

Instrumenting Executables for Dynamic Analysis

Jeff Perkins and Michael Ernst

MIT CSAIL

14 Nov 2005 09:45Page 1

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

Compiled Instrumentation Approaches

Source to Source

Binary

Other
Scripting a debugger
Linking with modified libraries

14 Nov 2005 09:45Page 2

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

Source to Source

Easy to create instrumentation

Easy to debug

Takes advantage of compiler optimizations

Portable to different architectures

Languages (such as C++) can be very complex. It is difficult
to handle all constructs correctly.

System libraries can’t be instrumented

Difficult for users -- multiple source and object files.

14 Nov 2005 09:45Page 3

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

Binary instrumentation

Instructions are simple

Portable to different languages

Libraries can be instrumented

Easier for users

Tied to machine architecture

Instrumentation is tedious to produce (assemby or
intermediate language)

14 Nov 2005 09:45Page 4

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

Memory Safety

Analysis needs to access variables

Variables and pointers may be uninitialized

Heap space may be deallocated

Array lengths may not be known

Analysis tools should never crash program or change its
behavior

14 Nov 2005 09:45Page 5

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

Memory Safety Solutions

Smart pointers
Safe-C (http://www.cs.wisc.edu/~austin/scc.html)
Xu et al. FSE November 2004

Binary instrumentation
Purify (http://www-306.ibm.com/software/awdtools/purifyplus/)
Valgrind (http://valgrind.org/)

14 Nov 2005 09:45Page 6

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

Fjalar

Mixed level instrumentation toolkit
Binary instrumentation
Source level information via DWARF2 debugging information

Based on Valgrind

Access information on memory, registers etc

Valgrind provides bit level information on memory
initialization and allocation.

Code insertion is handled automatically.

Available soon

14 Nov 2005 09:45Page 7

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

Instrumentation Example

Define a helper function that takes a string name and the
address of the basic block:
 di = unsafeIRDirty_0_N(2/*regparms*/, "enter_function", &enter_function, mkIRExprVec_2(IRExpr_Const(IRConst_U32((Addr)curFuncPtr->daikon_name)), IRExpr_Const(IRConst_U32(curren...

Make the stack pointer available to that function
 di->nFxState = 1; di->fxState[0].fx = Ifx_Read; di->fxState[0].offset = mce->layout->offset_SP; di->fxState[0].size = mce->layout->sizeof_SP;

Insert the code into the intermediate representation

 stmt(mce->bb, IRStmt_Dirty(di));

14 Nov 2005 09:45Page 8

Jeff PerkinsInstrumenting Executables for Dynamic Analysis

	
	 Compiled Instrumentation Approaches
	 Source to Source
	 Binary instrumentation
	 Memory Safety
	 Memory Safety Solutions
	 Fjalar
	 Instrumentation Example

