
Improving IDE Recommendations
by Considering Global Implications of Existing Recommendations

Kıvanç Muşlu , Yuriy Brun , Reid Holmes , Michael D. Ernst , David Notkin
Computer Science & Engineering School of Computer Science

University of Washington University of Waterloo
Seattle, WA, USA Waterloo, ON, Canada

{kivanc, brun, mernst, notkin}@cs.washington.edu rtholmes@cs.uwaterloo.ca

Abstract—Modern integrated development environments
(IDEs) offer recommendations to aid development, such as auto-
completions, refactorings, and fixes for compilation errors. Rec-
ommendations for each code location are typically computed in-
dependently of the other locations. We propose that an IDE
should consider the whole codebase, not just the local context,
before offering recommendations for a particular location. We
demonstrate the potential benefits of our technique by present-
ing four concrete scenarios in which the Eclipse IDE fails to pro-
vide proper Quick Fixes at relevant locations, even though it of-
fers those fixes at other locations. We describe a technique that
can augment an existing IDE’s recommendations to account for
non-local information. For example, when some compilation er-
rors depend on others, our technique helps the developer decide
which errors to resolve first.

I. INTRODUCTION

Modern integrated development environments (IDEs) offer
contextual information that can simplify common developer
tasks. For example, the auto-complete mechanism recom-
mends suffixes that a developer may use to complete partial
variable or method names. As another example, Eclipse’s
Quick Fix recommends ways to resolve compilation errors.

IDEs make these recommendations independently at each
location: the recommendations at one code location do not af-
fect which recommendations are displayed at the others. How-
ever, applying a recommendation may affect other parts of the
program. For example, in a project with multiple compilation
errors that result from a single incorrect type declaration, fix-
ing the declaration resolves the errors at all the other locations.
The fix for this error is unique: no local recommendations at
the other error locations will resolve all the errors.

We propose an approach that uses global information to
improve Quick Fix recommendations. Our approach answers
two kinds of developer questions:

1) “I want to resolve this error. Where should I look?”
2) “My project has multiple errors. Where should I start?”
Our approach creates no new recommendations. Rather, it

augments the IDE by presenting its existing recommendations
at different, appropriate code locations. Our approach is a
general one that can be layered on top of any program analysis
that makes concrete recommendations to the programmer.

The key idea is to precompute which errors each code rec-
ommendation resolves. To answer “Where should I look

to resolve a particular error?”, the IDE (augmented by our
technique) tells the developer which code recommendations,
regardless of their locations, resolve that error. To answer
“Where should I start resolving errors?”, the IDE tells the de-
veloper which code recommendations resolve the most errors
and thus are likely to be good starting points.

Our vision is that IDE recommendations can be improved by
considering a global view of the project and removing the com-
mon IDE assumption that errors are independent. While the
independence assumption may improve the speed of display-
ing recommendations, we focus on programmer productivity
instead. We hypothesize that global analyses can improve the
relevance of Quick Fix recommendations, enabling developers
to resolve compilation errors faster. Our approach preserves
responsiveness by displaying existing recommendations im-
mediately, then adding the results of global analysis as they
become available.

The remainder of this paper is organized as follows. Sec-
tion II presents four code examples for which our approach
provides better results than today’s IDEs. Section III investi-
gates some ad hoc solutions for problems described in Sec-
tion II and points out their limitations. Section IV describes
a proof-of-concept tool that implements our approach. Sec-
tion V compares our approach with related work. Finally,
Section VI concludes.

II. COMPILATION-ERROR DEPENDENCIES

Sometimes, in order to resolve a compilation error, one
must first resolve another error at a remote location. In such
cases, we say the compilation error depends on the remote
location error. When the dependency is unidirectional, Eclipse
only offers the fix at one location, instead of both.

This section presents four Java examples of such compila-
tion error dependencies. In each case, the approach we will
describe in Section IV can improve the recommendations at
the locations of the dependent errors.

A. Unresolvable type declaration

In Figure 1, the variable name is declared with type string
instead of String. If the developer invokes Quick Fix where
name is assigned a String value, none of the Eclipse recom-
mendations resolve either of the errors. However, if the devel-

mailto:kivanc@cs.washington.edu,brun@cs.washington.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu
mailto:kivanc@cs.washington.edu,brun@cs.washington.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu


Figure 1. An unresolvable type declaration string causes two compilation
errors. At the second error location, Quick Fix fails to recommend changing
string to String.

oper invokes Quick Fix at the declaration error, one Eclipse
recommendation is to change string to String, which elim-
inates both errors.

The developer bears two burdens: recognizing that the two
errors are related and can be resolved at a single location, and
recognizing that the second error cannot be resolved by the
local recommendations. While in this example the two errors
are close together, they could just as easily be in different
classes and packages, making their relationship more difficult
for the developer to understand.

B. Undeclared exception throw

(a)

(b)

Figure 2. A missing throws declaration causes two compilation er-
rors. At the first error location, Quick Fix fails to recommend declaring
exceptionalMethod() to throw MyException.

Java requires that a checked exception be declared by all
methods that throw the exception, and forbids catching an
undeclared checked exception. The catch-clause error in
Figure 2(a) needs to be resolved by adding a throws state-
ment to the exceptionalMethod declaration. However, in-
voking Quick Fix at the catch clause will not recommend this
change. Quick Fix recommends the desired change only where

exceptionalMethod is declared. The locations of the catch
clause and the method declaration are likely to be distant,
obscuring their relationship from the developer.

C. Abstract method in a concrete class

Figure 3. A missing method implementation causes two compilation errors.
At the first error location, Quick Fix fails to recommend implementing the
body of doWork().

Declaring an abstract method within a concrete class causes
two compilation errors: one for the class declaration and one
for the method declaration, as in Figure 3. Eclipse’s only
recommendation for the class declaration is to make the class
abstract. In the example, this recommendation resolves both
errors but introduces a new compilation error where the class
is instantiated (see the bottom of Figure 3). A better fix is to
implement a body for doWork, which resolves all compilation
errors without introducing any new ones. Eclipse makes this
recommendation at the location where the method is declared,
but not to a developer who is examining the class declaration.

D. Multiple inheritance

Figure 4. An incompatible return type causes three compilation errors. At
the second and third error locations, Quick Fix fails to recommend changing
the return type declaration of returnWhale() from Chicken to Whale.

A return statement that is incompatible with its method’s
type results in a compilation error. If the correct return type
implements multiple interfaces not implemented by the in-
correct return type, uses of the method expecting those in-
terfaces will also result in compilation errors. For example,
in Figure 4, the method returnWhale returns a Whale, but
is incorrectly declared to return a Chicken. In addition to



the error at the return statement, there are compilation er-
rors at each of the two uses of the method, one that expects
a WaterAnimal and one that expects a Mammal. At each of
the latter two errors, Eclipse recommends changing the return
type of returnWhale to the type of the left-hand side in the
assignment: WaterAnimal and Mammal, respectively. Each
of those fixes resolves only two of the three compilation er-
rors. However, the correct fix, which resolves all three errors,
changes Chicken to Whale and is only recommended at the
return statement location.

III. IDENTIFYING DEPENDENCIES WITH
DEDICATED ANALYSES

Section II showed that Eclipse does not consistently direct
developers to the right locations to resolve dependent errors.

Eclipse developers could augment the Quick Fix engine
to include analyses or heuristics specific to each of these sit-
uations. For the unresolvable type example from Section II-A,
Eclipse could use type inference to determine that the right-
hand side of the assignment statement is of type String, and
then use this information to offer the correct fix — changing
the type of name to String — at both the declaration and the
assignment statements. The undeclared exception example
from Section II-B could be handled by a dataflow analysis that
investigates the try-catch block, identifies the exceptions
that are caught but not thrown inside the try block, and ana-
lyzes where those exceptions may by thrown. Similar analyses
could be used for the examples from Sections II-C and II-D.

In contrast to writing ad hoc analyses for each possible situ-
ation, our approach is more general and exploits the existing
Quick Fix infrastructure.

IV. IDENTIFYING DEPENDENCIES WITH
SPECULATIVE ANALYSIS

The error scenarios in Section II have a key element in
common: in each scenario, Quick Fix recommends a fix that
resolves multiple compilation errors. The problems we have
outlined arise because Eclipse focuses on recommending fixes
that resolve a specific error, ignoring the effects on other errors.

Our approach simultaneously considers the recommenda-
tions at all error locations and dynamically determines which
errors they affect. When Quick Fix is invoked at a dependent
error, our approach identifies the dependence and the recom-
mendation that would resolve all related errors conjointly.

Our approach uses speculative analysis [2], which applies a
set of possible actions in the background and analyzes each
resulting artifact. The approach:

1) applies each Quick Fix recommendation to a copy of
the project,

2) compiles the resulting code, and
3) identifies which compilation errors are resolved.

The output of this process is a list, for each error, of all the
recommendations that resolve that error.

Computing the errors resolved by each recommendation has
three benefits:

First, the IDE can present information about each recom-
mendation at all the locations where the developer may need
it. When compilation errors depend on others, this can ease
the developer’s burden of identifying which errors to fix first.

Second, the IDE can determine how many errors each fix
resolves. This information can improve Quick Fix recom-
mendation ordering, by prioritizing fixes that resolve the most
errors. For example, changing string to String in the code
from Figure 1 resolves two errors, whereas each of the recom-
mendations generated for the second error resolves none.

Third, even without focusing on fixing a specific error, the
IDE can determine which Quick Fix recommendation resolves
the most errors. For a developer unsure where to start fixing,
this recommendation may indicate a good starting point.

We have built a prototype implementation of our approach
in a publicly-available Eclipse plug-in called Quick Fix
Scout [7]. Figure 5 shows a screenshot of Quick Fix Scout
inside Eclipse. The figure demonstrates the first and second
benefits outlined above: the dialog includes (1) a recommenda-
tion from another location that resolves the dialog’s error, and
(2) the number of compilation errors that remain after each
recommendation’s application.

Limitations: We are aware of two potential weaknesses of
our approach. First, our approach only reports recommenda-
tions that Quick Fix already suggests at some location. If the
root cause location does not itself have a compilation error, our
approach will not be able to identify the best fix. For example,
if the mistake in Figure 1 was declaring name to be of type
int, rather than the unresolvable string, Eclipse would not
recommend changing int to String because no compilation
error occurs at that location. However, our approach would do
no worse than today’s approaches. Second, our approach as-
sumes that the number of compilation errors a fix resolves is a
measure of that fix’s correctness. While this assumption often
holds (e.g., in all the situations we presented in Section II), it

Figure 5. The first five Quick Fix recommendations for the code of Figure 1,
when using the Quick Fix Scout plug-in. Quick Fix Scout has modified the
Quick Fix recommendations in three ways. First, each recommendation is
preceded (in parentheses) by the number of compilation errors that will remain
after applying the recommendation. Second, a non-local suggestion has been
added, at the top of the dialog box. Third, the recommendations are sorted by
the number of remaining errors.



is possible that in some situations, Quick Fix Scout may tempt
the developer with fixes that resolve more errors but are, in
fact, the wrong fixes to apply.

V. RELATED WORK

Research and user requests continually push IDEs to im-
prove their recommendation engines. To the best of our knowl-
edge, these improvements have maintained the independence
assumption. Bruch et al. [1] improve Eclipse’s content assist
(auto-complete) by taking historical data and previous users’
habits into account. They show that it is possible to improve
auto-complete by reordering and assigning a confidence value
to the recommendations. Similarly, Hou and Pletcher [4] use
historical data while extending recommendations by perform-
ing type-hierarchy filtering and grouping recommendations
by functional roles. Perelman et al. [9] use partial expres-
sions to generate well-typed, complete expressions to improve
and complement Visual Studio’s IntelliSense (auto-complete).
These three approaches use heuristics — either historical data
or types — to improve recommendation quality. In contrast,
when resolving compilation errors with Quick Fix, our ap-
proach precisely determines the consequences of each rec-
ommendation at all sites in the program. In addition, our
approach is robust and complementary to such IDE improve-
ments and automatically incorporates them. For example, if
Eclipse were to create new types of Quick Fix recommenda-
tions, our approach, and the Quick Fix Scout implementation,
would automatically adapt to using the improvements.

Our approach relies on error-correcting compilers [5], [8]
and would provide no benefit if compilers only identified a
single error at a time. Although every modern compiler uses
error correction, there is often a conceptual gap between what
the error message reports and the solution that a developer
must make to resolve the error. Seminal [6] reduces this gap
by augmenting the ML type checker to identify — and to rec-
ommend, based on user-experience — corrections to obtuse
error messages resulting from complex type-inference algo-
rithms. We attempt to reduce this gap by easing the burden of
identifying which errors should be resolved first. Today, devel-
opers may spend significant time attempting to understand the
dependent errors’ messages, and to resolve them, whereas our
approach will guide the developers to resolve the underlying
errors first.

Quick Fix Scout uses speculative analysis to identify recom-
mendations relevant to each error. We have previously used
speculative analysis to predict textual and higher-order con-
flicts in collaborative development [3], speculating over ver-
sion control operations instead of Quick Fix recommendations.

VI. CONTRIBUTIONS

We have identified a problem with today’s IDEs that offer
contextual information to simplify common developer tasks:

IDEs ignore dependencies between tasks and sometimes fail
to make appropriate recommendations, even when the IDEs
are aware of those recommendations. We have described four
Java examples for which Eclipse Quick Fix fails to provide the
relevant recommendations at the proper locations, and have
presented an approach for improving IDE recommendations.
Our approach considers all the recommendations in a code-
base, computes the implications of those recommendations,
and displays the recommendations at all of the relevant loca-
tions. We have built Quick Fix Scout [7], a prototype Eclipse
plug-in implementation of our approach, applied to Quick Fix.

Recommendations that account for task dependencies, with-
out requiring the developer to first explicitly and manually
identify such dependencies, show promise in terms of making
developers more effective. We focused here on fixing com-
pilation errors, but our work should be applicable to many
more types of recommendations. First, the independence as-
sumption we identified is relevant to all recommendations that
may affect another recommendation. Second, the speculative
analysis approach we applied to Quick Fix can similarly be
applied to most other recommendation engines. Future direc-
tions of research include (1) identifying other recommendation
engines which can benefit from our approach, (2) developing
approaches for recommendations that preclude automatic exe-
cution (such as requiring the developer to provide a new name
for a class, for example), (3) and identifying tools other than
recommendation engines that can benefit from the removal of
an independence assumption.

REFERENCES

[1] M. Bruch, M. Monperrus, and M. Mezini, “Learning from ex-
amples to improve code completion systems,” in ESEC/FSE,
Amsterdam, The Netherlands, 2009, pp. 213–222.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative
analysis: Exploring future states of software,” in FOSER, Santa
Fe, NM, USA, November 2010.

[3] ——, “Proactive detection of collaboration conflicts,” in
ESEC/FSE, Szeged, Hungary, September 2011, pp. 168–178.

[4] D. Hou and D. M. Pletcher, “An evaluation of the strategies of
sorting, filtering, and grouping API methods for code comple-
tion,” in ICSM, September 2011, pp. 233–242.

[5] E. T. Irons, “An error-correcting parse algorithm,” Communica-
tions of the ACM, vol. 6, pp. 669–673, 1963.

[6] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers,
“Searching for type-error messages,” in PLDI, San Diego, CA,
USA, June 2007, pp. 425–434.

[7] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin,
“Quick Fix Scout,” http://quick-fix-scout.googlecode.com, 2010–
2012.

[8] A. B. Pai and R. B. Kieburtz, “Global context recovery: A new
strategy for syntactic error recovery by table-drive parsers,” ACM
TOPLAS, vol. 2, pp. 18–41, 1980.

[9] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-
directed completion of partial expressions,” in PLDI, Beijing,
China, June 2012.

http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse.pdf
http://quick-fix-scout.googlecode.com

	I Introduction
	II Compilation-error dependencies
	II-A Unresolvable type declaration
	II-B Undeclared exception throw
	II-C Abstract method in a concrete class
	II-D Multiple inheritance

	III Identifying dependencies with dedicated analyses
	IV Identifying dependencies with speculative analysis
	V Related Work
	VI Contributions
	References

