
HaLoop: Efficient Iterative Data
Processing On Large Scale Clusters

 Yingyi Bu, UC Irvine
Bill Howe, UW
 Magda Balazinska, UW
 Michael Ernst, UW

http://clue.cs.washington.edu/

Award IIS 0844572
Cluster Exploratory (CluE)

QuickTime™ and a
 decompressor

are needed to see this picture. http://escience.washington.edu/

VLDB 2010, Singapore

Horizon

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 2

Thesis in one slide
 Observation: MapReduce has proven successful as a

common runtime for non-recursive declarative languages
 HIVE (SQL)
 Pig (RA with nested types)

 Observation: Many people roll their own loops

 Graphs, clustering, mining, recursive queries
 iteration managed by external script

 Thesis: With minimal extensions, we can provide an efficient

common runtime for recursive languages
 Map, Reduce, Fixpoint

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 3

Related Work: Twister [Ekanayake HPDC 2010]

 Redesigned evaluation engine using pub/sub
 Termination condition evaluated by main()

13. while(!complete){
14. monitor = driver.runMapReduceBCast(cData);
15. monitor.monitorTillCompletion();

16. DoubleVectorData newCData = ((KMeansCombiner) driver
 .getCurrentCombiner()).getResults();
17. totalError = getError(cData, newCData);
18. cData = newCData;
19. if (totalError < THRESHOLD) {
20. complete = true;
21. break;
22. }
23. }

O(k)

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 4

In Detail: PageRank (Twister)

while (!complete) {
 // start the pagerank map reduce process
 monitor = driver.runMapReduceBCast(new
 BytesValue(tmpCompressedDvd.getBytes()));
 monitor.monitorTillCompletion();
 // get the result of process
 newCompressedDvd = ((PageRankCombiner)
 driver.getCurrentCombiner()).getResults();
 // decompress the compressed pagerank values
 newDvd = decompress(newCompressedDvd);
 tmpDvd = decompress(tmpCompressedDvd);
 totalError = getError(tmpDvd, newDvd);
 // get the difference between new and old pagerank values
 if (totalError < tolerance) {
 complete = true;
 }
 tmpCompressedDvd = newCompressedDvd;
}

O(N) in the size
of the graph

run MR

term.
cond.

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 5

Related Work: Spark [Zaharia HotCloud 2010]

 Reduction output collected at driver program
 “…does not currently support a grouped reduce

operation as in MapReduce”

val spark = new SparkContext(<Mesos master>)
var count = spark.accumulator(0)
for (i <- spark.parallelize(1 to 10000, 10)) {
 val x = Math.random * 2 - 1
 val y = Math.random * 2 - 1
 if (x*x + y*y < 1) count += 1
}
println("Pi is roughly " + 4 * count.value / 10000.0)

all output sent
to driver.

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 6

Related Work: Pregel [Malewicz PODC 2009]

 Graphs only
 clustering: k-means, canopy, DBScan

 Assumes each vertex has access to outgoing edges
 So an edge representation …

 …requires offline preprocessing
 perhaps using MapReduce

Edge(from, to)

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 7

Related Work: Piccolo [Power OSDI 2010]

 Partitioned table data model, with user-
defined partitioning

 Programming model:
 message-passing with global synchronization

barriers
 User can give locality hints

 Worth exploring a direct comparison

GroupTables(curr, next, graph)

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 8

Related Work: BOOM [c.f. Alvaro EuroSys 10]

 Distributed computing based on Overlog
(Datalog + temporal logic + more)

 Recursion supported naturally
 app: API-compliant implementation of MR

 Worth exploring a direct comparison

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 9

Details

 Architecture
 Programming Model
 Caching (and Indexing)
 Scheduling

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 10

Example 1: PageRank

url rank

www.a.com 1.0

www.b.com 1.0

www.c.com 1.0

www.d.com 1.0

www.e.com 1.0

url_src url_dest
www.a.com www.b.com

www.a.com www.c.com

www.c.com www.a.com

www.e.com www.c.com

www.d.com www.b.com

www.c.com www.e.com

www.e.com www.c.om

www.a.com www.d.com

Rank Table R0

Linkage Table L

url rank

www.a.com 2.13

www.b.com 3.89

www.c.com 2.60

www.d.com 2.60

www.e.com 2.13

Rank Table R3

Ri L

Ri.rank = Ri.rank/γurlCOUNT(url_dest)

Ri.url = L.url_src

π(url_dest, γurl_destSUM(rank))

Ri+1

http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/
http://www.a.com/
http://www.b.com/
http://www.a.com/
http://www.c.com/
http://www.c.com/
http://www.a.com/
http://www.e.com/
http://www.c.com/
http://www.d.com/
http://www.b.com/
http://www.c.com/
http://www.e.com/
http://www.e.com/
http://www.c.om/
http://www.a.com/
http://www.d.com/
http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 11

A MapReduce Implementation

M

M

M

M

M

r

r

Ri

L-split1

L-split0
M

M

r

r

i=i+1 Converged?

Join & compute rank
Aggregate fixpoint evaluation

Client

done

r

r

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 12

What’s the problem?

1. L is loaded on each iteration
2. L is shuffled on each iteration

3. Fixpoint evaluated as a separate MapReduce job per iteration

m

m

m

Ri

L-split1

L-split0
M

M

r

r

1.
2.

3.

L is loop invariant, but

plus

r

r M

M

r

r

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 13

Example 2: Transitive Closure

Friend Find all transitive friends of Eric

{Eric, Elisa}

{Eric, Tom
 Eric, Harry}

{}

R1

R0 {Eric, Eric}

R2

R3

(semi-naïve evaluation)

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 14

Example 2 in MapReduce

M

M

M

M

M

r

r

Si

Friend1

Friend0

i=i+1

Anything new?

Join Dupe-elim

Client

done

r

r

(compute next generation of friends)
(remove the ones we’ve
already seen)

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 15

What’s the problem?

1. Friend is loaded on each iteration
2. Friend is shuffled on each iteration

Friend is loop invariant, but

M

M

M

M

M

r

r

Si

Friend1

Friend0

Join Dupe-elim

r

r

(compute next generation of friends)
(remove the ones
we’ve already seen)

1.
2.

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 16

Example 3: k-means

M

M

M

P0

i=i+1

ki - ki+1 < threshold?

Client

done

r

r

P1

P2

= k centroids at iteration i ki

ki

ki

ki

ki+1

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 17

What’s the problem?

M

M

M

P0

i=i+1

ki - ki+1 < threshold?

Client
done

r

r

P1

P2

= k centroids at iteration i ki ki

ki

ki

ki+1

1. P is loaded on each iteration
P is loop invariant, but

1.

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 18

Approach: Inter-iteration caching

Mapper input cache (MI)
Mapper output cache (MO)

Reducer input cache (RI)

Reducer output cache (RO)

M

M

M

r

r

…

Loop body

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 19

RI: Reducer Input Cache
 Provides:

 Access to loop invariant data without
map/shuffle

 Used By:
 Reducer function

 Assumes:
1. Mapper output for a given table constant

across iterations
2. Static partitioning (implies: no new nodes)

 PageRank

 Avoid shuffling the network at every step
 Transitive Closure

 Avoid shuffling the graph at every step
 K-means

 No help

…

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 20

Reducer Input Cache Benefit

Transitive Closure

Billion Triples Dataset (120GB)

90 small instances on EC2

Overall run time

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 21

Reducer Input Cache Benefit

Transitive Closure

Billion Triples Dataset (120GB)

90 small instances on EC2

Join step only

Livejournal, 12GB

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 22

Reducer Input Cache Benefit

Transitive Closure

Billion Triples Dataset (120GB)

90 small instances on EC2

Reduce and Shuffle of Join Step

Livejournal, 12GB

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 23

Join & compute rank

M

M

M

M

M

r

r

Ri

L-split1

L-split0
M

M

r

r

Aggregate fixpoint evaluation

r

r

To
ta

l

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 24

RO: Reducer Output Cache
 Provides:

 Distributed access to output of previous
iterations

 Used By:
 Fixpoint evaluation

 Assumes:
1. Partitioning constant across iterations
2. Reducer output key functionally

determines Reducer input key

 PageRank
 Allows distributed fixpoint evaluation
 Obviates extra MapReduce job

 Transitive Closure
 No help

 K-means
 No help

…

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 25

Reducer Output Cache Benefit
Fi

xp
oi

nt
 e

va
lu

at
io

n
(s

)

Iteration # Iteration #

Livejournal dataset

50 EC2 small instances

Freebase dataset

90 EC2 small instances

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 26

MI: Mapper Input Cache
 Provides:

 Access to non-local mapper input on later
iterations

 Used:
 During scheduling of map tasks

 Assumes:
1. Mapper input does not change

 PageRank

 Subsumed by use of Reducer Input Cache
 Transitive Closure

 Subsumed by use of Reducer Input Cache
 K-means

 Avoids non-local data reads on iterations > 0

…

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 27

Mapper Input Cache Benefit

5% non-local data reads;
~5% improvement

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 28

Conclusions (last slide)
 Relatively simple changes to MapReduce/Hadoop can

support arbitrary recursive programs
 TaskTracker (Cache management)
 Scheduler (Cache awareness)
 Programming model (multi-step loop bodies, cache control)

 Optimizations

 Caching loop invariant data realizes largest gain
 Good to eliminate extra MapReduce step for termination checks
 Mapper input cache benefit inconclusive; need a busier cluster

 Future Work

 Analyze expressiveness of Map Reduce Fixpoint
 Consider a model of Map (Reduce+) Fixpoint

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 29

Data-Intensive
Scalable Science

http://clue.cs.washington.edu

http://escience.washington.edu

Award IIS 0844572
Cluster Exploratory (CluE)

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 30

Motivation in One Slide

 MapReduce can’t express recursion/iteration
 Lots of interesting programs need loops

 graph algorithms
 clustering
 machine learning
 recursive queries (CTEs, datalog, WITH clause)

 Dominant solution: Use a driver program outside
of mapreduce

 Hypothesis: making MapReduce loop-aware
affords optimization
 …and lays a foundation for scalable implementations of

recursive languages

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 31

Experiments

 Amazon EC2
 20, 50, 90 default small instances

 Datasets
 Billions of Triples (120GB) [1.5B nodes 1.6B edges]

 Freebase (12GB) [7M ndoes 154M edges]

 Livejournal social network (18GB) [4.8M nodes, 67M edges]

 Queries
 Transitive Closure
 PageRank
 k-means

[VLDB 2010]

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 32

HaLoop Architecture

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 33

Scheduling Algorithm

Input: Node node
Global variable: HashMap<Node, List<Parition>> last, HashMaph<Node, List<Partition>> current
1: if (iteration ==0) {
2: Partition part = StandardMapReduceSchedule(node);
3: current.add(node, part);
4: }else{
5: if (node.hasFullLoad()) {
6: Node substitution = findNearbyNode(node);
7: last.get(substitution).addAll(last.remove(node));
8: return;
9: }
10: if (last.get(node).size()>0) {
11: Partition part = last.get(node).get(0);
12: schedule(part, node);
13: current.get(node).add(part);
14: list.remove(part);
15: }
16: }

The same as MapReduce

Find a substitution

Iteration-local Schedule

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 34

Programming Interface
Job job = new Job();

job.AddMap(Map Rank, 1);
job.AddReduce(Reduce Rank, 1);
job.AddMap(Map Aggregate, 2);
job.AddReduce(Reduce Aggregate, 2);

job.AddInvariantTable(#1);
job.SetInput(IterationInput);

job.SetFixedPointThreshold(0.1);
job.SetDistanceMeasure(ResultDistance);
job.SetMaxNumOfIterations(10);

job.SetReducerInputCache(true);
job.SetReducerOutputCache(true);

job.Submit();

define loop body

Turn on caches

Declare an input as invariant
Specify loop body input,
parameterized by iteration #

Termination condition

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 35

Cache Infrastructure Details

 Programmer control
 Architecture for cache management
 Scheduling for inter-iteration locality
 Indexing the values in the cache

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 36

Other Extensions and Experiments

 Distributed databases and Pig/Hadoop for Astronomy [IASDS 09]

 Efficient “Friends of Friends” in Dryad [SSDBM 2010]

 SkewReduce: Automated skew handling [SOCC 2010]

 Image Stacking and Mosaicing with Hadoop [Hadoop Summit 2010]

 HaLoop: Efficient iterative processing with Hadoop [VLDB2010]

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 37

MapReduce Broadly Applicable

 Biology
 [Schatz 08, 09]

 Astronomy
 [IASDS 09, SSDBM 10, SOCC 10, PASP 10]

 Oceanography
 [UltraVis 09]

 Visualization
 [UltraVis 09, EuroVis 10]

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 38

Key idea

 When the loop output is large…
 transitive closure
 connected components
 PageRank (with a convergence test as the

termination condition)
 …need a distributed fixpoint operator

 typically implemented as yet another
MapReduce job -- on every iteration

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 39

Background

 Why is MapReduce popular?
 Because it’s fast?
 Because it scales to 1000s of commodity

nodes?
 Because it’s fault tolerant?

 Witness
 MapReduce on GPUs
 MapReduce on MPI
 MapReduce in main memory
 MapReduce on <10 nodes

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 40

So why is MapReduce popular?

 The programming model
 Two serial functions, parallelism for free
 Easy and expressive

 Compare this with MPI
 70+ operations

 But it can’t express recursion
 graph algorithms
 clustering
 machine learning
 recursive queries (CTEs, datalog, WITH clause)

QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 41

Fixpoint

 A fixpoint of a function f is a value x such that
f(x) = x

 The fixpoint queries FIX can be expressed with
the relational algebra plus a fixpoint operator

 Map - Reduce - Fixpoint
 hypothesis: sufficient model for all recursive queries

	HaLoop: Efficient Iterative Data Processing On Large Scale Clusters
	Thesis in one slide
	Related Work: Twister [Ekanayake HPDC 2010]
	In Detail: PageRank (Twister)
	Related Work: Spark [Zaharia HotCloud 2010]
	Related Work: Pregel [Malewicz PODC 2009]
	Related Work: Piccolo [Power OSDI 2010]
	Related Work: BOOM [c.f. Alvaro EuroSys 10]
	Details
	Example 1: PageRank
	A MapReduce Implementation
	What’s the problem?
	Example 2: Transitive Closure
	Example 2 in MapReduce
	What’s the problem?
	Example 3: k-means
	What’s the problem?
	Approach: Inter-iteration caching
	RI: Reducer Input Cache
	Reducer Input Cache Benefit
	Reducer Input Cache Benefit
	Reducer Input Cache Benefit
	Slide Number 23
	RO: Reducer Output Cache
	Reducer Output Cache Benefit
	MI: Mapper Input Cache
	Mapper Input Cache Benefit
	Conclusions (last slide)
	Slide Number 29
	Motivation in One Slide
	Experiments
	HaLoop Architecture
	Scheduling Algorithm
	Programming Interface
	Cache Infrastructure Details
	Other Extensions and Experiments
	MapReduce Broadly Applicable
	Key idea
	Background
	So why is MapReduce popular?
	Fixpoint

