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Debugging is expensive
Your program has a bug. What do you do?
● Reproduce it
● Locate it
● Fix it

Focus of this talk
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Fault localization as a black box

Fault localization 
tool

Passing tests

Failing tests

Program
c = foo;
u = bar();
while (c < u)
  c = c.baz();
return c;

(1) u = bar();

(4) while (c < u)

(3) c = foo;

(5) return c;

(2)  c = c.baz();

Line 
ranking
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Agenda
● Spectrum-based and mutant-based fault localization

● Evaluating fault localization techniques

● Fault provenance: are artificial faults good proxies for real faults?

➢ No!

➢ Why not?

➢ What matters on real faults, then?

➢ Doing better
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Let’s design a FL technique!

if (unflushedValues > 0) {
  if (index >= 0 && !this.allowDuplicateXValues) {
    XYDataItem existing = (XYDataItem) this.data.get(index);
    try {
      overwritten = (XYDataItem) existing.clone();
    }
    catch (CloneNotSupportedException e) {
      throw new SeriesException("Couldn't clone XYDataItem!");
    }
    existing.setY(y);
  }
  ...

More Os ⇒ more suspicious
More Os ⇒ less suspicious
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For each statement

weighting 
factors

Let’s design a FL technique!

λ
#  -

#  -

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...
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There are many variants on spectrum-based FL:

Ochiai[1]

Tarantula[2]

D*[3]

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evaluation of similarity coefficients for software fault localization.
[2] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault localization.
[3] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The DStar method for effective software fault localization.
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Another approach to FL: “mutation-based”

def f(arg):
  if None in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)/2
  cache.sync()
  return (start+stop+1)/2

def f(arg):
  if arg in None:
    return cache[arg]
  ...
  cache[arg] = (start+stop)/2
  cache.sync()
  return (start+stop+1)/2

def f(arg):
  if arg in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)/2
  cache.sync()
  return (start+stop+0)/2

def f(arg):
  if arg in cache:
    return cache[arg]
  ...
  cache[arg] = (start-stop)/2
  cache.sync()
  return (start+stop+1)/2

def f(arg):
  if arg in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)*2
  cache.sync()
  return (start+stop+1)/2

def f(arg):
  if arg in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)/2
  cache.sync()
  return (start/stop+1)/2

def f(arg):
  if arg in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)+2
  cache.sync()
  return (start+stop+1)/2

def f(arg):
  if arg in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)/2
 cache.sync()
  return (start-stop+1)/2

More      ⇒ more suspicious
More      ⇒ less suspicious

def f(arg):
  if arg not in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)/2
  cache.sync()
  return (start+stop+1)/2

def f(arg):
  if arg in cache:
    return cache[arg]
  ...
  cache[arg] = (start+stop)/2
  cache.sync()
  return (start+stop+1)/2
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For each mutant

weighting 
factors

Another approach to FL: “mutation-based”

λ
#  -

#  -

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Mut# Susp.

1 0.1

2 0.6

3 0.1

... ...

collect
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There are few variants on mutation-based FL:

Metallaxis[1]

MUSE [2]

[1] M. Papadakis and Y. Le Traon. Metallaxis-FL: Mutation-based fault localization.
[2] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating faulty programs for fault localization.

λ
collect
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3/53/5

3/53/5
FLFL

0.05

0.01

3/53/5

Program +
Tests +
Defect knowledge

Program +
Tests +
Defect knowledge

0.04avg

Find defect in ranking

How do you tell whether a FL technique is good?

FL
Program

Passing tests

Failing tests
Line 

ranking (1) c = bar();

(4) while (c < u)

(3) u = foo;

...

(2)   c = c.baz();

Program +
Tests +
Defect knowledge

Defect

4/90

Score (smaller = better)

Blue technique is the 
best FL technique

Program +
Tests +
Defect knowledge
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   int x;
   int sum;
   int iters;
   sum = xs[0];
   ...

   int x;
   int sum;

   sum = xs[0];
   ...

● Artificial faults (mutants)
+ Easy to make lots of faults
+ Easy to reason about
-  Not necessarily realistic

How do you get defect information for evaluation?

Program +
Tests +
Defect knowledge

Program +
Tests +
Defect knowledge

Program +
Tests +
Defect knowledge Used by previous 

research

Provided by the 
recent project 
Defects4J [1]

[1] Just et al. "Defects4J: A database of existing faults to enable controlled testing studies for Java programs." ISSTA 2014 Proceedings. ACM, 2014.

● Real faults (from issue trackers)
-  Hard to collect; fewer faults
-  Diverse and complicated
+ Reflect real-world use cases
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A FL technique that does well on artificial faults may do badly on real ones! We:

● generated many artificial faults
by mutating fixed statements

● repeated previous comparisons
○ on artificial faults
○ on real faults

Do the same techniques win on both?

Are artificial faults good substitutes for real faults?

No!

SBFL-SBFL

MBFL-SBFL
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Are artificial faults good substitutes for real faults?
(No!)

better

Artificial faults Real faults
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● Real faults often involve unmutatable lines
(e.g. break, return)

● MBFL does very well on “reversible” artificial faults

Why the difference?

sum = sum + x sum = sum - x sum = sum + x
create fault mutate
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For each mutant

weighting 
factors

Common structure

λ
#  -

#  -

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...
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For each mutant

weighting 
factors

λ
#  -

#  -

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Mut# Susp.

1 0.1

2 0.6

3 0.1

... ...

collect

Common structure
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weighting 
factors

For each element

λ
#  -

#  -

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Elem# Susp.

1 ...

2 ...

3 ...

... ...

collect

Common structure

(identity  
for SBFL)
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λ collectweighting 
factors

Common structure

Technique
Space

#  -

#  -

Important Unimportant
● SBFL
● MBFL: what counts as a failing test

 “detecting” a mutant?
○ AnError(1)→AnError(2)
○ …
○ AnError→OtherError
○ AnError→pass
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New techniques
● SBFL and MBFL both have outliers… but in different cases!
● Average them together!
● Other (smaller) improvements:

○ Make MBFL incorporate mutant coverage information
○ Increase resolution of SBFL by using mutants
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Summary

def f(arg):
  if arg not in cache:
    return cache[arg]
  ...
  cache[arg] = 
(start+stop)/2
  cache.sync()
  return (start+stop+1)/2

if (unflushed
  if (index >
    XYDataIte
    try {
      overwri
    }
    catch (Cl
      throw n
    }
    existing.
  }
  ...
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Future work
● Are artificial faults still bad proxies for real faults

with other families of FL techniques?

● Could generated test suites make artificial faults
Better proxies?

● Do some mutation operators produce better
artificial faults than others?
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Alternative metric: top-n
● “Average percent through the program 

until first faulty statement” might not be 
the best metric.

● Alternative: “probability a faulty 
statement is in the n most suspicious.”

● n=5 for debugging,
n=200 for program repair tools[1]

[1] F. Long and M. Rinard. An analysis of the search spaces for generate and validate patch generation systems.


