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Thesis in one slide 
 Observation: MapReduce has proven successful as a 

common runtime for non-recursive declarative languages 
 HIVE (SQL) 
 Pig (RA with nested types) 

 
 Observation: Many people roll their own loops 

 Graphs, clustering, mining, recursive queries  
 iteration managed by external script 

 
 Thesis: With minimal extensions, we can provide an efficient 

common runtime for recursive languages 
 Map, Reduce, Fixpoint 
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Related Work: Twister [Ekanayake HPDC 2010] 

 Redesigned evaluation engine using pub/sub 
 Termination condition evaluated by main() 

13. while(!complete){ 
14. monitor = driver.runMapReduceBCast(cData); 
15. monitor.monitorTillCompletion(); 
 
16. DoubleVectorData newCData = ((KMeansCombiner) driver 
                       .getCurrentCombiner()).getResults(); 
17. totalError = getError(cData, newCData); 
18. cData = newCData; 
19.   if (totalError < THRESHOLD) { 
20.        complete = true; 
21.        break; 
22.   } 
23. } 

O(k) 
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In Detail: PageRank (Twister) 

while (!complete) { 
  // start the pagerank map reduce process 
  monitor = driver.runMapReduceBCast(new    
        BytesValue(tmpCompressedDvd.getBytes())); 
  monitor.monitorTillCompletion(); 
  // get the result of process 
  newCompressedDvd = ((PageRankCombiner)    
        driver.getCurrentCombiner()).getResults();  
  // decompress the compressed pagerank values 
  newDvd = decompress(newCompressedDvd);  
  tmpDvd = decompress(tmpCompressedDvd); 
  totalError = getError(tmpDvd, newDvd);  
  // get the difference between new and old pagerank values 
  if (totalError < tolerance) { 
    complete = true; 
  } 
  tmpCompressedDvd = newCompressedDvd; 
} 

O(N) in the size 
of the graph 

run MR 

term. 
cond. 
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Related Work: Spark [Zaharia HotCloud 2010]  

 Reduction output collected at driver program 
 “…does not currently support a grouped reduce 

operation as in MapReduce” 

val spark = new SparkContext(<Mesos master>) 
var count = spark.accumulator(0) 
for (i <- spark.parallelize(1 to 10000, 10)) { 
  val x = Math.random * 2 - 1 
  val y = Math.random * 2 - 1 
  if (x*x + y*y < 1) count += 1 
} 
println("Pi is roughly " + 4 * count.value / 10000.0) 

all output sent 
to driver. 
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Related Work: Pregel [Malewicz PODC 2009] 

 Graphs only 
 clustering: k-means, canopy, DBScan 

 Assumes each vertex has access to outgoing edges 
 So an edge representation … 

 
 

 …requires offline preprocessing  
 perhaps using MapReduce 

Edge(from, to) 
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Related Work: Piccolo [Power OSDI 2010] 

 Partitioned table data model, with user-
defined partitioning 

 Programming model: 
 message-passing with global synchronization 

barriers 
 User can give locality hints 

 
 

 Worth exploring a direct comparison 

GroupTables(curr, next, graph) 
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Related Work: BOOM [c.f. Alvaro EuroSys 10] 

 Distributed computing based on Overlog 
(Datalog + temporal logic + more) 

 Recursion supported naturally 
 app: API-compliant implementation of MR 

 
 Worth exploring a direct comparison 



QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 9 

Details 

 Architecture 
 Programming Model 
 Caching (and Indexing) 
 Scheduling 
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Example 1: PageRank 

url rank 

www.a.com 1.0 

www.b.com 1.0 

www.c.com 1.0 

www.d.com 1.0 

www.e.com 1.0 

url_src url_dest 
www.a.com www.b.com 

www.a.com www.c.com 

www.c.com www.a.com 

www.e.com www.c.com 

www.d.com www.b.com 

www.c.com www.e.com 

www.e.com www.c.om 

www.a.com www.d.com 

Rank Table  R0 

Linkage Table L 

url rank 

www.a.com 2.13 

www.b.com 3.89 

www.c.com 2.60 

www.d.com 2.60 

www.e.com 2.13 

Rank Table  R3 

Ri  L 

Ri.rank = Ri.rank/γurlCOUNT(url_dest) 

Ri.url = L.url_src 

π(url_dest, γurl_destSUM(rank)) 

Ri+1  

http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/
http://www.a.com/
http://www.b.com/
http://www.a.com/
http://www.c.com/
http://www.c.com/
http://www.a.com/
http://www.e.com/
http://www.c.com/
http://www.d.com/
http://www.b.com/
http://www.c.com/
http://www.e.com/
http://www.e.com/
http://www.c.om/
http://www.a.com/
http://www.d.com/
http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/
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A MapReduce Implementation 

M 

M 

M 

M 

M 

r 

r 

Ri 

L-split1 

L-split0 
M 

M 

r 

r 

i=i+1 Converged? 

Join & compute rank  
Aggregate   fixpoint evaluation  

Client 

done 

r 

r 
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What’s the problem? 

1. L is loaded on each iteration 
2. L is shuffled on each iteration 

 
3. Fixpoint evaluated as a separate MapReduce job per iteration 

m 

m 

m 

Ri 

L-split1 

L-split0 
M 

M 

r 

r 

1. 
2. 

3. 

L is loop invariant, but 

plus 

r 

r M 

M 

r 

r 
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Example 2: Transitive Closure 

Friend Find all transitive friends of Eric 

{Eric, Elisa}  

{Eric, Tom 
  Eric, Harry} 

{} 

R1 

R0 {Eric, Eric}  

R2 

R3 

(semi-naïve evaluation) 
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Example 2 in MapReduce 

M 

M 

M 

M 

M 

r 

r 

Si 

Friend1 

Friend0 

i=i+1 

Anything new? 

Join Dupe-elim   

Client 

done 

r 

r 

(compute next generation of friends) 
(remove the ones we’ve 
already seen) 
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What’s the problem? 

1. Friend is loaded on each iteration 
2. Friend is shuffled on each iteration 

Friend is loop invariant, but 

M 

M 

M 

M 

M 

r 

r 

Si 

Friend1 

Friend0 

Join Dupe-elim   

r 

r 

(compute next generation of friends) 
(remove the ones 
we’ve already seen) 

1. 
2. 
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Example 3: k-means 

M 

M 

M 

P0 

i=i+1 

ki -  ki+1 < threshold? 

Client 

done 

r 

r 

P1 

P2 

= k centroids at iteration i ki 

ki 

ki 

ki 

ki+1 



QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 17 

What’s the problem? 

M 

M 

M 

P0 

i=i+1 

ki -  ki+1 < threshold? 

Client 
done 

r 

r 

P1 

P2 

= k centroids at iteration i ki ki 

ki 

ki 

ki+1 

1. P is loaded on each iteration 
P is loop invariant, but 

1. 
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Approach: Inter-iteration caching 

Mapper input cache (MI) 
Mapper output cache (MO) 

Reducer input cache (RI) 

Reducer output cache (RO) 

M 

M 

M 

r 

r 

… 

Loop body 
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RI: Reducer Input Cache 
 Provides: 

 Access to loop invariant data without 
map/shuffle 

 Used By: 
 Reducer function 

 Assumes:  
1. Mapper output for a given table constant 

across iterations 
2. Static partitioning (implies: no new nodes) 

 
 PageRank 

 Avoid shuffling the network at every step 
 Transitive Closure 

 Avoid shuffling the graph at every step 
 K-means 

 No help 
 

… 
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Reducer Input Cache Benefit 

Transitive Closure 

Billion Triples Dataset (120GB) 

90 small instances on EC2 

 

Overall run time 
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Reducer Input Cache Benefit 

Transitive Closure 

Billion Triples Dataset (120GB) 

90 small instances on EC2 

 

Join step only 

Livejournal, 12GB 
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Reducer Input Cache Benefit 

Transitive Closure 

Billion Triples Dataset (120GB) 

90 small instances on EC2 

 

Reduce and Shuffle of Join Step 

Livejournal, 12GB 
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Join & compute rank  

M 

M 

M 

M 

M 

r 

r 

Ri 

L-split1 

L-split0 
M 

M 

r 

r 

Aggregate   fixpoint evaluation  

r 

r 

To
ta

l 
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RO: Reducer Output Cache 
 Provides: 

 Distributed access to output of previous 
iterations 

 Used By: 
 Fixpoint evaluation 

 Assumes:  
1. Partitioning constant across iterations 
2. Reducer output key functionally 

determines Reducer input key 
 

 PageRank 
 Allows distributed fixpoint evaluation 
 Obviates extra MapReduce job  

 Transitive Closure 
 No help 

 K-means 
 No help 

… 
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Reducer Output Cache Benefit 
Fi

xp
oi

nt
 e

va
lu

at
io

n 
(s

) 

Iteration # Iteration # 

Livejournal dataset 

50 EC2 small instances 

Freebase dataset 

90 EC2 small instances 
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MI: Mapper Input Cache 
 Provides: 

 Access to non-local mapper input on later 
iterations 

 Used: 
 During scheduling of map tasks 

 Assumes:  
1. Mapper input does not change 

 
 PageRank 

 Subsumed by use of Reducer Input Cache 
 Transitive Closure 

 Subsumed by use of Reducer Input Cache 
 K-means 

 Avoids non-local data reads on iterations > 0 

 

… 



QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 27 

Mapper Input Cache Benefit 

5% non-local data reads; 
~5% improvement 



QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 28 

Conclusions (last slide) 
 Relatively simple changes to MapReduce/Hadoop can 

support arbitrary recursive programs 
 TaskTracker (Cache management)  
 Scheduler (Cache awareness) 
 Programming model (multi-step loop bodies, cache control) 

 
 Optimizations 

 Caching loop invariant data realizes largest gain 
 Good to eliminate extra MapReduce step for termination checks 
 Mapper input cache benefit inconclusive; need a busier cluster 

 
 Future Work 

 Analyze expressiveness of Map Reduce Fixpoint 
 Consider a model of Map (Reduce+) Fixpoint  
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Data-Intensive 
Scalable Science 

http://clue.cs.washington.edu 

http://escience.washington.edu 

Award IIS 0844572  
Cluster Exploratory (CluE) 
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Motivation in One Slide 

 MapReduce can’t express recursion/iteration 
 Lots of interesting programs need loops 

 graph algorithms 
 clustering 
 machine learning 
 recursive queries (CTEs, datalog, WITH clause) 

 Dominant solution: Use a driver program outside 
of mapreduce 

 Hypothesis: making MapReduce loop-aware 
affords optimization 
 …and lays a foundation for scalable implementations of 

recursive languages 
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Experiments 

 Amazon EC2 
 20, 50, 90 default small instances 

 Datasets 
 Billions of Triples (120GB) [1.5B nodes 1.6B edges] 

 Freebase (12GB) [7M ndoes 154M edges] 

 Livejournal social network (18GB)  [4.8M nodes, 67M edges] 

 Queries 
 Transitive Closure 
 PageRank 
 k-means 

[VLDB 2010] 
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HaLoop Architecture 
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Scheduling Algorithm 

Input:  Node node 
Global variable: HashMap<Node, List<Parition>> last, HashMaph<Node, List<Partition>> current 
1:  if (iteration ==0) { 
2:   Partition part = StandardMapReduceSchedule(node); 
3:   current.add(node, part); 
4:  }else{ 
5:   if (node.hasFullLoad()) { 
6:    Node substitution = findNearbyNode(node); 
7:    last.get(substitution).addAll(last.remove(node)); 
8:    return; 
9:   } 
10:  if (last.get(node).size()>0) { 
11:    Partition part = last.get(node).get(0); 
12:    schedule(part, node); 
13:    current.get(node).add(part); 
14:    list.remove(part); 
15:   } 
16:  } 

 

The same as MapReduce 

Find a substitution 

Iteration-local Schedule 
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Programming Interface 
Job job = new Job(); 
 
job.AddMap(Map Rank, 1);  
job.AddReduce(Reduce Rank, 1);  
job.AddMap(Map Aggregate, 2); 
job.AddReduce(Reduce Aggregate, 2);  
 
job.AddInvariantTable(#1); 
job.SetInput(IterationInput); 
 
 
job.SetFixedPointThreshold(0.1); 
job.SetDistanceMeasure(ResultDistance);  
job.SetMaxNumOfIterations(10);  
 
job.SetReducerInputCache(true); 
job.SetReducerOutputCache(true); 
 
job.Submit(); 

define loop body 

Turn on caches 

Declare an input as invariant 
Specify loop body input, 
parameterized by iteration # 

Termination condition 
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Cache Infrastructure Details 

 Programmer control 
 Architecture for cache management 
 Scheduling for inter-iteration locality 
 Indexing the values in the cache 
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Other Extensions and Experiments 
 

 Distributed databases and Pig/Hadoop for Astronomy [IASDS 09] 
 

 Efficient “Friends of Friends” in Dryad [SSDBM 2010] 
 

 SkewReduce: Automated skew handling [SOCC 2010] 
 

 Image Stacking and Mosaicing with Hadoop [Hadoop Summit 2010] 
 

 HaLoop: Efficient iterative processing with Hadoop [VLDB2010] 
 

 



QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 37 

MapReduce Broadly Applicable 

 Biology  
 [Schatz 08, 09] 

 Astronomy  
 [IASDS 09, SSDBM 10, SOCC 10, PASP 10] 

 Oceanography  
 [UltraVis 09] 

 Visualization 
 [UltraVis 09, EuroVis 10] 
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Key idea 

 When the loop output is large… 
 transitive closure 
 connected components 
 PageRank (with a convergence test as the 

termination condition) 
 …need a distributed fixpoint operator 

 typically implemented as yet another 
MapReduce job -- on every iteration 



QuickTime™ and a
 decompressor

are needed to see this picture. 10/14/2013 Bill Howe, UW 39 

Background 

 Why is MapReduce popular? 
 Because it’s fast? 
 Because it scales to 1000s of commodity 

nodes? 
 Because it’s fault tolerant? 

 Witness 
 MapReduce on GPUs 
 MapReduce on MPI 
 MapReduce in main memory 
 MapReduce on <10 nodes 
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So why is MapReduce popular? 

 The programming model 
 Two serial functions, parallelism for free 
 Easy and expressive 

 Compare this with MPI 
 70+ operations 

 But it can’t express recursion 
 graph algorithms 
 clustering 
 machine learning 
 recursive queries (CTEs, datalog, WITH clause) 
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Fixpoint 

 A fixpoint of a function f is a value x such that 
f(x) = x 

 The fixpoint queries FIX can be expressed with 
the relational algebra plus a fixpoint operator 

 Map - Reduce - Fixpoint 
 hypothesis: sufficient model for all recursive queries 
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