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GoFree: Reducing Garbage Collection via
Compiler-inserted Freeing

Anonymous Author(s)

Abstract
In a memory-managed programming language, program-
mers allocate memory by creating new objects, but program-
mers never free memory. A garbage collector periodically
reclaims memory used by unreachable objects. As an op-
timization based on escape analysis, some memory can be
freed explicitly by instructions inserted by the compiler. This
optimization reduces the cost of garbage collection, without
changing the programming model.
We designed and implemented this explicit freeing op-

timization for the Go language. We devised a new escape
analysis that is both powerful and fast (𝑂 (𝑁 2) time). Our
escape analysis identifies short-lived heap objects that can be
safely explicitly deallocated. We also implemented a freeing
primitive that is safe for use in concurrent environments.
We evaluated our system, GoFree, on 6 open-source Go

programs. GoFree did not observably slow down compilation.
At run time, GoFree deallocated on average 14.1% of allocated
heap memory. It reduced GC frequency by 7.3%, GC time by
13.0%, wall-clock time by 2.0%, and heap size by 3.6%.

CCS Concepts: • Software and its engineering→ Run-
time environments; Automated static analysis.
ACM Reference Format:
Anonymous Author(s). 2018. GoFree: Reducing Garbage Collection
via Compiler-inserted Freeing. Proc. ACM Program. Lang. 1, CONF,
Article 1 (January 2018), 13 pages.

1 Introduction
Garbage collection (GC) frees developers from manual mem-
ory management, reducing the risk of memory-related bugs
and simplifying coding. However, GC incurs the cost of extra
memory usage and scanning time for dead objects.
Go provides a lightweight escape analysis that supports

the stack allocation optimization but not explicit deallocation
(Section 2.1.2 explains these optimizations). Our system Go-
Free implements the explicit deallocation optimization. It
supports all of Go’s features.
Go’s built-in escape analysis runs in 𝑂 (𝑁 2) time, where

𝑁 is the program’s size. (Throughout this paper, big 𝑂 no-
tation indicates the average case time complexity.) To keep
compilation fast, Go’s escape analysis is field-insensitive and
flow-insensitive. It conservatively assumes simplification that
anything whose address is assigned to an indirection may
escape. For example, *ppd = pc on line 24 of fig. 1 causes an

2018. ACM 2475-1421/2018/1-ART1
https://doi.org/

1 type BigType struct {
2 fat [10000000] int // Too

big for stack
3 p *int
4 }
5
6 func escapeGraphDemo () *int

{
7 var s []int
8 for i := 0; i < 10; i++ {
9 s = make ([]int , 3)
10 // make() outlived by s
11 }
12
13 var b int
14 // b's address is stored

into heap

15 var bigObj BigType // too
big

16 bigObj.p = &b
17 var c int
18 // c's address is

indirectly stored
19 var pc *int = &c
20
21 var d int // d escapes

from function
22 var pd *int = &d
23 var ppd **int = &pd
24 *ppd = pc
25 // c's address is stored

into pd
26 var pd2 *int = *ppd
27 return pd2
28 }

ℒ s

ℒ make

−1

ℒ bigObj

ℒ b

−1

ℒ pc

ℒ c

−1

heapLoc

0

ℒ pd

ℒ d

−1

ℒ ppd

−1

ℒ pd2 return

1

0

Figure 1: Go code and its escape graph. The escape graph deter-
mines whether a location (a node in the graph) is allocated on the
stack (blue) or in the heap (green) by solving memory constraints.
Virtual locations (nodes without frames) are dummy locations for
simplifying analysis that do not stand for specific memory units.
Numbers on edges are explained in fig. 5.

edge in Go’s escape graph (fig. 1) from pc’s node to a virtual
“heap location” — which means “this address escapes to the
heap” — rather than an edge connecting ppd and pc.
The escape analysis could be made more precise by pro-

viding it points-to information, which would enable conser-
vative creation of multiple normal edges rather than an edge
to the virtual “heap location”. Unfortunately, precise pointer
analysis is generally 𝑂 (𝑁 3) [2], which conflicts with Go’s
goal of fast compilation. Previous studies seldom discuss
the complexity of escape analysis in Go. For example, [38]
finds an optimization opportunity in Go’s handling of inter-
face parameters. Other discussions [28] show code snippets
where an obvious improvement can be done, but without
acknowledging that fully implementing that would raise Go
escape analysis’ complexity to 𝑂 (𝑁 3).
This paper presents GoFree, an 𝑂 (𝑁 2) explicit dealloca-

tion analysis for Go that co-exists with Go’s GC and its stack
allocation optimization. Unlike approaches that increase pre-
cision at the cost of asymptotically greater run time, GoFree
maintains𝑂 (𝑁 2) complexity by extracting relatively precise
information from the original Go escape graph to support
the explicit deallocation optimization. Unlike the stack al-
location optimization, GoFree enables optimization across
nested scopes and function calls.

1
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Go Compiler Go Executable

Escape
Analysis

tcfree
instrument.

tcfree calls

Go Runtime

tcfree implementation

GoFree Analysis & 
InstrumentationGo 

Source 
Code

Compilation
Phases

Compilation
Phases

Figure 2: Architecture of GoFree. Blocks in yellow are existing components of the Go compiler and runtime. Blocks in teal are enhancements
by GoFree. During compilation, GoFree inserts explicit deallocation (tcfree calls) in the executable. During execution, tcfree calls into the
enhanced Go runtime.

GoFree consists of two main components (fig. 2): the static
analysis and instrumentation component (section 4) and the
runtime component for explicit deallocation (section 5).
The static analysis and instrumentation component per-

forms completeness analysis (section 4.2), lifetime analy-
sis (section 4.3), and enhanced inter-procedural analysis (IPA,
section 4.4). The completeness analysis reveals which point-
ers’ points-to sets computed from Go escape graph are com-
plete, i.e. contains every variable that it can possibly point
to during runtime. The lifetime analysis determines which
objects (pointed to by a complete pointer) escape — that
is, outlive the pointer’s lifetime. The instrumentation (sec-
tion 4.5) inserts a tcfree primitive at the end of the pointer’s
scope to deallocate the object.

A key part of the runtime support is our new tcfree primi-
tive. For small objects allocated in thread-local caches, tcfree
merely reverts the allocator pointer. For large objects allo-
cated in the global heap, tcfree uses a 2-step sweep approach
to avoid locking the entire heap (see fig. 10 and section 5).
Unlike C’s free primitive, tcfree does not guarantee success-
ful collection. Whenever deallocation would be too costly
(e.g., the object is in a non-thread-local place that requires
locking to deallocate) or unsafe (e.g., GC is running, leading
to a possible deallocation race), tcfree returns early leaving
the object as if tcfree was never called. This strategy is safe:
even if tcfree does nothing, GC will eventually deallocate
the dead object.

GoFree differs from previous escape analysis work in two
aspects. First, GoFree sets compilation speed rather than
precision as the priority to meet Go’s design goal. We im-
plemented a novel, precise deallocation analysis that out-
performs Go’s escape analysis without increasing its 𝑂 (𝑁 2)
time complexity. Second, GoFree handles Go features. One
example is multiple return values: when the returned val-
ues have different allocation properties, a single per-method
analysis, and summary is inadequate. Another example is
Go’s runtime-managed dynamic data structures, such as slice
and map, whose resizing does not appear in any library.
GoFree did not observably slow down compilation. At

run time, GoFree deallocated on average 14.1% of allocated
heap memory, and it reduced GC frequency by 7.2%, GC time
overhead by 14.2%, wall-clock time by 1.9%, and heap size by
3.9%. The speedups apply to GoFree itself: when it is compiled
by GoFree, it compiles other Go programs 1.8% faster.

In summary, our key contributions are as follows:

• An 𝑂 (𝑁 2) static analysis that supports explicit dealloca-
tion.

• Runtime support for tcfree: explicit deallocation primi-
tives that allow efficient deallocation.

• An evaluation of GoFree.
Our ideas apply to any runtime supporting regions or

explicit deallocation. Some generalizable insights that led to
GoFree include:
• The static analysis can offload complexity to the runtime

system. For example, tcfree accommodates double free in
certain cases, so the static analysis can use tcfree even
when it cannot prove no double free would occur.

• In a managed language, the free primitive is allowed to
fail to free an object since GC will sweep it up in the end.
This enables a low-cost best-effort free design.

• Identifying conservativeness can indicate where results
are precise (not conservative). Sound static analysis makes
conservative assumptions; tracking their effect enables
later analysis to improve the results or to utilize results
that are already precise.

2 Related work
2.1 Escape Analysis

Escape analysis [5, 15, 29, 35, 37] determines the scope and
lifetime of objects. If fig. 3 is compiled without escape anal-
ysis, then both make1 and make2 will be allocated in the heap.

2.1.1 Compiler Optimizations based on Escape Anal-
ysis. Compiler optimizations, such as escape analysis, can
determine the scope or lifetime of an object and explicitly
free it when no longer accessed, rather than forcing GC to
discover when it is no longer accessible.
An optimization may allocate objects on the stack, but

they still logically reside in the heap.
Stack Allocation. [10, 11, 19, 39] identifies objects that

are local to a method invocation and allocates them on the
stack; popping the stack frees them, without any GC.

1 func analyses(n int) {
2 s1 := make ([]int , 335) // make1
3 // ... use s1 ...
4 for i := 1; i < n; i++ {
5 s2 := make ([]int , i) // make2
6 // ... use s2 ...
7 }
8 }

Figure 3: Go Code Snippet for Comparing Escape Analyses
2
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The Go compiler implements stack allocation. Each object
of constant size that does not live beyond its scope (accord-
ing to Go’s built-in escape analysis) is allocated on the stack
to avoid GC. In fig. 3, make1 can be allocated on the stack,
while make2 must be heap-allocated because its size is not a
compile-time constant.
Region-based memory management. [1, 6, 21, 36] al-

locates and frees memory in regions or arenas. No GC is
required for any of the objects in the region, because the
entire region is returned to the free list whenever appropri-
ate. However, no partial deallocation within the region is
allowed before the whole region is freed.
Explicit Deallocation. [9, 22, 34, 40] identifies the last

use of an object and automatically inserts an explicit free
primitive after it, similar to what a C programmer would do.
This is more fine-grained and flexible than stack or region-
based allocation (it can free an object even if the object es-
capes from the original scope or has variable size), but it
typically requires more precise information (points-to sets,
flow sensitivity, liveness) to operate.
Go does not support explicit deallocation, while GoFree

does. In fig. 3, make2 can be explicitly freed by inserting a free

primitive call after line 6.

2.1.2 Precision and Complexity of Escape Analysis.

Fast Escape Analysis [19]. Fast escape analysis is an
𝑂 (𝑁 ) algorithm supporting stack allocation. It only propa-
gates escape properties among references and does not dis-
tinguish among new-ed objects. An object is stack allocated
iff the reference it is immediately bound to upon calling
new does not escape. This simplification sometimes causes
unnecessary heap allocation. Because the analysis does not
provide any nontrivial points-to information, it is not capable
of supporting explicit deallocation.

Connection Graph Based Escape Analysis [2, 10, 11,
22, 37]. A connection graph models the data flow among
objects and their addresses, recording the effects of address
fetches, assignments, indirect stores, and indirect loads. The
algorithm propagates constraints across reference and object
nodes. This precision supports better stack allocation than
Fast Escape Analysis and also supports explicit deallocation.
However, as modeling indirect stores (e.g., *p = q in C, or v.f
= u in Java) may generate up to 𝑂 (𝑁 ) edges from a single
statement, the analysis costs 𝑂 (𝑁 3).

2.2 Related Memory Management Techniques
Deferred reference counting. [16] reduces reference count-

ing overhead by not reference-counting the stack. Go does
not implement reference counting.
Scalar replacement. [7, 35] decomposes a composite

data structure into simpler ones, making them more likely
to be eligible for stack allocation. This is especially helpful
in languages like Java, where an object and its components

can only be accessed via references. Go uses explicit point-
ers and thus allows access to an object by pointer or value,
so scalar replacement is impossible. GoFree implements a
similar optimization for multiple return values (section 4.6.3).

3 Background about Go
3.1 Go memory management
Go is a memory-managed language. Over 1.1 million profes-
sional developers use Go [26, 41].

All objects are conceptually allocated on the heap [20].
• Invariant 1: A pointer to a stack object is not stored in

the heap.
• Invariant 2: A pointer to a stack object does not outlive

that object.

3.2 Go Escape Analysis
Go’s escape analysis seeks a balance between compilation
speed and execution performance. It simplifies the connec-
tion graph approach by removing flow-sensitivity, field-sensitivity,
and the tracking of indirect stores (e.g., *p = q). Conservative
handling of these cases results in some precision loss com-
pared to the connection graph approach, but it still performs
better than Fast Escape Analysis. This simplified connection
graph is called the escape graph.

With indirect stores omitted, each Go statement can gen-
erate at most a constant number of nodes and edges in the
graph from a statement, so the number of nodes and edges
in the graph are both 𝑂 (𝑁 ). Go then walks the graph and
propagates properties using a modified Bellman-Ford algo-
rithm [3] with 𝑂 (𝑁 2) time complexity on the sparse graph.

Section 4.1 formalizes Go’s escape analysis.

3.3 Go’s Heap Allocator and Garbage Collector
Go uses a thread-caching, size-segregated, free-list allocator
called TCMalloc [32] to support high-concurrency environ-
ments, eliminating global locking for most allocations. After
requesting memory pages from the OS, TCMalloc divides
them into arena chunks of different small object sizes called
mspans. Each thread may cache some mspans in its exclu-
sively ownedmcache so thatmost allocations from itsmspans
are lock-free unless themspan runs out and needs to request
another mspan from the OS.

Go’s garbage collector accommodates TCMalloc and con-
current environments. It adopts a non-moving strategy be-
cause Go allows the explicit use of pointers by programmers.

4 Static Analysis and Instrumentation
This section details GoFree’s explicit free analysis and in-
strumentation. Section 5 discusses run-time support.

First, section 4.1 introduces the original 𝑂 (𝑁 2) Go escape
analysis framework. The two key analyses of GoFree are
completeness analysis (section 4.2) and lifetime analysis (sec-
tion 4.3); their extra constraints fit in the 𝑂 (𝑁 2) framework.

3
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Figure 4: GoFree static analysis and instrumentation. GoFree reuses Go’s original escape graph. After escape analysis, nodes in the graph
are marked with different properties (such as 𝐻𝑒𝑎𝑝𝐴𝑙𝑙𝑜𝑐) that satisfy both Go’s and GoFree’s constraints. tcfree calls are then inserted
into the AST according to these properties. Blue and green boxes are components that the original Go system includes. Teal boxes are
GoFree-exclusive components.

Table 1: Escape properties used in GoFree
PropertyDef# Cost‡ Description
LoopDepth4.2† 𝑂 (𝑁 ) layers of loops that the location is in
HeapAlloc4.9† 𝑂 (𝑁 2 ) location must be heap-allocated
Exposes4.10 𝑂 (𝑁 2 ) loc. may cause untracked modification to its referent
Incomplete4.11 𝑂 (𝑁 2 ) loc.’s value may be changed by untracked data flow
DeclDepth4.12 𝑂 (𝑁 ) layers of scopes that the location is in
OutermostRef 4.13 𝑂 (𝑁 2 ) the smallest scope that covers location’s lifetime
Outlived4.14 𝑂 (𝑁 2 ) loc. has shorter lifetime than any object it points to
PointsToHeap4.15 𝑂 (𝑁 2 ) location may point to at least one heap object
ToFree4.16 𝑂 (𝑁 2 ) location is qualified to be deallocated by tcfree
† These two properties come from the original Go’s escape analysis.
‡ 𝑂 (𝑁 ) arises from an AST scan.𝑂 (𝑁 2 ) arises from propagation.

Section 4.4 extends GoFree to support inter-procedural anal-
ysis (IPA) to discover more optimization opportunities across
function calls. Section 4.5 discusses insertion of tcfree calls.
Finally, section 4.6 discusses how GoFree supports and uti-
lizes Go’s modern language features.

4.1 Formalization of the Go Escape Analysis
This section formally describes the original Go escape anal-
ysis, an 𝑂 (𝑁 2) algorithm built for stack allocation optimiza-
tion. It has two steps: building an Escape Graph that models
program data flow, and solving Escape Properties based on
constraints on the graph.
Go’s escape analysis yields a memory allocation scheme

that is correct (each variable in Go exists as long as there
are references to it) and strives for efficiency (put as many
objects on the stack as possible). It first builds a directed
weighted graph called an escape graph to model the data
flow among objects. AST nodes that allocate memory are
represented by escape graph nodes called locations, and data
flow relations are represented by escape graph edges.

Definition 4.1 (Escape Graph). An escape graph is a di-
rected weighted graph, EG = (𝐿, 𝐸), where
• 𝐿 is a set of locations defined in definition 4.2. 𝑙 and𝑚 are

locations.
• 𝐸 is a set of edges defined in definition 4.3. 𝑒 and ⟨𝑙,𝑚⟩
are edges.

Definition 4.2 (Location). A location 𝑙 ∈ 𝐿 is a vertex in
the escape graph, which represents storage space. When
we say 𝑙 = L(𝑛), we mean that 𝑙 represents the storage
space created (explicitly or implicitly) by a (declaration or

code edge meaning of edge
p = *q q

1−→ p p may equal *q
p = q q

0−→ p p may equal q
p = &q q

−1−−→ p p may equal &q
*p = q q

0−→ heapLoc q’s value may be in the heap
Figure 5: Go escape graph edges. Derefs(𝑒) is the weight of edge 𝑒 .

expression) node 𝑛 in the AST. That is, L maps an AST node
to its corresponding location. LoopDepth(𝑙) ∈ Z is the loop
depth at the declaration of variable 𝑛.

Go’s escape analysis is field-insensitive. When abstracting
an object or an array as a location, all fields of the object
or all elements of the array are represented by one single
location.

To simplify the escape graph, it contains dummy locations.
Location heapLoc is a global constant that represents a heap
location, while per-function location return represents the
memory space used to pass the function’s return value. Their
LoopDepth() is set to the special value +∞ to avoid affecting
other non-dummy locations.

Definition 4.3 (Edge). 𝑒 = ⟨𝑙1, 𝑙2⟩ ∈ 𝐸 is a directed weighted
edge in the escape graph.

Definition 4.4 (Derefs). Derefs(𝑒) ∈ Z is the weight of edge
𝑒 , representing the dereference count from 𝑙1 to 𝑙2.

Figure 5 shows how edges model assignments. Indirect
store *p = q is not further tracked to avoid generating 𝑂 (𝑁 )
edges for this single statement and degrading Go’s escape
analysis to 𝑂 (𝑁 3). This simplification is safe because it con-
servatively indicates that 𝑞’s value could go into the heap in
the worst case.
Go’s escape analysis is flow-insensitive. The order and

scope of statements have no effect on the escape graph. Since
each statement generates a constant number of locations and
edges, |𝐿 | = 𝑂 (𝑁 ) and |𝐸 | = 𝑂 (𝑁 ).
Using the rules introduced above, the code example in

fig. 1 derives the escape graph shown in fig. 1. Once the
escape graph is complete, Go creates and solves constraints
on Escape Properties.

4
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Definition 4.5 (Holds). 𝑚 ∈ Holds(𝑙) means that 𝑙 can pos-
sibly contain the value of 𝑚, the address of 𝑚, and/or the
value of a location that𝑚 points to (if𝑚 is a pointer). In the
context of Holds(𝑙),
• 𝑙 ∈ 𝐿 is called the root location,
• each𝑚 ∈ Holds(𝑙) is called a leaf location.

|Holds(𝑙) | ≤ |𝐿 | = 𝑂 (𝑁 ), so by walking the escape graph
in the reverse direction of edges, Go computes Holds(𝑙) in
𝑂 (𝑁 ) time. Holds(𝑙) may be incomplete, missing some loca-
tions that also hold 𝑙 because the escape graph does not track
indirect stores.

Definition 4.6 (TrackDerefs). TrackDerefs(𝑙0𝑙1𝑙2 ...𝑙𝑛) ∈ Z is
how many times value 𝑙𝑛 is dereferenced when it is obtained
via track 𝑙0𝑙1𝑙2...𝑙𝑛 . A track is a loop-free path. TrackDerefs(𝑙0...𝑙𝑛)
is computed by adding each Derefs() value when walking
the track in reverse, maintaining a lower bound 0 before
each addition.
• TrackDerefs(𝑙𝑛−1𝑙𝑛) = Derefs(⟨𝑙𝑛−1, 𝑙𝑛⟩),
• TrackDerefs(𝑙𝑖𝑙𝑖+1 ...𝑙𝑛) =𝑚𝑎𝑥 (0,

TrackDerefs(𝑙𝑖+1 ...𝑙𝑛)) + Derefs(⟨𝑙𝑖 , 𝑙𝑖+1⟩).

If TrackDerefs(𝑙0 ...𝑙𝑛) = −1, it means that 𝑙0’s address can
possibly be obtained by 𝑙𝑛 via this track. If TrackDerefs(𝑙0...𝑙𝑛) ≥
0, it means that 𝑙0’s value, or any value retrieved by derefer-
encing it one or more times, can possibly be obtained by 𝑙𝑛
via this track.

Definition 4.7 (MinDerefs). MinDerefs(𝑚, 𝑙) is the mini-
mum value of TrackDerefs(t) via any track 𝑡 from𝑚 to 𝑙 . It
is defined iff𝑚 ∈ Holds(𝑙).

MinDerefs(𝑚, 𝑙) = min
𝑡=𝑚...𝑙

TrackDerefs(𝑡)

Go computes the smallest dereference count because a
variable can be an object, a pointer, or even an object con-
taining pointers of different orders. Two different tracks
with the same source and destination may have different
TrackDerefs(). For example, bigObj in fig. 1 acts as a 0-order
pointer (i.e., a value) with field fat (line 2) and a 1-order
pointer with field p (line 3). Taking the minimum value of
dereferences conservatively assumes the leaf object as its
highest order pointer, being aware of its ability to pass on
other locations’ addresses.

Definition 4.8 (PointsTo). PointsTo(𝑙) ⊆ 𝐿 represents the
points-to set of location 𝑙 , where

𝑚 ∈ PointsTo(𝑙) iff MinDerefs(𝑚, 𝑙) = −1.

𝑚 ∈ PointsTo(𝑙) means that 𝑙 ’s value may be the address
of 𝑚, similar to the result of points-to analysis. A queue-
optimized Bellman-Ford algorithm [3, 8, 17] runs in 𝑂 (𝑁 )
average time on such a sparse graphwith limited edgeweight.
PointsTo(𝑙) may also be incomplete due to the simplification
of indirect stores. We will further discuss this in complete-
ness analysis (see section 4.2).

1 func walkall(EG = (L, E)):
2 work := UniqueQueue(copy(L))
3 for len(work) > 0: // O(N) repetitions
4 root := work.pop()
5 for leaf in Holds(root): // O(N) repetitions
6 leafUpdated := applyConstraints(root , leaf)
7 if leafUpdated:
8 work.push(leaf)
9 // Extension from GoFree.
10 // rootUpdated := applyConstraints(leaf , root)
11 // if rootUpdated:
12 // work.push(root)
13 // break

Figure 6: Go’s 𝑂 (𝑁 2) property propagation algorithm

Definition 4.9 (HeapAlloc). HeapAlloc(𝑙) is true if location
𝑙 must be heap allocated. HeapAlloc(𝑙) is true if
• 𝑙 = heapLoc, or
• 𝑙 = return, or
• ∃𝑚 . 𝑙 ∈ PointsTo(𝑚) ∧ HeapAlloc(𝑚), or
• ∃𝑚 . 𝑙 ∈ PointsTo(𝑚) ∧ LoopDepth(𝑚) < LoopDepth(𝑙).

where 𝑙 is in the same function as𝑚.
Go’s escape analysis (fig. 6) finds a minimum solution for

constraints. Properties propagate only from root locations to
leaf locations, similar to the slack operation in the Bellman-
Ford algorithm. Inspired by this, Go’s escape analysis keeps a
work queue for newly updated locations, and takes one root
location from the queue to update all other leaf locations
until the queue is empty. Since each root takes𝑂 (𝑁 ) time to
update others, and one location can be updated and queued at
most a constant number of times, this algorithm has 𝑂 (𝑁 2)
time complexity.

4.2 Completeness Analysis
Explicit deallocation requires a complete points-to set to
ensure that every possibly-pointed-to object can be freed
before calling tcfree on a pointer. That is, the lifetime of an
object cannot exceed the pointer pointing to it. Stack alloca-
tion can be safe without a complete points-to set because any
indirect stores have been conservatively modeled as storing
into heap in the worst case. If the estimate of an address of
an object includes the heap, the object is heap-allocated.

Go’s escape analysis does not guarantee a complete points-
to set due to its simplification on indirect stores. For example,
in fig. 1, c’s address is held by pd2 due to the indirect store
on line 19. c is safely heap-allocated according to the con-
servative ⟨L(pc), heapLoc⟩ edge, but this does not tell pd2
anything about c. PointsTo(L(pd2)) lacks c, which means it
is incomplete.
Table 2 compares PointsTo(L(pd2)) in different kinds of

escape analysis The faster the algorithm is, the more data
flow information it omits. Among the three algorithms, only
the connection graph provides complete points-to sets.When-
ever encountering dereferencing or field accessing, Fast Es-
cape Analysis gives incomplete points-to sets. Whenever
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Table 2: Points-to sets in different escape analyses
Method Fast Esc. Analysis Go esc. graph Conn. graph
Time complexity 𝑂 (𝑁 ) 𝑂 (𝑁 2 ) 𝑂 (𝑁 3 )

Omitted dataflow *ppd = pc;
pd2 = *ppd

*ppd = pc none

Conservatively
modeled as

{heap} = pc;
{heap} = pd2

{heap} = pc none

PointsTo(L(pd2) ) ∅ {L(d) } {L(c), L(d) }

encountering an indirect store, the Go escape graph gives
incomplete points-to sets.
The part of the escape graph not affected by indirect

stores can contain complete, precise points-to sets. For ex-
ample, in fig. 1, PointsTo(L(s)), PointsTo(L(bigObj)), and
PointsTo(L(pc)) are complete and precise.
To identify which locations are unaffected by indirect

stores and thus have complete points-to sets, we introduce
two new properties for locations and their constraints.

Definition 4.10 (Exposes). Exposes(𝑙) is true if untracked
modifications to locations in PointsTo(𝑙) may have been
made by storing indirectly into 𝑙 .1 Exposes(𝑙) is true if
• 𝑙 = heapLoc, or
• 𝑙 = return, or
• 𝑙 = L(𝑛) and n is the destination of an indirect store (*n =

...), or
• ∃𝑚 . 𝑙 ∈ Holds(𝑚) ∧MinDerefs(𝑙,𝑚) ≤ 0 ∧ Exposes(𝑚).

Exposes(𝑙) does not mean 𝑙 has an incomplete points-to
set. It means that 𝑙 exposes the addresses of locations in
PointsTo(𝑙) to an under-tracked place, so their values might
be changed by indirect stores elsewhere and are thus incom-
plete. For example, in fig. 1, Exposes(L(pc)) is true because
it exposes c’s address, but L(pc) itself is complete as all
changes to its value are tracked, and it only fetches c’s ad-
dress.

Definition 4.11 (Incomplete). Incomplete(𝑙) is true if 𝑙 can
point to locations not in PointsTo(𝑙) at run time. Incomplete(𝑙)
is true if
• 𝑙 is a formal parameter, or
• ∃𝑚 . 𝑙 ∈ PointsTo(𝑚) ∧ Exposes(𝑚), or
• ∃𝑚 .𝑚 ∈ Holds(𝑙) ∧ Incomplete(𝑚).

We enhance the property propagation algorithm in fig. 6
to support our new constraints. The last constraint in defini-
tion 4.11 propagates properties from leaf locations to root
locations, which is in the reversed direction of previous con-
straints. Lines 10–13 in fig. 6 support back-propagation. It
is still an 𝑂 (𝑁 2) algorithm. Previously, only leaf locations
could be updated and re-queued on each walk from the root,
but now we also allow the updating and re-queuing of the

1Exposes ( ) and Incomplete ( ) need not be computed for data types not con-
taining pointers, such as scalars, scalar arrays, and objects containing only
these types.

root itself. The root still has only a constant number of prop-
erties to be updated, so it can only be re-queued at most
constant times. So, the 𝑂 (𝑁 2) complexity is not increased.

As of now, we can compute a location’s points-to set and
decide its completeness in 𝑂 (𝑁 2) time.

4.3 Lifetime Analysis
The lifetime analysis in GoFree collects lifetime information
and instruments tcfree calls.

The stack allocation optimization determines whether or
not an object lives beyond its scope (the brace pair in which it
is allocated). Stack allocation has one opportunity to free an
object, which is at the end of its scope. By contrast, GoFree’s
lifetime analysis can find out how many layers of scopes the
object has escaped from and determine the exact scopewhere
it is safe to free the object. With this information, GoFree
can free objects that escape from several scopes and even
the function (with inter-procedural analysis, section 4.4).
Definition 4.12 (DeclDepth). DeclDepth(𝑙) ∈ Z records the
scope depth at the declaration of variable n, where 𝑙 = L(n).
Definition 4.13 (OutermostRef). OutermostRef (𝑙) ∈ Z is
the smallest scope in a function that covers 𝑙 ’s lifetime. It
takes the greatest value satisfying the following two con-
straints:
• OutermostRef (𝑙) ≤ DeclDepth(𝑙),
• ∀𝑚 . 𝑙 ∈ PointsTo(𝑚) ⇒ OutermostRef (𝑙) ≤ DeclDepth(𝑚).

OutermostRef ’s value is always taken from a location’s
DeclDepth and does not further propagate. As a result, de-
spite being an integer, it will not add complexity to the𝑂 (𝑁 2)
propagation algorithm.

If a pointer’s lifetime ends before the lifetime of the object
it points to, then we say the pointer it has been “outlived”
and is not safe to free.
Definition 4.14 (Outlived). Outlived (𝑙) is true if 𝑙 has a
shorter lifetime than any object that it points to.
• Outlived (𝑙) = 𝑙 ∈ PointsTo(𝑚)

∧ OutermostRef (𝑙) < DeclDepth(𝑚)
As explicit deallocation applies only to heap objects, there

is no need to call tcfree on a pointer that only points to stack
objects. (Such a pointer will be stack-allocated.) However,
such a call is safe because tcfree ignores stack objects.
Definition 4.15 (PointsToHeap). PointsToHeap(𝑙) is true if
𝑙 might point to a heap object.
• PointsToHeap(𝑙) = ∃𝑚 .𝑚 ∈ PointsTo(𝑙) ∧ HeapAlloc(𝑚).

The final step is to determine which location to free using
tcfree. This location must be both safe to free and worthy of
being freed.
Definition 4.16 (ToFree). ToFree(𝑙) is true if 𝑙 is qualified
to be deallocated by tcfree.
ToFree(𝑙) = ¬Incomplete(𝑙)∧¬Outlived (𝑙)∧PointsToHeap(𝑙)
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1 func nestedScopes(size int) {
2 var s1 []int = make ([]int , size) // make1
3 if size > 3 {
4 s1 = make ([]int , size) // make2
5 var s2 []int
6 if size > 3 {
7 var s3 []int = make ([]int , size)// make3
8 s2 = s3
9 }
10 // tcfree(s2)
11 }
12 // tcfree(s1)
13 }

ℒ s2
2, 2

ℒ makeଶ
2,1

−1

ℒ s3
3, 3

0ℒ s1
1, 1

−1

ℒ makeଵ
1, 1

−1

ℒ makeଷ
3, 2

ScopeDepth 1 ScopeDepth 2 ScopeDepth 3

Figure 7: Nested scopes. Numbers under each node are their
DeclDepth() and OutermostRef () values.

We illustrate lifetime analysis with an example of nested
scopes as shown in fig. 7. The two numbers shown un-
der each location in fig. 7 represent its DeclDepth() and
OutermostRef () values. All three slices in fig. 7 are heap-
allocated because of non-constant size. The lifetime analysis
identifies both s1 and s2 have complete points-to sets and
are not outlived by the objects they point to. Therefore, two
tcfrees are inserted to free them. However, s3 has passed the
address of its underlying object to an outer scope, making it
outlived, so it is not safe to free it within its scope.

4.4 Inter-procedural Analysis
Go’s escape analysis provides an inter-procedural analysis
framework called parameter tagging based on the escape
graph, which can be seen as a generalization of the func-
tion summary technique. After intra-procedural analysis, a
function is abstracted into a parameter tag, a compressed
escape graph of the function. A parameter tag’s locations
include only the function’s parameter and return values. The
detailed data flow within the function is compressed into
edges directly from parameters to return values. The edges’
Derefs() are taken fromMinDerefs() on the full escape graph.
At a call site, a copy of the callee’s parameter tag is em-

bedded into the caller as a subgraph. Go tries to order the
intra-procedural analysis of functions inner-to-outer so that
more call sites will find known parameter tags. If it is un-
known (possibly due to recursion or closures), Go uses a
conservative subgraph where all parameters flow to the heap
and all return values come from the heap.

Parameter tagging does not support explicit deallocation
because it does not include information about objects pointed
to by return values, thus losing the completeness of their
points-to sets. As shown in fig. 8, fresh cannot find the in-
ner make (or any of its abstraction) from PointsTo(L(r0)), so
misses the opportunity to deallocate it.

GoFree uses a new approach. Content tagging summarizes
return values’ points-to sets to provide them to the caller so
that newly allocated objects in the callee could be explicitly
deallocated in the caller. For each return value location 𝑙 , Go-
Free adds a dummy content tag location𝑚 = ContentTag(𝑙)

1 func partialNew(ps *[]int) (r0 []int , r1 []int) {
2 pps := &ps
3 *pps = ps
4 made := make ([]int , 3)
5 return made , **pps
6 }
7
8 func caller () {
9 s := make ([]int , 3)
10 fresh , old :=
11 partialNew (&s)
12 }

ℒ ps

ℒ r0 ℒ r1
ContentTag

ℒ r0

ContentTag
ℒ r1

Parameter Tag

ℒ s

ℒ fresh ℒ old

0

Extended
Parameter Tag

1

−1

0

−1

−1

Figure 8: Inter-procedural analysis. Content tags summarize the
escape properties of what a return value points to.

to summarize its points-to set, and an edge 𝑒 = ⟨𝑚, 𝑙⟩ with
Derefs(𝑒) = −1. After intra-procedural analysis, GoFree ad-
justs a few of 𝑙 ’s and𝑚’s properties before adding them both
to the extended parameter tag:
• LoopDepth(𝑙) = DeclDepth(𝑙) = LoopDepth(𝑚)

= DeclDepth(𝑚) = +∞.
• HeapAlloc(𝑚) = PointsToHeap(𝑙).
• Incomplete(𝑙) = Incomplete(𝑚).
The first rule sets the depths to a large enough value

so that they do not appear in the caller as if used by an
outer scope. The second rule summarizes into HeapAlloc(𝑚)
whether any location in PointsTo(𝑙) is heap allocated. The
third rule tells 𝑙 to use the incompleteness property of 𝑚
rather than its own. This is because Incomplete(𝑙) may be
propagated from a formal parameter of the callee. As we
have conservatively set Incomplete(param) = true in case
we have no information about the caller, this may now be a
false positive since we have information from the caller in
inter-procedural analysis. In contrast, Incomplete(𝑚) could
only come from indirect stores within the callee, which must
be recorded for safety.

As shown in fig. 8, fresh is informed of a deallocation op-
portunity by ContentTag(L(r0)), which improves analysis
accuracy, and L(old) is informed of the incompleteness of
ContentTag(L(r1)), so it will not be freed as it is aware of
the existence of an indirect store inside the callee.

4.5 tcfree Instrumentation
GoFree’s runtime includes APIs shown in table 3 that deallo-
cate objects of different types and sizes. Figure 9 shows their
calling relationships.

TcfreeSlice and TcfreeMap are specialized variants of tcfree
to deallocate built-in data structures of Go (section 4.6).

Tcfree receives an address of an object, either from a raw
pointer or an unwrapped slice or map, and forwards the
address to TcfreeSmall or TcfreeLarge according to its size.

TcfreeSmall and TcfreeLarge adopt different strategies to
deallocate objects of different sizes efficiently. For their im-
plementation, see section 5.
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Binary
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Compiler

Original 
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Compiler
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AllocMap()
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AllocMap()

GrowMapAn
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FreeSlice()

FreeMap()

Go 
Source 
Code

Original 
Go 

Runtime

Remains

Remains

Inserted after some AllocSlice() 

Inserted after some AllocMap() 
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Runtime

Runs on

Runs on GoFree Runtime
AllocSlice

AllocMap

GrowMapAn
dFreeOld

TcfreeSlice

TcfreeMap

TcMalloc

Tcfree
TcfreeSmall

TcfreeLarge

“           ” means Calls

Figure 9: tcfree components.

Table 3: The tcfree family. Parameters are always addresses.
Runtime Param- FunctionalityAPI eter
TcfreeSlice slice unwraps the address of underlying array, calls Tcfree
TcfreeMap map unwraps the address of underlying buckets, calls Tcfree
Tcfree object calls TcfreeSmall or TcfreeLarge
TcfreeSmall small obj. deallocates a small object from mcache
TcfreeLarge large obj. deallocates a large object from mcentral

For each location whose ToFree() is true, the GoFree com-
piler inserts a corresponding variant of tcfree as the last
statement (excepting return and goto, so the tcfree is live) of
the scope where it is declared. In most cases, the program
executes to the last line of a scope, so tcfree will be reached.
In cases where the function returns from the middle, tcfree is
not reached, but it is still safe to leave the deallocation to GC.

4.6 Support for Go Language Features
4.6.1 Slice. Slice is a built-in implementation for the linear
list in some modern languages, such as Go, Python, and Rust.
A slice is typically a fat pointer composed of the address of
the underlying array and its length and capacity.

A slice is challenging for escape analysis because its mem-
ory is runtime-managed and does not behave as an ordinary
object. In an escape graph, slices are equivalent to pointers
to their underlying arrays, but these arrays are not always
explicitly allocated. When appending to a slice that does not
already have an underlying array, one is implicitly allocated.
When appending to a full slice, the runtime reallocates a
larger space to extend it. These implicit allocations and data
flows are not reflected in the escape graph and can cause
missing optimizations or even safety problems.
GoFree supports slices by adding dummy content loca-

tions 𝑚 and setting their HeapAlloc() = true upon each
slice appending, conservatively modeling the possibility of
implicit allocation. We connect it to the slice location 𝑙 with
edge 𝑒 =𝑚

−1−−→ 𝑙 . Slice appending in a loop usually causes
implicit heap allocation.
Slices also provide great opportunities for GoFree opti-

mization. They are usually large and do not have a fixed size,
making them hard to stack-allocate. Slices are used a lot as
temporal buffers with relatively simple data flow, usually lo-
cal to a scope. GoFree has a variant of tcfree for slices called
TcfreeSlice. When a slice is passed to it, this runtime API

unwraps the address of its underlying array and forwards it
to deallocation implementations.
We observe that slices may cause a heavy GC burden

because of their dynamic and unpredictable memory man-
agement, which can outweigh the benefits of reduced copy-
ing. Programming language designers should consider more
lightweight ways of memory management, such as reference
counting, as a supplement to GC for slices.

4.6.2 Map. Map is Go’s built-in implementation of hash
table. The Go runtime manages its memory. Every access
of a map is compiled into a runtime call, which may cause
implicit allocation. The biggest part of a map is its buckets,
a continuous array. When the map’s load factor reaches a
certain constant, a bigger new bucket array is allocated in
the heap to replace the old one.

Go maps provide GoFree two optimization opportunities.
First, when a map grows, its old bucket array is evacuated

and abandoned. Since different maps do not share the same
bucket array, this abandoned array is in the growing map’s
exclusive ownership. GoFree deallocates it. This is essentially
a runtime optimization that needs no static analysis, but does
need tcfree. We observe that, even in a managed language,
an explicit free primitive can improve memory efficiency.
Second, a map will likely hold an underlying bucket ar-

ray when it dies. GoFree detects this case similarly to slices.
It uses a specialized TcfreeMap primitive to unwrap the ad-
dress of a map’s underlying bucket array and forward it to
deallocation implementations.

4.6.3 Multiple Return Values. Go provides native lan-
guage support for multiple return values. Unlike Python or
Modern C++, which wrap return values into a tuple and
provide syntactic sugar to simulate multiple return values,
Go regards each return value as an independent object.

Previous allocation analysis for single-return-value func-
tions typically identifies factory methods [19], which means
that the object returned is allocated by the callee. The analy-
sis treats a factory method as a new expression in the caller.

Unfortunately, this technique does not work on Go. Each
Go function may return many objects (fig. 8), both newly al-
located ones L(r0) and received ones L(r1). A Go function
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may be a factory with respect to some return values but not
with respect to other return values.

GoFree’s inter-procedural analysis generalizes factory me-
thod identification with extended parameter tagging and
provides enough information to handle multiple return val-
ues precisely. Essentially, a factory method is a function
that returns something worthy of freeing. GoFree records
the PointsToHeap property of each return value into the
HeapAlloc property of its content tag. GoFree also records
the completeness property for safety.

4.6.4 Function Inlining. Function inlining is a common
compiler optimization to reduce the cost of calling short func-
tions. Inlined functions are embedded into the caller as part of
its code, reducing expensive frame maintenance operations.
Go’s escape analysis benefits from inlining. Go stack al-

location does not track an object once it escapes from the
function and heap allocates it. However, if the callee is in-
lined, more scopes in the caller are visible to the callee object.
If an object escapes from the callee but does not escape from
the caller, it can be stack-allocated instead.
GoFree does not benefit from inlining because its inter-

procedural analysis provides enough information to analyze
the caller function as precisely as intra-procedural analysis.
Our extended parameter tags model data flow from param-
eters to return values, and provide both HeapAlloc() and
Incomplete() properties for return values to analyze them
safely and precisely.

5 Runtime support for tcfree
tcfree represents a family of explicit free primitives for ob-
jects of various types and sizes, which aims to enable safe and
low-cost explicit deallocation of heap objects. In cases where
explicit deallocation is either unsafe or too expensive, the
tcfree primitive simply returns without making any changes.
This means that the tcfree primitive emphasizes safety and
efficiency first, and does not always guarantee successful
explicit deallocation. Our deallocation strategy is tightly as-
sociated with Go’s allocation strategy as implemented by
TCMalloc, which is dependent on the size of objects.

tcfree gives up deallocating and returns with nothing done
in the following cases. When GC has been triggered and is
already running concurrently with the user program, tcfree
does not race GC to deallocate any object. If an mspan’s
ownership has shifted due to Go’s runtime thread scheduling
between allocation and tcfree, tcfree gives up because it’s
unsafe to operate on another thread’s mspan.

Figure 9 illustrates the components breakdown of the orig-
inal Go compiler and our GoFree compiler. Go programs
that use built-in data structures like slices and maps are
compiled into executable binaries containing corresponding
runtime calls for object allocation (and explicit deallocation,
for GoFree). Type-specific primitives are inserted into user
programs to support different built-in data structures. Calls

mheap

Idle 
mspans

mspan
pages

large allocation
new mspan

mcentral
full swept queue

mcentral
full unswept queue

sweep
step 2

mspan

GC

sweep
step 1

mspan
pages

Figure 10: tcfree for large objects is implemented with a 2-step
sweeping strategy. Yellow blocks are mspan control blocks. Green
blocks are memory pages where large objects reside.

to them will be classified by tcfree and routed to TcfreeSmall

or TcfreeLarge depending on the size of the object being deal-
located.

Explicit Deallocation of Small Objects. Most heap ob-
jects are allocated in thread-local mspans, enabling efficient
deallocation without locking. When an object of a given size
can fit in an mspan, TCMalloc is able to allocate them using
a lock-free process. This is accomplished by bumping the
mspan’s free index and setting an allocation bit, because the
allocating thread is in full ownership of the mspan. tcfree
assumes that it is not called on a long-living object, which is
likely still located in the same mspan. If so, deallocation is
performed by simply reverting the free index and clearing
the allocation bit. If the mcache has been filled and swapped
out, tcfree does not risk the safety and efficiency of the deal-
location process; it just returns without changing anything.

Explicit Deallocation of Large Objects. When objects
are too large to fit into a thread-local mspan, TCMalloc al-
locates them in an exclusive mspan by assigning memory
pages to a distinct mspan control block. After allocation, the
large object’s mspan is pushed into the mcentral, the central
cache for mspans not owned by any single thread. tcfree
performs a 2-step sweeping to minimize its effect on GC, as
shown in fig. 10. To deallocate the object, tcfree locks the
mspan and returns the memory pages it owns to mheap, the
central cache for unused memory pages. The mspan is then
marked as dangling and to be swept in a normal GC cycle.
Although GC is still necessary to deallocate the mspan, most
of the space is returned before GC.

Double-free handing. Under the current implementation,
a double-freewill occur if an object is pointed to bymore than
one pointer (slice or map control blocks), all of whom are
in the same scope and eligible for tcfree. However, this will
not cause trouble because 1) tcfree will ignore any already-
freed memory, 2) these tcfrees are inserted adjacently and
no preemption or new allocation can happen in the middle,
and 3) in TCMalloc’s policy, no other thread can access the
part of memory cached by the current thread.
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Table 4: Experimental metrics
Metric Description

time time of one execution
GCs count of GC cycles triggered in one execution
alloced allocation size: total amount of heap allocation in one execution
freed free size: total heap memory freed by tcfree in one execution
free ratio free ratio = freed / alloced
maxheap maximum heap size during one execution

6 Evaluation
This section validates the proposed approach in five aspects.

1. Effectiveness. How does explicit deallocation reduce
GC time and heap memory occupation?

2. Efficiency. How well does GoFree perform on real-
world applications?

3. Deallocation Target Selection. Why does GoFree choose
to free only slices and maps?

4. Ablation Study. How much does each category of ob-
jects contribute to explicitly deallocated space?

5. Compilation Speed. Can GoFree retain fast compiling?
6. Robustness. Does GoFree corrupt memory?

We designed specific experiments to answer these questions.

6.1 Experimental Setup
All experiments were conducted on an Ubuntu server with
two Intel(R) Xeon(R) Gold 6248R CPUs, each with 3.00GHz
processors (48 cores, 96 threads in total) and 503GB memory.
A single Go process is allowed to create up to 32 threads.

We implemented GoFree by modifying the official Go
1.17.7 compiler’s source code.

Our metrics are described in table 4. Our profiling tool is
implemented by hooking Go’s runtime library and collecting
information throughout the program’s execution. The met-
rics are collected upon specific runtime calls and events, such
as heap allocation, tcfree, and triggering of a new GC cycle.
Our profiling tool has no observable effect on the program’s
performance.

6.2 Subject programs
There is no standard benchmark suite for Go. We chose 6
open-source programs fromGitHub. Each one hadmore than
5k stars and is a program rather than a service. (It is harder
to fairly measure the run time and memory consumption of
a service.) json is the standard Go library’s json parser, which
also belongs to the golang/go repository. staticcheck (scheck)
and structlayout (slayout) are two different Go programming
tools from the same repository dominikh/go-tools.

6.3 Effectiveness
Go’s TCMalloc is a complex memory allocator with multi-

ple levels of caches. The effect of deallocation goes through
these cache layers and the Go GC mechanism before fi-
nally being propagated to overall performance. Through
controlled experiments illustrated in fig. 11, we observe that

1 func mapPopulate () {
2 for n := 0; n < 10000000/C; n++ {
3 m := make(map[int]int)
4 for i := 0; i < C; i++ {
5 m[i] = i
6 }
7 }
8 }

C B/op mfreeB/opFR GC/op GC/op GC(GoN2Free / Go)ns/op ns/op TC(GoN2Free / Go)
C=100 5.36E+08 2E+08 37.29% 158 99 62.66% 1.87E+09 1.63E+09 86.79%
C=300 7.17E+08 3.33E+08 46.38% 213 113 53.05% 2.26E+09 1.74E+09 77.11%
C=1000 8.66E+08 4.01E+08 46.34% 256 139 54.30% 2.26E+09 1.93E+09 85.49%
C=3000 5.9E+08 2.68E+08 45.37% 175 138 78.86% 1.85E+09 1.71E+09 92.44%
C=10000 6.87E+08 3.2E+08 46.54% 217 200 92.17% 1.97E+09 1.94E+09 98.59%

0%
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80%

100%

FR

  C=3000  C=10000

      

C=100  C=300

GC (GoFree / Go)

  C=1000

TC (GoFree / Go) HS (GoFree / Go)

Figure 11: Microbenchmark map experiment. A bigger C value
(used in the code above) means that the average size of the deallo-
cated objects is bigger.

the benefit of explicit deallocation is reflected in the reduc-
tion of either time or memory cost, or both. Which of the
two benefits more is more related to the average size of
deallocated objects.
As shown in fig. 11, each value of C results in a similar

free ratio, indicating comparable amounts of deallocation.
However, as C grows larger, the mean size of deallocated
objects increases, resulting in greater reductions in heap size
and less significant reductions in GC frequency and time
consumption.

6.4 Efficiency
Our metrics behave as a random distribution across different
runs (typically fig. 12), so we ran each program under 3
settings, 99 times for each setting, and take the average. The
settings are: (1) compile with Go, (2) compile with GoFree,
and (3) compile with Go but turn off GC at runtime (Go-GCOff).
We compare time, GC and maxheap between settings (1) and

Table 5: Effect of GoFree’s optimizations
Project time GC

time GCs free maxheap
ratio stdev 𝑝-value ratio ratio stdev 𝑝-value ratio ratio stdev 𝑝-value

Go 98.6% 1.6% < 0.0001 91.7% 95.2% 2.7% < 0.0001 12.0% 98.5% 2.5% < 0.0001
hugo 99.9% 10.6% 0.4603 99.6% 97.5% 2.1% < 0.0001 5.5% 99.4% 7.2% 0.2883
badger 99.8% 2.8% 0.2527 98.0% 94.9% 9.2% 0.0003 4.0% 100.2% 9.0% 0.4197
json 93.6% 1.4% < 0.0001 55.0% 77.0% 0.0% < 0.0001 22.8% 95.7% 0.2% < 0.0001
scheck 97.5% 1.9% < 0.0001 82.9% 93.7% 4.1% < 0.0001 15.2% 95.5% 4.7% < 0.0001
slayout 99.0% 5.5% 0.0975 5.1% 97.9% 2.7% < 0.0001 24.9% 89.1% 2.3% < 0.0001
Data in grey are not significant at 𝑝 = 0.01, i.e., neither GoFree nor Go is better.
Ratios (%) are GoFree / Go.
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Figure 12: Time consumption distribution of the Go compiler
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Table 6: Stack/heap allocation decisions of slices, maps, and other
data structures.

Scanned
Project

Stack
others

Heap
GC
others

Stack
slices

Heap
tcfree

slices

Heap
GC
slices

Heap
tcfree

slices

Stack
maps

Heap
tcfree

maps

Heap
GC
maps

Heap
tcfree
maps

Go 461583 1021 2288 660 4692 8.6% 142 304 431 34.7%
hugo 476897 3698 2521 728 7314 6.9% 373 159 1271 8.8%
badger 145569 446 1323 156 2234 4.2% 89 24 100 11.3%
Go/json 45244 45 241 34 280 6.1% 4 3 1 37.5%
scheck 166269 455 1123 263 2417 6.9% 77 84 201 23.2%
slayout 78249 167 364 94 822 7.3% 22 32 84 23.2%
Column 7 is equal to column 5 divided by the sum of columns 5 and 6.
Column 11 is equal to column 9 divided by the sum of columns 9 and 10.

(2) to get the “ratio” columns in table 5. We compute GC time
overhead as Δ𝑡𝑖𝑚𝑒GC = 𝑡𝑖𝑚𝑒Go − 𝑡𝑖𝑚𝑒GoGCOff , and GC time
reduction as (𝑡𝑖𝑚𝑒Go − 𝑡𝑖𝑚𝑒GoFree)/Δ𝑇GC . We also compute
standard deviations and p-values for time, GC, and maxheap
to examine whether GoFree’s effect is significant (p < 0.01).
In each run, we did not set a heap size limit because the

Go runtime has its own algorithm to balance between space-
time tradeoff. The “GOGC” percentage sets a soft goal for
the Go GC pacing mechanism, indicating the desired heap
growth percentage relative to the heap size at the end of
the last GC cycle before triggering the next GC cycle. Go
will never trade a stop-the-world GC for enforcing this soft
goal. More recent versions of Go do provide a way to set a
memory limit, but that is also a similar soft goal mechanism.
On average of the 6 programs, GoFree deallocated 14.1%

of allocated heap memory, reduced GC frequency by 7.3%,
GC time overhead by 13.0%, wall-clock time by 2.0%, and
heap size by 3.6%.

In significant results, GoFree always reduces GC frequency,
sometimes reduces time and maxheap, and never increases
time or maxheap. GoFree reduces most time from json, by
6.4%, and most maxheap from structlayout, by 10.9%. Typ-
ically, programs with higher free ratio benefit more from
GoFree. Apart from the programs listed, we also briefly tested
on protobuf-go, fastjson, fzf, and gods. They have too low free
ratio (< 5%) so we assume GoFree will not optimize them
well, but we still want to report this fact.

The Go compiler is written in Go, so it can benefit from
GoFree. When GoFree is compiled by GoFree, it compiles
other Go programs faster by 1.4%.

6.5 Choice of Deallocation Target
Table 6 reports how often Go stack-allocates slices, maps,
and all other data structures including user-defined ones.
Columns 2 and 3 show that Go’s stack allocation is very
effective for the “other” category. Based on this, GoFree oper-
ates only on stacks and maps, to avoid adding overhead but
little benefit for other types. Other columns of table 6 show
that GoFree achieves significant savings for slices and maps.

6.6 Ablation Study
tcfree can reclaim memory from three sources: when a slice
dies, when a map dies, and the old bucket when a map grows.

Table 7: Ablation study of the contribution breakdown of the three
deallocation categories

Project FreeSlice() FreeMap() GrowMapAndFreeOld()

Go 56.0% 13.9% 30.1%
hugo 56.0% 13.9% 30.1%
badger 0.3% 0.0% 99.7%
json 0.0% 0.0% 100.0%
scheck 2.6% 49.7% 47.7%
slayout 0.5% 0.1% 99.4%

The breakdown of their contribution in terms of total space
reclaimed is shown in table 7. Their contribution vary a lot
depending on the application. For example, the Go compiler
uses a lot of slices to hold basic blocks temporarily during
compilation, so it benefits a lot from FreeSlice(). Applications
that avoid a certain data structure cannot benefit from it.

6.7 Compilation Speed
To show that GoFree meets its design goal of maintaining
Go’s compilation speed, we compiled the ssa package, a rela-
tively large package of the Go compiler, 99 times with the
original Go compiler and GoFree. The values are similar and
the p-value is 0.4963.

6.8 Robustness
To test whether GoFree corrupts the memory i.e., deallocates
any living object, we ran Go’s official package tests using a
mock implementation of tcfree. Instead of deallocating the
memory according to the strategies described in section 5,
this mock implementation sets the memory to zero, or flips
all the bits. This reveals wrong deallocation faster because it
causes any later usage of the freed space to get an incorrect
value instead of possibly getting the correct value if the slot
is not immediately re-allocated. In multiple runs, GoFree
with the mock tcfree implementation successfully passed all
the tests, showing the robustness of our approach.

⟨Mike:Howmuch overhead does GoFree impose com-
pared to manual deallocation? Cite these papers: [25,
33, 42].⟩

7 Conclusion
This paper presented GoFree, an 𝑂 (𝑁 2) static analysis that
identifies short-lived heap objects that are capable of by-
passing GC via explicit freeing, without increasing the time
complexity of escape analysis. The approach identifies com-
plete points-to and performs lifetime analysis upon them.
Key ideas include offload complexity from static analysis to
the runtime system, allowing tentative free primitives for op-
timization and concurrency, and identifying when a conser-
vative analysis performs precisely. These ideas are applicable
to any language that supports garbage collection and either
region allocation or explicit deallocation [4, 12–14, 18, 23, 24,
27, 30, 31]. We implemented the approach for Go and exam-
ined how its modern language features pose both challenges
and advantages for explicit free analysis. Our evaluation of

11
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GoFree performs static scanning and runtime profiling on
a set of Go programs, illustrating its effectiveness.
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