
Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Evaluating and Improving
Fault Localization

Spencer Pearson Michael Ernst

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Debugging is expensive
Your program has a bug. What do you do?
● Reproduce it
● Locate it
● Fix it

Focus of this talk

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Fault localization as a black box

Fault localization
tool

Passing tests

Failing tests

Program
c = foo;
u = bar();
while (c < u)
 c = c.baz();
return c;

(1) u = bar();

(4) while (c < u)

(3) c = foo;

(5) return c;

(2) c = c.baz();

Line
ranking

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Agenda
● Spectrum-based and mutant-based fault localization

● Evaluating fault localization techniques

● Fault provenance: are artificial faults good proxies for real faults?

➢ No!

➢ Why not?

➢ What matters on real faults, then?

➢ Doing better

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Let’s design a FL technique!

if (unflushedValues > 0) {
 if (index >= 0 && !this.allowDuplicateXValues) {
 XYDataItem existing = (XYDataItem) this.data.get(index);
 try {
 overwritten = (XYDataItem) existing.clone();
 }
 catch (CloneNotSupportedException e) {
 throw new SeriesException("Couldn't clone XYDataItem!");
 }
 existing.setY(y);
 }
 ...

More Os ⇒ more suspicious
More Os ⇒ less suspicious

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

For each statement

weighting
factors

Let’s design a FL technique!

λ
-

-

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

There are many variants on spectrum-based FL:

Ochiai[1]

Tarantula[2]

D*[3]

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evaluation of similarity coefficients for software fault localization.
[2] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault localization.
[3] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The DStar method for effective software fault localization.

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Another approach to FL: “mutation-based”

def f(arg):
 if None in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)/2
 cache.sync()
 return (start+stop+1)/2

def f(arg):
 if arg in None:
 return cache[arg]
 ...
 cache[arg] = (start+stop)/2
 cache.sync()
 return (start+stop+1)/2

def f(arg):
 if arg in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)/2
 cache.sync()
 return (start+stop+0)/2

def f(arg):
 if arg in cache:
 return cache[arg]
 ...
 cache[arg] = (start-stop)/2
 cache.sync()
 return (start+stop+1)/2

def f(arg):
 if arg in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)*2
 cache.sync()
 return (start+stop+1)/2

def f(arg):
 if arg in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)/2
 cache.sync()
 return (start/stop+1)/2

def f(arg):
 if arg in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)+2
 cache.sync()
 return (start+stop+1)/2

def f(arg):
 if arg in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)/2
 cache.sync()
 return (start-stop+1)/2

More ⇒ more suspicious
More ⇒ less suspicious

def f(arg):
 if arg not in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)/2
 cache.sync()
 return (start+stop+1)/2

def f(arg):
 if arg in cache:
 return cache[arg]
 ...
 cache[arg] = (start+stop)/2
 cache.sync()
 return (start+stop+1)/2

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

For each mutant

weighting
factors

Another approach to FL: “mutation-based”

λ
-

-

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Mut# Susp.

1 0.1

2 0.6

3 0.1

... ...

collect

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

There are few variants on mutation-based FL:

Metallaxis[1]

MUSE [2]

[1] M. Papadakis and Y. Le Traon. Metallaxis-FL: Mutation-based fault localization.
[2] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating faulty programs for fault localization.

λ
collect

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

3/53/5

3/53/5
FLFL

0.05

0.01

3/53/5

Program +
Tests +
Defect knowledge

Program +
Tests +
Defect knowledge

0.04avg

Find defect in ranking

How do you tell whether a FL technique is good?

FL
Program

Passing tests

Failing tests
Line

ranking (1) c = bar();

(4) while (c < u)

(3) u = foo;

...

(2) c = c.baz();

Program +
Tests +
Defect knowledge

Defect

4/90

Score (smaller = better)

Blue technique is the
best FL technique

Program +
Tests +
Defect knowledge

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

 int x;
 int sum;
 int iters;
 sum = xs[0];
 ...

 int x;
 int sum;

 sum = xs[0];
 ...

● Artificial faults (mutants)
+ Easy to make lots of faults
+ Easy to reason about
- Not necessarily realistic

How do you get defect information for evaluation?

Program +
Tests +
Defect knowledge

Program +
Tests +
Defect knowledge

Program +
Tests +
Defect knowledge Used by previous

research

Provided by the
recent project
Defects4J [1]

[1] Just et al. "Defects4J: A database of existing faults to enable controlled testing studies for Java programs." ISSTA 2014 Proceedings. ACM, 2014.

● Real faults (from issue trackers)
- Hard to collect; fewer faults
- Diverse and complicated
+ Reflect real-world use cases

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

A FL technique that does well on artificial faults may do badly on real ones! We:

● generated many artificial faults
by mutating fixed statements

● repeated previous comparisons
○ on artificial faults
○ on real faults

Do the same techniques win on both?

Are artificial faults good substitutes for real faults?

No!

SBFL-SBFL

MBFL-SBFL

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Are artificial faults good substitutes for real faults?
(No!)

better

Artificial faults Real faults

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

● Real faults often involve unmutatable lines
(e.g. break, return)

● MBFL does very well on “reversible” artificial faults

Why the difference?

sum = sum + x sum = sum - x sum = sum + x
create fault mutate

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

For each mutant

weighting
factors

Common structure

λ
-

-

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

For each mutant

weighting
factors

λ
-

-

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Mut# Susp.

1 0.1

2 0.6

3 0.1

... ...

collect

Common structure

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

weighting
factors

For each element

λ
-

-

Line# Susp.

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Elem# Susp.

1 ...

2 ...

3 ...

... ...

collect

Common structure

(identity
for SBFL)

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

λ collectweighting
factors

Common structure

Technique
Space

-

-

Important Unimportant
● SBFL
● MBFL: what counts as a failing test

 “detecting” a mutant?
○ AnError(1)→AnError(2)
○ …
○ AnError→OtherError
○ AnError→pass

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

New techniques
● SBFL and MBFL both have outliers… but in different cases!
● Average them together!
● Other (smaller) improvements:

○ Make MBFL incorporate mutant coverage information
○ Increase resolution of SBFL by using mutants

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Summary

def f(arg):
 if arg not in cache:
 return cache[arg]
 ...
 cache[arg] =
(start+stop)/2
 cache.sync()
 return (start+stop+1)/2

if (unflushed
 if (index >
 XYDataIte
 try {
 overwri
 }
 catch (Cl
 throw n
 }
 existing.
 }
 ...

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Future work
● Are artificial faults still bad proxies for real faults

with other families of FL techniques?

● Could generated test suites make artificial faults
Better proxies?

● Do some mutation operators produce better
artificial faults than others?

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Motivation Black-box model SummaryApproaches
Spectrum Mutant

Artificial vs. real faults
Replication

New techniquesDesign spaceFailure modesEvaluation
What matters?...Evaluation

Alternative metric: top-n
● “Average percent through the program

until first faulty statement” might not be
the best metric.

● Alternative: “probability a faulty
statement is in the n most suspicious.”

● n=5 for debugging,
n=200 for program repair tools[1]

[1] F. Long and M. Rinard. An analysis of the search spaces for generate and validate patch generation systems.

