was not able
to uncover the bug. Exhaustively searching the state space up
to the required depth of 36 would take an effectively infinite
amount of time and space.

On the other hand, the guided search test we designed to
find this type of bug was able to find the invariant violation
in our implementation in 18 seconds. By designing model
checking tests for specific classes of bugs, we are able to find
errors in certain portions of the state space efficiently and
reliably, something not possible without guided search. While
guided and unguided methods are not mutually exclusive
— both can be used sequentially or in parallel to check the
same system — given our goals of promptness and efficiency,
guided search techniques are invaluable and provide the right
set of trade-offs.

7.5 Debuggability
One of the benefits of our model checker is that it can produce
detailed information about invariant violations it finds. We
found that this information did help students fix many issues
found in their systems.

Out of approximately 500 separate submissions across all
four labs, only 25 were found by the model checker to violate
invariants. Compared to the number of submissions which
failed tests due to liveness or performance issues, this is rel-
atively few. As one point of reference, as a part of a larger
user study Oddity was outfitted with opt-in telemetry and
reported over 150 separate debugging sessions started by stu-
dents due to invariant violations found by the model checker
during development. The real number of bugs uncovered by
the model checker during student development is likely to
be much higher; the above count does not include students
who did not opt-in to our data gathering nor does it include
invariant-violating traces which were not inspected using the
visual debugger. Furthermore, almost all of these bugs were
fixed before submission; only a couple of the reported traces
were still present at grading time. Taken together, this data
suggests that the bugs found by the model checker during de-
velopment were readily fixed by students before submission.

7.6 Checkability
Model checking adds a constraint for students’ implementa-
tions: design for model checking performance. Student design
decisions can affect the depth to which the model checker
can search in a given amount of time, as well as the depth at
which errors occur, should they exist. A simple example of
this was where a student incremented the proposal number
in Paxos when retrying after a lost message. This meant that
packet loss was not idempotent, expanding the search space.
Another student had each node periodically send its entire
state to every other node, as a way of keeping nodes up to
date; this drastically expanded the search space.

We gave students advice on how to reduce search com-
plexity and design for checkability (Section 5), encouraging

students to avoid unnecessary events that would foil the search
for safety errors. We also paired searches checking safety with
searches for progress, ensuring that the model checker can
find within some time bound states in which progress is made
(Section 4.3.1).

In the end, we were fairly successful in encouraging check-
ability. Out of the approximately 500 submissions across all
four labs, only 38 were unable to pass all of our searches
for progress, showing that the vast majority of submissions
attained reasonable model checking performance.

7.7 Thinking Distributed
An overarching goal is to encourage students to think about
their code as inherently distributed. It is not enough to find
one code path or event sequence that performs as expected;
students need to consider all possible event sequences si-
multaneously, ideally by thinking in terms of the invariants
maintained be their systems. For many students, this is the
hardest part of the class.

Model checking helped tremendously with this, by finding
bugs that students did not realize were latent in their code,
and ones that less rigorous testing would have missed. Stu-
dents often march through test cases incrementally, fixing
problems only once they occur. A particular student tried this
for the primary-backup assignment and got stuck: the fix for a
problem found by one test would often break the solution for
previous tests. The student found that he could find a version
to pass each of the tests, just not the same version. After we
encouraged him to start over with a clean design that met all
of the criteria simultaneously, he was able to quickly converge
on a solution.

The visual debugger also helped: one student reported
finding an unintended performance bug by running the code
through the debugger and seeing an unexpected flood of mes-
sages after certain events.

8 Related Work
DSLabs and its model checking framework are preceded by a
long line of research on model checking for distributed and
concurrent systems.

Explicit-state model checking is, at its core, exhaustive ex-
ploration of a state space to a bounded depth. Much previous
work has focused on reducing the time and space requirements
of this exploration so that bugs, if they exist, can be found in
hours or days rather than years. By contrast, since the DSLabs
model checker needs to run frequently on student code, its
time budget is only a few minutes. To explore a meaningful
part of the state space in such a short time, DSLabs exploits
the test developer’s knowledge of the system’s specification
to guide the search (see Section 4.3.2). As such, most previ-
ous techniques are of limited utility in DSLabs. Most notably,
partial-order reduction (POR) [9], dynamic partial-order re-
duction [7], and dynamic interface reduction [11] exploit the
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commutativity inherent in message-passing systems to reduce
the number of redundant traces and the number of states that
need to be explored. These techniques could potentially be
applied in DSLabs to further improve performance, but would
not be a substitute for guided search.

Both CMC [30] and VeriSoft [10] are early model checkers
which ran on unmodified implementations of event-driven and
concurrent systems. VeriSoft relies on POR techniques, while
CMC stores compressed records of explored states in order to
avoid exploring redundant states. The DSLabs model checker
also stores the states it explores; since it is always CPU- rather
than memory-bound, compression is unnecessary.

SPIN [15] was another early model checker and remains
in popular usage. Java PathFinder [38] is another popular
model checking tool designed for concurrent Java programs.
Both model checkers implement numerous optimizations and
support various modes and search strategies. However, as
mentioned above, these optimizations are not a replacement
for the guided search techniques used in DSLabs. Moreover,
because DSLabs uses a stateful model checker specialized
for its distributed programming model, it obviates the need
for many of the features of general-purpose model checkers
designed for concurrent programs.

MoDist [41] checks unmodified distributed systems by in-
terposing on system calls made to the operating system. It can
then explore reachable states by controlling the scheduler. Be-
cause MoDist is aimed at unmodified code, a large amount of
its complexity is in handling the inherent non-determinism of
the OS interface, e.g., due to thread scheduling, randomness,
and time-based system calls. By contrast, our approach can
be simpler because we assume students use the DSLabs pro-
gramming interface and write deterministic event handlers.

Mace [17] is an actor-based extension to C++ for building
distributed systems. Like the DSLabs programming interface,
one of Mace’s strengths is that it is conducive to model check-
ing based on high-level transitions of systems. In particular,
MaceMC [16] is a model checker used with Mace, specifi-
cally designed to check liveness, rather than safety, properties
in eventually consistent systems. To that end, MaceMC uses
a multifaceted approach to model checking. MaceMC be-
gins by searching exhaustively from an initial state up to
some depth bound; it then takes long random walks from
these states, searching for live states. While it is possible
the techniques used in MaceMC could be beneficially inte-
grated into the DSLabs model checker, MaceMC considers
distributed systems and predicates on them to be black boxes,
and therefore does not consider the guided search optimiza-
tions used in DSLabs model checking tests. MaceMC also
includes a debugger, MDB. Like the Oddity debugger in-
cluded in DSLabs, MDB allows developers to step through
counterexample traces and explore alternative executions;
unlike Oddity, it does not include a graphical interface.

SAMC [22] reduces the number of states and transitions
that need to be considered by having the distributed systems

developer classify messages based on their semantics. This
information, however, is highly implementation-specific, and
the soundness of the model checker relies its correctness.
Rather than expecting students to specify correct semantic
information about their implementations, DSLabs uses in-
formation about the problem specification, rather than the
implementation, to explore interesting subareas of the state
space.

CrystalBall [40] steers deployed systems away from poten-
tial invariant violations using a model checker started from
each global system state. In effect, this results in an explo-
ration of the state space branching out from a single, realized
execution path. This is similar, in a way, to the guided search
in DSLabs; rather than being guided by the specification,
however, it is guided by a single system execution.

The WiDS Checker [25] and Friday [8] allow developers to
debug their systems by recording traces in production and re-
playing them. Both provide facilities for developers to inspect
these traces in detail, observing how the state of the system
evolves over time. Similar facilities could be integrated into
DSLabs in order to help students understand bugs identified
by the model checker.

DEMi [36] provides a way to minimize the very long
invariant-violating traces found via random fuzz testing.
DEMi explores similar traces using a variant of dynamic
partial-order reduction [7]. Integrating DEMi with DSLabs
by having it analyze and minimize (potentially long) traces
produced by execution-based tests could be useful.

9 Conclusions
Implementing distributed systems is notoriously difficult. The
DSLabs framework and assignments give teachers and stu-
dents tools to face these difficulties. By creating a simple
programming interface in a well-known language, we enable
students to begin creating real systems on day one. Through
model checking, we built a testing infrastructure capable of
meeting the challenges of the asynchronous setting and pro-
viding quick and useful feedback to students. We then built a
suite of optimized execution-based and model checking tests
for each assignment, making use of guided search and other
optimizations to overcome the perennial limitations of model
checking. Finally, we integrated DSLabs with a visualiza-
tion tool to help students better understand and debug their
systems.

Using the DSLabs framework and assignments, we have
successfully guided hundreds of students through the process
of building a fault-tolerant, scalable, distributed key–value
store. Furthermore, these student-built systems are actually
runnable, rather than mere specifications; they can be de-
ployed in a fully distributed fashion and can achieve consid-
erable performance. While implementing systems for both
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execution and model checking can be idiosyncratic and re-
quires certain compromises, the DSLabs framework stream-
lines this process, and we have found that an overwhelming
majority of students succeed in the class and enjoy the experi-
ence. By providing this programming framework and making
efficient model checking accessible to students, we believe
DSLabs provides students with the tools to become proficient
distributed systems programmers.

While the techniques we identified for improving model
checking efficiency are particularly suited to the instructional
setting, we believe they may also be of interest to more expe-
rienced developers. Gray-box testing and guided search allow
developers to more effectively and rapidly model check their
distributed systems, without tightly coupling tests to an im-
plementation, potentially reducing the time spent identifying
errors and increasing developer productivity.

The DSLabs framework and all assignments are open-
source [1].
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