
Static Lock Capabilities for Deadlock Freedom ∗

Colin S. Gordon Michael D. Ernst Dan Grossman
University of Washington

{csgordon,mernst,djg}@cs.washington.edu

Abstract
We present a technique — lock capabilities — for statically verify-
ing that multithreaded programs with locks will not deadlock. Most
previous work is built around a strict total order on all locks held si-
multaneously by a thread, but such an invariant often does not hold
with fine-grained locking, especially when data-structure mutations
change the order locks are acquired. Lock capabilities support id-
ioms that use fine-grained locking, such as mutable binary trees,
circular lists, and arrays where each element has a different lock.

Lock capabilities do not enforce a total order and do not prevent
external references to data-structure nodes. Instead, the technique
reasons about static capabilities, where a thread already holding
locks can attempt to acquire another lock only if its capabilities al-
low it. Acquiring one lock may grant a capability to acquire further
locks, and in data-structures where heap shape affects safe lock-
ing orders, we can use the heap structure to induce the capability-
granting relation. Deadlock-freedom follows from ensuring that the
capability-granting relation is acyclic. Where necessary, we restrict
aliasing with a variant of unique references to allow strong updates
to the capability-granting relation, while still allowing other aliases
that are used only to acquire locks while holding no locks.

We formalize our technique as a type-and-effect system, demon-
strate it handles realistic challenging idioms, and use syntactic tech-
niques (type preservation) to show it soundly prevents deadlock.

1. Introduction
Deadlock occurs when there is a cycle of threads, each blocked
waiting for a resource (usually a lock) held by the next thread in
the cycle. Deadlock in concurrent software remains a problem de-
spite years of experience in industry and research. State-of-the-art
static techniques for preventing deadlock work well for some pro-
grams, but sometimes differ greatly from how programmers reason
about avoiding deadlock, and they are ill-suited for certain classes
of important programs. We propose a technique to address those
shortcomings. Our system makes it possible to express locking or-
ders in a more expressive manner, and to verify deadlock freedom
for algorithms not captured by previous work. Our solution also
complements the core approach used in most previous work: the
two approaches can be soundly combined to yield a yet more ex-
pressive system.

1.1 Fine-grained Locking and Deadlock Freedom
A long line of research develops techniques that deal well with
avoiding deadlock for coarse-grained locking, where a lock guards
access to an entire data structure. The literature on deadlock free-
dom for fine-grained locking, where different locks guard different
parts of a larger structure, is less developed. No prior technique
for static deadlock freedom can verify that the following four

∗ Extended Version; Technical Report UW-CSE-11-10-01, Computer Sci-
ence and Engineering, University of Washington

threads are deadlock free (which they are) when n2 == n1.left
and n3 == n1.right:

T1 : sync n2 {}
T2 : sync n3 {}
T3 : sync n1 {sync n1.left {sync n1.right {}}}
T4 : sync n1 {sync n1.right {sync n1.left {}}}

n1
↙ ↘

n2 n3

Most prior techniques either require a total order on the locks ac-
quired [6, 19] (precluding thread 3 or thread 4), or assume strong
encapsulation for recursive structures [2] (precluding the interior
pointers n2 and n3 of threads 1 and 2). Verifying deadlock free-
dom for fine-grained locking becomes even more difficult when
considering mutable data structures where locks may be reordered
over time. Another complication is early lock releases (releasing a
lock before another held lock that is safe to acquire after the first).
Finally, verifying locking orders based on mutable heap structure
must also ensure the relevant portion of the heap remains acyclic.

There are important examples similar to the above that are
handled by few existing static techniques:

Trees Only a few static approaches [2, 6, 19] can verify deadlock
freedom in binary trees whose structure changes over time, such as
splay trees (shown in Figure 1 and discussed in Section 4.2).

Array Element Locking While array indices impose a total or-
dering on array elements (assuming no duplicate entries), verifying
that elements were locked according to that order requires either a
powerful integer solver or programmer aid in the form of writing
explicit branches to acquire locks differently depending on which
of multiple indices is larger. We address this example in Section
4.3.

Circular Lists Operating system kernels often use a circular list
of running processes. For performance, the list nodes (processes)
are locked individually. Consider atomically transferring a resource
between processes: this requires locking multiple processes simul-
taneously. With a circular list, the traditional approach of requiring
all threads to acquire shared objects in a consistent order falls flat
because there is no sensible logical ordering on process locks short
of resorting to memory addresses. Encapsulation-based techniques
also fail because the process locks must reference each other and
be directly accessible to all kernel subsystems. We address this ex-
ample in Section 4.7.

1.2 Our Approach
Our technique — lock capabilities — handles the examples above
and more. The core idea is a simple but expressive locking pro-
tocol that can be embedded in a type system or other verification
technique. Assuming a tree-shaped partial order on locks, to a first
order the locking protocol is as follows:

• A thread that holds no locks may acquire any (single) lock.
• A thread may acquire any immediate successor (in the tree

ordering on locks) of a lock it currently holds.

class Node {
complete<this> Node left;
complete<this> Node right;

}
...

let final n = ... in
lock (n) {

let final x = n.right in
if (x) {

lock (x) {
if (x.left) {

let final v_name = x.left in
lock (x.left) {

let nonfinal v = dread(x.left) in
let final w_name = v.right in
let nonfinal w = dread(v.right) in
// v.right := x
v.right := dread(n.right);
x.left := dread(w);
n.right := dread(v);

}}}}}

Figure 1. Splay tree rotation in the core language. Assume n refers
to the node from which to rotate. dread is a destructive read, and
variables may be bound as final (i.e. immutable) or nonfinal.
The extra final variables provide names for the type system to track.

We say that acquiring a lock named x grants the holding thread
a unique capability 〈x〉 as long as the lock is held. We say that
x’s children (immediate successors) in the tree-shaped partial order
are guarded by that capability, and that x grants the capability to
acquire its successors. Intuitively, this approach is sound because
the fact that this capability-granting relation is acyclic ensures
that no threads will deadlock with each other by following the
order, and using locks for exclusive capability ownership ensures
that no threads will deadlock acquiring locks guarded by the same
capability1.

Two features of lock capabilities make them well-suited for fine-
grained locking:

Flexible Acquisition Orders Lock capabilities do not require a
total order on all locks held simultaneously by a single thread. This
is because the thread holding a lock x is the only thread that can
lock more than one lock guarded by x’s capability. (Another thread
could acquire one such lock as its first lock.) This flexibility lets
lock capabilities support examples like the circular list above: sup-
pose that each list node is guarded by the same per-list capability;
then threads that must hold multiple process locks simultaneously
are serialized via the per-list lock, but parallelism with threads that
require only one node’s lock is still permitted.

Natural Partition Reordering If part of the capability-granting
relation can be isolated to one thread, then that thread can safely
change the relation. In cases where heap structure should dictate
the locking order, such as in tree-shaped data structures, reordering
follows naturally as long as cycles are not introduced into the
capability-granting relation. This can be enforced by using unique
references to carry the guard information and strong updates to
change a lock’s guard. Using traditional unique references prevents
sharing a structure across threads, so we introduce the concept of
partially-unique references. A complete reference to an object is the
only (unique) reference with the guard in its type. Other references
— partial references — may alias the complete reference but carry
only the class type of their referent, and are therefore only suitable
for acquiring a thread’s first lock. Mutating the structure through

1 Reordering locks and early lock releases introduce a subtlety when a
thread holds a lock l and an ancestor of l, but not l’s immediate predecessor
in the ordering; the restrictions necessary to handle such cases soundly are
described in Section 3.5.

Programs P ::= class e

class ::= class c {field}
field ::= τ f

Paths p ::= x | p.f
Expressions e ::= if e e e | p := e | lock p e

| dread(p) | spawn x e | null | p
| let q x = e in e
| let guardless x, final y = new c in e

Final Qualifiers q ::= nonfinal | final
Types τ ::= α c

Base Types α ::= u | partial | borrowed〈x〉
Unique Types u ::= guardless | complete〈x〉

x, y, z ∈ Variables f ∈ Fields c ∈ Classes

Figure 2. Core language syntax.

complete references naturally expresses the desired changes in the
capability-granting relation. For examples like the splay tree in
Figure 1, straightforward mutations with the complete references to
nodes also express the changes in the capability-granting relation.
We also discuss a way to define the capability-granting relation that
is unrelated to heap references (Section 4.7).

In this paper we implement the lock capabilities verification ap-
proach as a static capability type system [28]: if the program type-
checks, then the program will not deadlock. To enforce the key in-
variants of our system, we build on a range of prior work, including
work on uniqueness [17] for controlling aliasing, a shallow embed-
ding of graph rewriting to reason about lock ordering cycles and
reachability, and work on static race freedom that uses lightweight
singleton types [13] to name locks and their associated static capa-
bilities consistently.

1.3 Contributions
• We present an alternate technique for static deadlock freedom

verification — lock capabilities — that fits well with fine-
grained locking, allows flexible lock acquisition orders, and
supports changing acquisition orders at runtime.

• We present a type system to verify deadlock freedom statically
using lock capabilities (Sections 2 and 3).

• We introduce partially-unique references, the first extension of
unique references we are aware of that permits some strong
updates at the level of individual objects, in the presence of
unlimited aliasing (Section 3.2).

• We illustrate how lock capabilities enable static verification of
deadlock freedom for several challenging examples that can
be checked by few if any prior systems: splay tree rotation,
locking multiple array elements, and locking multiple nodes of
a circular list (Section 4).

• We prove soundness for lock capabilities in a type-and-effect
system (Section 5).

• We compare lock capabilities to prior work on static deadlock
prevention, and discuss how lock capabilities address limita-
tions of that work (Section 6).

2. Core Language and Operational Semantics
To explain our work and prove it sound, we define a core language
with classes, objects, and fields but — for simplicity — omitting
methods. Figure 2 presents the syntax. Aside from the types, the
language is mostly straightforward, containing conditionals, muta-
ble local variables and objects, synchronization on objects (like in
Java, every object can serve as a lock), destructive reads, a spawn
operation to create a new thread, a constant null value, field derefer-
ences, local variable binding, and allocation (with the result bound

to two locals — see below). We focus on structured locking in this
paper, rather than unstructured (i.e. explicit lock and unlock state-
ments). This is not a fundamental restriction, and extension to un-
structured locking is discussed in Section 4.9.

The types include two types of unique references: complete〈x〉
references are unique references that associate their referent with a
capability and are stored only in fields, and guardless references
are unique references whose referents are not associated with any
capability and are stored only in local variables. dread(p) is a de-
structive read of a path expression, used to atomically set a ref-
erence to null and return its old value; this is standard when for-
malizing systems with unique references. It is possible to convert a
complete reference to a guardless reference by destructively read-
ing a field, and to convert the other direction by storing a guardless
reference into a complete field. These operations break and cre-
ate associations, respectively, between objects and guarding capa-
bilities. There are also borrowed references (temporary aliases of
complete references), borrowed〈x〉, which may only be stored in
local variables; and regular references with no duplication restric-
tion, partial references, which may be stored in fields or local
variables. Section 3 describes the types in more detail.

The syntax for allocation and thread creation is unusual. Allo-
cation takes the form of a lexical binding that binds two variables
to the newly allocated location, one as a mutable unique reference
and one as a final (immutable) variable bound to a partial refer-
ence. The final reference is necessary to name the new object in
the type system as soon as it is allocated; this is not uncommon in
type systems with simple singleton types [13, 25, 27]. The unique
reference must necessarily be mutable so it can remain useful (be
destructively read). The spawn operation specifies a single variable
to pass (by destructive read) to the new thread’s expression, allow-
ing transfer of a unique reference to the new thread.

Figure 3 presents the operational semantics, including evalua-
tion contexts and syntax extensions for run-time forms. A program
state consists of a heap H and a set of threads Ts . The heap maps
locations l to objects of the form 〈c, F, t〉 where c is the class tag,
F is a map from field names to values, and t is an optional thread
identifier representing which thread, if any, holds the implicit lock
associated with that object. Each thread has a unique identifier tid ,
a map V from variables to values, a list of held locks Ls , and an ex-
pression e being reduced. Each heap location has at most one distin-
guished reference (l•) that will be typed as complete or guardless.
The tags (•) have no runtime effect; they only simplify proving that
uniqueness is preserved. The semantics consist of three transition
functions:

• H,Ts → H ′,Ts ′ selects a thread to reduce and reduces it. It
also handles spawning a new thread.

• H,T → H ′, T ′ selects the innermost expression to evaluate.
• H, tid, V, Ls, e → H ′, V ′, Ls′, e′ reduces the next expression
e of thread tid in the provided heap H , environment V , and
lock set Ls.

We assume an α-renamed program, so no two let expressions
bind the same variable.

Most of the rules are standard, with a couple minor exceptions:

• E-SPAWN: The rule for spawning a thread performs a destruc-
tive read on a specific variable.

• E-WVAR, E-DVAR, E-VAR: We model mutable local variables
rather than performing binding by substitution. This simplifies
the semantics for destructive reads. We use the notation Dup(v)
to preserve uniqueness of tagged value; specifically, it ensures
there is never more than one l• for any l in the heap’s domain
(Dup(l•) = l).

• E-*LOCK: The semantics support recursive lock acquisition.
When an object’s implicit lock is not held, the owner field of
its heap value is None. When the owner field is Some(tid),
the thread holding the lock has identifier tid (E-LOCK). A
thread can acquire a lock it already owns (E-RECLOCK). When
releasing the lock, the rules differentiate a recursively acquired
lock (E-RECUNLOCK) from a normal lock (E-UNLOCK) by
checking if the lock l being released appears in the lockset after
removing the most recently-acquired lock.

• E-NEW: Allocation binds two variables, as mentioned above.
One copy of the value is unique, while the other is not. This
is not the standard notion of a unique reference, but will be
explained in full in Section 3.2.

• E-DVAR, E-DFIELD: The semantics provide destructive reads
that atomically set a variable or field to null and return the orig-
inal value. This is common for semantics with unique refer-
ences, as such an operation avoids duplicating a reference.

Methods could be added to the dynamic semantics in a straightfor-
ward manner (see Section 4.4), but have been omitted to simplify
presentation.

3. Core Typing Ideas
This section describes the main ideas of the type system. The type
system preserves two primary properties:

• If a thread holds no locks, it may acquire any lock. Otherwise a
thread may acquire only locks for which it holds capabilities.

• The capability-granting relation (the relation determining which
other locks each lock grants a capability to acquire) is acyclic.

Table 1 lists the major invariants preserved by the type system.
Each invariant will be explained in detail as it arises.

The main typing judgement is Υ; Γ;L ` e : τ ; Υ′. Here Υ
tracks trees and subtrees in the capability-granting relation, and
which (sub)trees are mutually disjoint. When checking code that
modifies the capability-granting relation, Υ is consulted to verify
that a modification will not introduce a cycle. Because the relation
can change, Υ′ is the new capability-granting relation after execut-
ing e. Treatment of Υ and Υ′ is detailed in Section 3.6. Γ maps
local variables to their types, with a qualifier describing variables
as final (i.e., immutable) or non-final. L is a list of final variables,
each aliased to a lock held at that program point during execution,
making it the static counterpart to Ls in the operational semantics.
L also doubles as the set of capabilities held at a program point;
a static check that a capability is possessed is a check for mem-
bership in L. Informally, in a dynamic state where the assertions
in Υ hold, Γ provides accurate types for local variables, and the
final variables in L correspond to the runtime locks held, execut-
ing the expression e will produce a value of type τ and change
the capability-granting relation so the assertions in Υ′ hold (or get
stuck trying to dereference null).

The remainder of this section explains the main typing ideas.
Section 3.1 elaborates on the role of capabilities. Section 3.2 ex-
plains our use of unique references, and our extension to partial
uniqueness. Section 3.3 explains the type system’s use of an ex-
ternal must-alias analysis. Section 3.4 explains how we ensure that
side effects in one thread cannot invalidate typing information in
another thread. Section 3.5 explains in detail the “orphaned lock”
problem introduced by early lock releases and by changing the
capability-granting relation. Section 3.6 explains how the type sys-
tem ensures that the capability-granting relation remains acyclic,
and Section 3.7 introduces the typing rules.

Locations l Heaps H : Location 7→ Class ∗ (Field Map) ∗ (ThreadID Option)
Field Maps F : Field 7→ Value Threads T : ThreadID ∗ Environment ∗ (Held Locks) ∗ Expression

Values v ::= l | l• | null Thread Sets Ts : Thread set
Program States S : Heap ∗ (Thread set) Held Locks Ls : Location list

Environment V : Variable 7→ Value Expressions e ::= . . . | withlock l e | l | l•
Paths p ::= . . . | l

Evaluation Contexts E ::= [·] | if E e e |E.f |E.f := e | l.f := E | x := E | lockE e | dread(E.f) | let q x = E in e | withlock l E

H,Ts → H′,Ts′

E-THREAD
H,T → H

′
, T
′

H, {T} ∪ Ts → H
′
, {T ′} ∪ Ts

E-SPAWN
tid
′
fresh V

′
= V [x 7→ null] Vnew = {x 7→ V (x)}

H, {(tid, V, Ls, E[spawn x e])} ∪ Ts → H, {(tid, V ′, Ls, E[null]), (tid
′
, Vnew, [], e)} ∪ Ts

H,T → H′, T ′
E-CONTEXT

H, tid, V, Ls, e→ H
′
, V
′
, Ls
′
, e
′

H, (tid, V, Ls, E[e])→ H
′
, (tid, V

′
, Ls
′
, E[e

′
])

H, tid, V, Ls, e→ H′, V ′, Ls′, e′
E-IF-TRUE

H, tid, V, Ls, if l
[•]
e1 e2 → H,V, Ls, e1

E-IF-FALSE

H, tid, V, Ls, if null e1 e2 → H,V, Ls, e2

E-WVAR
H, tid, V, Ls, x := v → H,V [x 7→ v], Ls,Dup(v)

E-WFIELD
H, tid, V, Ls, l.f := v → H[l.f 7→ v], V, Ls,Dup(v)

E-LOCK
H(l) = 〈c, F,None〉

H, tid, V, Ls, lock l e→ H[l 7→ 〈c, F, Some(tid)〉], V, l :: Ls,withlock l e

E-UNLOCK
l 6∈ Ls H(l) = 〈c, F, Some(tid)〉

H, tid, V, l :: Ls,withlock l v → H[l 7→ 〈c, F,None〉], V, Ls, v

E-RECLOCK
H(l) = 〈c, F, Some(tid)〉

H, tid, V, Ls, lock l e→ H,V, l :: Ls,withlock l e
E-RECUNLOCK

l ∈ Ls H(l) = 〈c, F, Some(tid)〉
H, tid, V, l :: Ls,withlock l v → H,V, Ls, v

E-NEW
class c{τ1 f1 . . . τn fn} ∈ P F = {f1 7→ null, . . . , fn 7→ null} l 6∈ Dom(H)

H, tid, V, Ls, let guardless x, final y = new c in e→ H[l 7→ 〈c, F,None〉], V [x 7→ l
•
, y 7→ l], Ls, e

E-VAR
H, tid, V, Ls, x→ H,V, Ls,Dup(V (x))

E-FIELD
H, tid, V, Ls, l.f → H,V, Ls,Dup(H(l)(f))

E-DVAR
H, tid, V, Ls, dread(x)→ H,V [x 7→ null], Ls, V (x)

E-DFIELD
H, tid, V, Ls, dread(l.f)→ H[l.f 7→ null], V, Ls,H(l)(f)

E-LET
H, tid, V, Ls, let q x = v in e→ H,V [x 7→ v], Ls, e

We use a shorthandH[l.f 7→ v] ≡ H[l 7→ 〈c, F [f 7→ v], tid〉 whereH(l) = 〈c, F, tid〉.
For generating aliases of unique values, we use the function Dup(v) = if (v = l•) then l else v.

Figure 3. Operational Semantics

Name Property Section
Lockset Approximation Each final variable x in the static lock set L corresponds to a lock l in the dynamic lock set Ls 3.1
Single Guards Each object is guarded by at most one capability 3.2
Capability Forest The capability-granting heap edges form a forest; in other words, the heap, restricted to those

fields the program declares as complete, is a forest
3.3, 3.6

Lock Valid Guards If the target lock of a lock statement is a borrowed reference, that reference will be valid (the
capability information on the borrowed reference matches the corresponding complete reference)
when execution reduces that expression

3.2

Capability Grant Partitioning For each dynamic location, at most one thread’s context associates it with a guarding lock (this
ensures that other threads still type check after a strong update to an object’s guard)

3.4

Table 1. Listing of major invariants in the type system.

3.1 Static Capabilities
A capability is acquired by acquiring a lock. For example, if a
thread acquires a lock that is must-aliased with the final variable x,
then while that lock is held the thread possesses the capability 〈x〉.
This capability permits acquiring locks guarded by 〈x〉. Note that x
is not guarded by 〈x〉: that would be a cycle. We sometimes refer to
a set of locks guarded by the same capability as being in the same
lock group. Capabilities exist only in the type system; capabilities
and lock groups have no runtime representation.

To give the type system stable names to refer to held locks, the
type system enforces that all locks taken are must-aliased to final
variables. This is common practice in other systems with variants

of singleton types, including some race-freedom literature [13, 25,
27].
L is a static approximation of the list Ls of dynamically

held locks (from the semantics in Figure 3). Replacing each fi-
nal variable x ∈ L with the location it maps to in the dynamic
local environment V (x) produces exactly Ls. Ignoring order,
(∃x ∈ L.V (x) = l) ⇔ l ∈ Ls . The type rules for lock acqui-
sition extend L in the same way the evaluation rules extend Ls .

We must ensure that a lock statement acquires a lock guarded by
the capability of a held lock (or that no locks are held). Checking
that an expression being locked is in the lock group of a capability
the thread possesses appears in the type rules as a check for mem-

bership in L. If the expression p types as a path to a lock guarded
by 〈x〉, then if x ∈ L it is statically safe to lock p. In the type sys-
tem (Fig. 6), this membership check corresponds to the hypothesis
y ∈ L where the type of the target lock is borrowed〈y〉 c in the
rule T-LOCK-N.

3.2 Uniqueness, Partial Uniqueness, and Borrowing
Our system statically enforces that at most one lock grants the
capability to acquire each lock. To ensure this while still permitting
updates to the capability-granting relation, we use a special form
of unique references. Syntactically, complete〈x〉 c is a unique
reference to an object of class c guarded by the capability 〈x〉. In
our core language’s source syntax, a field’s type may only refer to
the capability 〈this〉 because this is the only capability name in
scope in that context; Section 4.7 describes an extension for using
other objects’ capabilities. guardless c is a unique reference to an
object of class c, but has no guard, and is therefore a root in the
capability-granting relation.

As in many systems with unique types, we use destructive reads
to preserve uniqueness. We also use writes and destructive reads
on complete references (as in complete〈x〉 c) to perform strong
updates to the guard portion (〈x〉) of an object’s type: destructively
reading a complete field removes the referent from its previous par-
ent’s lock group, and storing a guardless reference into a complete
field moves the referent into its new parent’s lock group. Object
fields may not be guardless references, and local variables may not
be complete references. For example, assuming x is a final variable
with complete field f:

let nonfinal y = dread(x.f) in
// y is guardless, x.f holds null
x.f := dread(y)
// x.f contents again complete<x>, y holds null

Complete references are necessary only for controlling the
capability-granting relation. Most references are normal, and do
not need to carry the referent’s guard. We call these partial refer-
ences (with type partial c). Note that we allow partial references to
objects for which there is also one unique reference. This is sound
because with a partial reference only reads, writes, and acquiring a
first lock are permitted. In a typical program, most references would
be partial or some other non-unique qualifier, such as thread-local.

“Borrowing” refers to allowing the use of a unique reference
without consuming it: making a temporary local copy without be-
ing required to destroy the original. Supporting borrowing lets the
type system use an object’s lock group (i.e., to check that a thread
possesses the capability for a lock being newly acquired) without
requiring the program to modify the original unique reference. Sys-
tems without borrowing end up with the same inconvenient idiom
as many type systems with linear types: linear/unique items that
need to be used but eventually reside in their original location end
up being explicitly threaded through the computation rather than
being passed normally.

When a regular read is performed on a unique field, it is
treated as a borrowing read. A metafunction on types, Alias(τ),
computes the result type of a borrowing read on a field or vari-
able of type τ . See the definition in Figure 5. A regular non-
destructive read on a complete field with type complete〈x〉 c has
type Alias(complete〈x〉 c) = borrowed〈x〉 c. This type repre-
sents a non-unique reference to an object with the same class as
the complete reference, carrying the same lock group informa-
tion. Note that the use of Alias(τ) roughly corresponds to uses of
Dup(v) in the operational semantics (Figure 3), because borrowing
occurs when a unique value may be aliased and Dup(v) preserves
uniqueness of tagging because it produces an untagged copy of a
tagged value. The discrepancies are places where Alias(τ) can be
omitted because there is enough information to predict its result.

For example, the type system has separate rules for writes to par-
tial fields and complete fields; in the former case, the write’s result
will always be partial, and Alias(τ) = partial so we simplify the
result type. A regular read on a guardless variable simply returns a
partial reference, because for such references there is no lock group
information to borrow. Partial references are treated similarly.

A unique reference’s lock group information is always valid, but
a borrowed reference has accurate lock group information only if
the corresponding unique reference exists. A borrowed reference
could end up with stale lock group information if the complete
reference it is borrowed from is destructively read (or overwrit-
ten) since that would change the capability guarding the referent.
The lock group information of a borrowed reference r with type
borrowed〈x〉 c is valid only if there is a static must-alias p of the
reference r at the current program point that holds a unique ref-
erence in the same lock group as the borrowed type. To check that
the borrowed reference p’s lock group information matches the lock
group x of the corresponding complete reference, we use the meta-
function ValidCap(Γ, L, p, x) (for “valid capability”) when read-
ing variables or acquiring locks, to prevent use of stale lock group
information. If a borrowed reference is no longer valid, that refer-
ence can no longer be used. Note that unlike the traditional uses
of borrowing which are concerned with avoiding persistent dupli-
cation of a unique reference, we use borrowing to temporarily use
the guard portion of a type, and avoid persistently duplicating that
typing assumption.

Concretely:
// assume x is final, with complete field f
let nonfinal y = x.f in // y:borrowed<x>
// y’s guard is valid,
// only because it is aliased to x.f
let nonfinal a = dread(x.f) in // a:guardless
// Guard information on y is now invalid,
// so the next line would be a type error
// let nonfinal _ = y in
let nonfinal b = a in
// b:partial, since a:guardless
...

3.3 Aliasing Information
We need must-aliasing information for three reasons, each dis-
cussed in detail in another section:

1. We need aliasing information to check validity of a borrowed
reference’s lock group information (Section 3.2).

2. We need aliasing information to retain expressiveness in the
face of path mutation. We need it to associate objects accessed
through paths with static lock names (Section 3.1).

3. One of the core principles for soundness of our approach is that
there is no cycle in the capability-granting relation. Aliasing
information allows the type system to reason about the safety
of field updates that implicitly affect the capability-granting
relation, such as an update performed through one variable (as
in x.f := e) when information about the capability granting
relation is tracked in terms of some syntactically unrelated local
root y where y.g is aliased to x (Section 3.6).

We assume a sound must-alias analysis is available, defined
outside our system. An alternative would be for the type system
to track aliasing directly or to adapt a system like alias types [25,
27]. However, formalizing such must-aliasing in the type system
would add significant complexity to our formalization that is not
directly relevant to the core ideas of lock capabilities. Using an
external analysis simplifies the presentation and demonstrates that

the system is sound for any sound must-alias analysis, rather than
just a particular analysis encoded in type rules.

The query MustAlias(·, p) returns a set of paths that are aliases
of p at the current program point (·). We assume, as is common
in the pointer analysis literature, that each runtime expression is
implicitly labeled with the source expression location θ it came
from, and that the operational semantics preserves and propagates
these labels appropriately. Passing · to the alias analysis is equiva-
lent to looking up the label for the program point immediately af-
ter evaluation of the expression being checked: MustAlias(·, p) ≡
MustAlias(θ, pθ). The must-alias analysis is queried throughout
the type judgements, both explicitly, and implicitly through the use
of some macros defined in Figure 5.

3.4 Heap Partitioning Between Threads
Because individual threads are type checked separately, a reduction
in one thread must not invalidate typing information or must-alias
results in another thread.

The simplest sound way to ensure that one thread will not
perform a field update that invalidates another thread’s assumptions
is to enforce data race freedom. For simplicity, we maintain an even
stronger property: that threads may make assumptions only about
disjoint portions of the heap at run-time. We maintain a simple
invariant, that a thread uses the types or aliasing information for
an object’s fields only when the thread has locked that object. Race
freedom is reflected in our type system by two invariants:

• Disjoint Lock Sets: This is a standard invariant for any system
dealing with concurrency, which basically means that no lock is
held simultaneously by more than one thread (which is the very
purpose of mutual exclusion locks).

• Race Free Field Access: Thread typing may use field infor-
mation and query must-alias information only for fields of ob-
jects that are in the current thread’s lock set. This is enforced
through the use of the macro RaceFreePath(Γ, L, p) through-
out the typing judgements.

Once we can ensure the invariants above, ensuring that a write to
the heap does not invalidate other threads’ assumptions is straight-
forward. To ensure that no lock group information is invalidated by
destructive reads changing the lock group of complete references,
we also maintain the invariant that for each dynamic location, at
most one thread’s typing context associates it with a lock group.

Note that while we enforce data race freedom, it is not strictly
necessary. Allowing data races on partial reference fields does not
risk deadlock; a thread may only lock a partial reference when it
holds no other locks, and the use of must-aliasing information can
be adjusted to allow interference on those fields. Unsynchronized
reads of complete references can be made sound if any unsynchro-
nized read produces a partial reference (synchronized reads may
still return borrowed references). What truly must be race free is
the use of the guard information encoded in complete fields. Our
enforcement of complete data race freedom is only to simplify pre-
sentation.

3.5 Orphaned Locks
Without changes to the capability-granting relation, any set of locks
a thread holds at one time will span some contiguous subtree of
the capability-granting relation (because we use structured lock-
ing without an explicit unlock). In such cases, ensuring that the
granting relation remains acyclic is sufficient for safety, as will be
discussed in Section 3.6. However, with changes in the capability-
granting relation through destructive reads and stores of unique
references, a thread can hold locks in multiple disconnected sub-
trees of the capability-granting relation. Once some set of locks are

... // initially a->b->c
synchronized(n) { // a

synchronized(n.next) { // b
synchronized(n.next.next) { // c

Node tmp = n.next;
n.next = tmp.next;
tmp.next = n.next.next;
n.next.next = tmp;

} // a->c->b, only a and b held
synchronized(n.next) {

// Potential Deadlock!
}

}
}

Figure 4. Java code demonstrating an “orphaned lock” (lock b)
in the context of a singly-linked list. The diagram on the right
shows the heap (and capability-granting) structure after the first
lock release. The nodes with dark borders are locked at that point by
the thread running the code above. A second thread could deadlock
with this code if it acquires lock c, then tries to lock c.next at the
same time as the code above tries to re-acquire a.next.

released after rearranging contiguous subtrees, it is possible for a
thread to hold a non-contiguous set of locks in a single subtree.

If a thread holds two locks, one a capability-grant descendant
of the other, but not all locks in between, it is not safe for the
thread to acquire intermediate locks it does not hold, even though
it holds the capability required. Figure 4 shows that treating this
scenario naı̈vely could permit deadlock. If a grants the capability to
acquire c, which is not locked by thread A but (transitively) grants
the capability to acquire b, and thread A holds the lock a and its
capability-granting descendant b, then acquiring c could deadlock.
A second thread B could acquire the lock c as its first lock, use c’s
capability to attempt to acquire b, and block waiting for thread A.
Then A would block waiting for B when attempting to acquire c.

An orphaned lock is a held lock (other than the first one ac-
quired) for which the thread no longer holds the capability that
would allow it to be acquired. In our core language, this manifests
at the type level by being unable to locate the complete reference to
a held lock other than the first acquired (in Figure 4, b is orphaned
because the thread lacks access to the complete reference for c).
Fortunately, a solution is simple: while any lock other than the first
one acquired is orphaned, do not permit any further lock acquisi-
tions. This restriction is imposed in the type system by the type rule
for acquiring locks after the first. In Figure 4, this means that after
the lock b becomes orphaned, until the lock b is released, the type
system will not permit further lock acquisition by this thread.

More precise tracking of where the orphaned lock was would
enable acquisition of other safe locks, but we have not found it
necessary for our core language with structured locking. If lock
capabilities were adapted for a language with explicit lock and un-
lock statements, such precise tracking to permit the use of safe ca-
pabilities (like b’s in Figure 4) would be highly desirable. Such
an extension would allow idioms such as hand-over-hand locking,
or even following two separate hand-over-hand paths through the
capability-granting relation. Note that in such a system, the or-
phaned lock problem would arise even without reordering because
a thread could explicitly release a parent before a child.

3.6 Tree Reachability Assertions
Soundly preventing deadlock requires that the capability-granting
relation remains acyclic. Because each lock can be guarded by
at most one capability, the relation is not only acyclic but forms
a forest. With this insight, we can create a set of simple rules
based on rewriting a forest to verify that forestness is preserved by
updates to the capability-granting relation performed by operations

on complete references. Table 2 summarizes these tree operations
in terms of operations from an initial graph G to a new graph G′,
and the typing rules that model these operations in Υ.

Υ is a local view of a part of the global capability-granting
relation, which in the formal system is embedded in the heap’s
complete reference edges. Extensions with capability-grants unre-
lated to heap structure are considered in Sections 4.7 and 4.8. The
type system treats destructive reads of complete references as edge
removals. Similarly, storing a complete reference is equivalent to
adding an edge.

Υ has three types of assertions about capability-granting trees:

• x||y means the referent of x is not reachable (in the capability-
granting relation) from the referent of y and vice versa. This
assertion is introduced by destructive reads and allocations.
Note that we consider x||y ≡ y||x, so x||y ∈ {y||x}.

• root(y) means that there is no incoming edge (in the capability-
granting relation) to y’s referent. This is the result of either
destructively reading a complete reference, or allocating a new
object. No two roots in Υ may alias each other.

• subtree(x) is a weaker substitute for root(x) when it is un-
known whether there is a complete reference to x in the heap,
as is often the case when a thread acquires its first lock via a
partial reference. It acts as an anchor to keep Υ well-formed.
For every x||y ∈ Υ, either subtree(x) ∈ Υ or root(x) ∈ Υ,
and similarly for y. There is at most one subtree assertion in
Υ, and it is permitted to alias a root variable depending on the
strength of the must-alias analysis. When the first lock acquired
is reached via a partial reference, NewSubtrees(L,Υ, x) (Fig-
ure 5) adds a subtree assertion if the lock is not known to be
aliased to some root, so mutations while the lock is held may
produce disjointness assertions relative to the first lock.

The typing rules use a judgement Υ; Γ;L ` x � p to de-
termine that x is the (subtree) root of the capability-granting tree
containing p (Figure 5). This judgement is used in several typing
rules to select a root relative to which to add disjointness assump-
tions. Allocation adds disjointness assumptions relative to only one
subtree or root rather than all local and global roots. This is because
there may be a subtree and a root in Υ whose variables alias each
other, and adding assertions that a new allocation is disjoint from
both variables could allow a cycle to be created:

/ / Assume Υ c o n t a i n s root(a) , subtree(b)
/ / Assume a and b a l i a s , b u t t h e must−a l i a s a n a l y s i s
/ / does n o t know i t .
/ / a and b a r e f i n a l v a r i a b l e s (t h e y a p p e a r i n Υ) ,
/ / a a l i a s i s a n o n f i n a l a l i a s o f a
l e t u n i qu e ou , f i n a l o = new O b j e c t i n

/ / Say we add bo th o||a and o||b t o Υ
o . f = d r e a d (a a l i a s) ; / / Removes a l l u s e s o f a from Υ
/ / Υ now c o n t a i n s o||b even though o . f ==b
b . f = d r e a d (ou) ; / / A c y c l e !

Having destructive reads of complete references produce guardless
references avoids some additional reasoning about trees. The alter-
native for the type-level effects of destructive reads would be to
put the referent lock in an arbitrary lock group, subject to checks
that the new group would not introduce a cycle in the capability-
granting relation. These checks would be the same currently used
to ensure that the strong update implied by storing a unique refer-
ence to a complete-typed field is safe. Our choice to have destruc-
tive reads produce guardless references is equal in expressiveness
to a system that picks an arbitrary safe group, but our choice pro-
duces a simpler type system.

Alias(τ) =

8<: borrowed〈x〉 c if τ = complete〈x〉 c
partial c if τ = guardless c
τ otherwise

FinalAlias(Γ, p, x) ≡ x ∈ MustAlias(·, p) ∧ Γ(x) = final τx

LockedFinalAlias(Γ, L, p, x) ≡ FinalAlias(Γ, p, x) ∧ x ∈ L
RaceFreePath(Γ, L, p) =8>>>>><>>>>>:

true if p = l
true if p = x

true if

0@ p = p′.f ∧
RaceFreePath(Γ, L, p′) ∧

∃x.LockedFinalAlias(Γ, L, p′, x)

1A
false otherwise

FieldAccess(Υ,Γ, L, p, f) = τ if
Υ; Γ;L ` p : τ1; Υ ∧ RaceFreePath(Γ, L, p) ∧
LockedFinalAlias(Γ, L, p, x) ∧ P ` τ2 f ∈ Fields(Class(τ1)) ∧
τ = τ2[x/this]

ValidCap(Γ, L, p, x) = ∃p′.
„

p′ ∈ MustAlias(·, p) ∧
Γ;L ` p′ : complete〈x〉 c

«
NewSubtrees(L,Υ, x) =

if (L 6= [] ∨ (∃t.root(t) ∈ Υ ∧ t ∈ MustAlias(·, x)))
then ∅
else {subtree(x)}

Υ; Γ;L ` x � p

ROOT-ROOT
root(x) ∈ Υ

Υ; Γ;L ` x � x

ROOT-SUBTREE
subtree(x) ∈ Υ

Υ; Γ;L ` x � x

ROOT-ALIAS
Υ; Γ;L ` x � p

′
p
′ ∈ MustAlias(·, p)

Υ; Γ;L ` x � p

ROOT-FIELD
Υ; Γ;L ` x � p Γ;L ` p.f : complete〈y〉 c

Υ; Γ;L ` x � p.f

Γ;L ` p : τ
T-VAR-STORAGE

Γ(x) = q τ

Γ;L ` x : τ

T-FIELD-STORAGE

Γ;L ` p : τ1 P ` τ2 f ∈ Fields(Class(τ1))
LockedFinalAlias(Γ, L, p, x)

Γ;L ` p.f : τ2[x/this]

T-PROGRAM
ClassesOnce(class)

FieldsOnce(class) ∀c ∈ class.class ` c ∅; ∅; ∅ ` e : τ ; Υ
′

` class e

T-CLASS
∀τ f ∈ Fields(c).class ` τ f

class ` c

T-VALIDPARTIALFIELD
c ∈ class

class; Υ; Γ;L ` partial c f

T-VALIDCOMPLETEFIELD
c ∈ class

class ` complete〈this〉 c f

Figure 5. Supporting judgements and program typing

3.7 Formal Type Rules
This section presents the typing rules for our core language. To
clarify the presentation, hypotheses related to different issues are
shaded differently. There are shadings corresponding to:

• Trees and acyclicity of the capability-granting relation

• Safe lock acquisition — acquiring only locks for which the
thread holds the capability, and not acquiring locks while hold-
ing orphaned locks.

• Unshaded — basic treatment of unique references (borrowing,
destructive reads, writes), and standard features such as alloca-
tion and binding, and flow-sensitive propagation of Υ.

On a first reading, the reader may benefit from ignoring tree hy-
potheses, and simply assuming the capability-granting relation is

G Operation G′ Type Rule
Forest(G) Remove X → Y Forest(G′), Root(Y), X||Y T-DFIELD
Forest(G), Root(Y), X||Y Add X → Y Forest(G′) T-WFIELD-COMPLETE

Table 2. Transitions in a graph rewriting system on forests, relevant to ensuring the capability-granting relation remains acyclic. Forest(G)
is the proposition that the graph G is a forest, Root(Y) is the proposition that Y has in-degree 0, and X||Y is the proposition that X and Y
are unreachable from each other.

kept acyclic. The complete system, including all shaded hypothe-
ses, ensures deadlock freedom and incidentally prevents simultane-
ous access to fields. Allowing unsynchronized reads of partial ref-
erences, or allowing unsynchronized reads of complete references
to return partial references can be made sound because those op-
erations would not allow use of stale lock group information, but
omitting that flexibility simplifies presentation.

Figure 5 presents supporting judgements and auxiliary functions
used in the main rules. This figure defines program typing, the
relation Υ; Γ;L ` x � p to decide capability-granting roots,
the storage typing relation Γ;L ` p : τ to decide the type of
value stored in a path (rather than typing the evaluation of reading
that path’s value), and functions for typing borrowing read results,
checking that paths are race free, valid capability checks, and a
macro to make field accessing rules more readable. Figure 6 gives
the source typing rules for our core language. Figure 9 in the
appendix has the additional runtime typing rules.

This section walks through each source typing rule in Figure 6:

• T-IF is purely structural. It types the branch condition, and
then each branch with the tree assertions Υ1 flowing out of the
condition. It merges the output tree assertions of the branches
conservatively, by set intersection.

• T-NULL simply types the constant null as a partial reference.
• T-SUB-TYPE admits a simple convenient subtyping.
• T-VAR is mostly straightforward, accounting for borrowing

through the Alias(τ) metafunction (Figure 5), but also a vari-
able typed as borrowed can only be read if the borrowed ref-
erence is valid (must-aliased to a complete reference with the
same guard).

• T-WVAR is mostly standard, except for borrowing the type of
the value stored.

• T-DVAR is a mostly standard destructive read. Because a de-
structive read destroys the old value, the return type of a de-
structive read is actually a unique reference, rather than a bor-
rowed reference.

• T-FIELD is the most basic field typing, which performs a nor-
mal (borrowing) read of a field. FieldAccess(· · ·) (Figure 5)
returns the type of field contents stored at the end of a path,
also checking that the path is race-free, and that there is a final
alias to the last object accessed by reducing the path expression,
which provides a name for translating a complete〈this〉 c field
declaration for the current context. It ensures that evaluating the
path will not change the capability-granting relation.

• T-WFIELD-COMPLETE, after checking the field access, checks
for a final variable y aliased to the expression being stored
(MustAlias is defined only for paths and destructive reads of
paths). y is used in the last three hypotheses to check whether
adding a capability grant from x to y will preserve capability-
granting acyclicity (see Section 3.6). All assertions about y
are removed from the resulting set of tree assertions, since
it would no longer be a root, and any disjointness assertions
about it either no longer hold or are redundant with disjointness
assertions about the tree it is being added to.

• T-WFIELD-PARTIAL is similar to the previous rule, but simpler
because there is no need to check for cycles. This rule does not
use the Alias(τ) function simply because it would be a no-op:
borrowing a partial reference produces a partial reference.

• T-DFIELD handles destructive reads of complete references. It
is similar to T-FIELD, but also checks that the reference being
removed is aliased to a final variable t that can be used for tree
assertions in the resulting Υ′, which is enriched with assertions
that anything disjoint from the original tree r is also disjoint
from the tree rooted at t. This rule produces a groupless, rather
than complete, reference because the referent is no longer in
any lock group.

• T-NEW binds final and unique variables to the newly-allocated
object. The body of the statement is checked in an environment
extended with a final variable y and non-final complete refer-
ence x (which are initially aliased), and with tree assertions that
nothing is reachable from the newly-allocated object. Only as-
sertions relative to one known root are added, because it is pos-
sible to have a root and subtree in Υ aliased to each other, and
adding disjointness assertions for both is unsound (as discussed
in Section 3.6 and in more detail in our technical report [16]).

• T-LET This is a mostly standard binding rule.
• T-SPAWN is unusual largely because our core language binds

variables in a local environment rather than by substitution. The
corresponding evaluation rule destructively reads the variable
x in the local context (to preserve uniqueness if x is unique,
still safe otherwise), and carries the old dynamic binding over
to the new thread as a partial reference. No tree assertions
are removed, because the static must alias analysis may be
too weak to find the correct final variable to remove from
Υ. Consequently the spawned thread can never violate any
disjointness assumptions the spawning thread may have about
the passed value. The language could be enriched to support
assertion passing as well, but this rule is sufficient to show
soundness of the overall approach.

• T-LOCK-FIRST, for acquiring a thread’s first lock, is fairly
straightforward: type the path being locked, find a final alias for
the lock, and type the body in the extended environment. This
rule may add a subtree assertion if Υ does not contain a root
assertion for the target lock (else no modifications to the tree
would be possible in the body), and it requires that the resulting
type is well-formed with respect to the current lock set. The set
of variables removed from Υ′ in the conclusion has cardinality
0 or 1 depending on whether Υt added a subtree assertion.

• T-LOCK-N is similar to T-LOCK-FIRST. However, this rule
also enforces that locks acquired after the first must be safe. It
uses ValidCap(Γ, L, p, y) to check that the borrowed reference
being locked is valid, and checks that the thread holds the
capability to acquire the target lock through y ∈ L. Finally,
it checks the “orphaned lock” criteria (Section 3.5) to ensure
the thread does not lock the ancestor of an orphaned lock.

Υ := {root(Variable) | subtree(Variable) | Variable||Variable} set Γ : Variable 7→ Final Qualifier ∗ Type L : Variable list

Υ; Γ;L ` e : τ ; Υ′
T-IF

Υ; Γ;L ` e1 : τ1; Υ1 Υ1; Γ;L ` e2 : τ ; Υ2 Υ1; Γ;L ` e3 : τ ; Υ3

Υ; Γ;L ` if e1 e2 e3 : τ ; Υ2 ∩Υ3

T-NULL

Υ; Γ;L ` null : partial c; Υ

T-VAR
Γ(x) = q τ τ

′
= Alias(τ) ∀y∀c.τ ′ = borrowed〈y〉 c⇒ ValidCap(Γ, L, x, y)

Υ; Γ;L ` x : τ
′
; Υ

T-WVAR
Γ(x) = nonfinal τ Υ; Γ;L ` e : τ ; Υ

′

Υ; Γ;L ` x := e : Alias(τ); Υ
′

T-DVAR
Γ(x) = nonfinal guardless c FinalAlias(Γ, x, y) root(y) ∈ Υ

Υ; Γ;L ` dread(x) : Γ(x); Υ
T-FIELD

τf = FieldAccess(Υ,Γ, L, p, f) τ = Alias(τf)

Υ; Γ;L ` p.f : τ ; Υ

T-WFIELD-COMPLETE

complete〈x〉 c = FieldAccess(Υ,Γ, L, p, f)

Υ; Γ;L ` e : guardless c; Υ
′

y ∈ MustAlias(·, e) root(y) ∈ Υ
′

Υ
′
; Γ;L ` r � p r||y ∈ Υ

′

Υ; Γ;L ` p.f := e : borrowed〈x〉 c; Υ
′
/y

T-WFIELD-PARTIAL
partial c = FieldAccess(Υ,Γ, L, p, f) Υ; Γ;L ` e : partial c; Υ

′

Υ; Γ;L ` p.f := e : partial c; Υ
′ T-SUB-TYPE

Υ; Γ;L ` e : borrowed〈x〉 c; Υ
′

Υ; Γ;L ` e : partial c; Υ
′

T-DFIELD

complete〈x〉 c = FieldAccess(Υ,Γ, L, p, f)

FinalAlias(Γ, p.f, t) t 6∈ Υ Υ; Γ;L ` r � p Υ
′

= Υ ∪ {root(t)} ∪ {t||z | ∀z.r||z ∈ Υ
′}

Υ; Γ;L ` dread(p.f) : guardless c; Υ
′

T-NEW

root(z) ∈ Υ ∨ subtree(z) ∈ Υ

Υbody = Υ ∪ {root(y)} ∪ {y||z} ∪ {y||t | ∀t.t||z ∈ Υ} Υbody; Γ[x 7→ guardless c] [y 7→ final partial c] ;L ` e : τ ; Υ
′

Υ; Γ;L ` let guardless x, final y = new c in e : τ ; Υ
′
/y

T-LET
Υ; Γ;L ` e1 : τ1; Υ

′
Υ
′
; Γ[x 7→ q τ1];L ` e2 : τ ; Υ

′′

Υ; Γ;L ` let q x = e1 in e2 : τ ; Υ
′′
/x

T-SPAWN
Γ(x) = nonfinal α c ∅ ; {x 7→ final partial c}; ∅ ` e : τ ; Υ

′

Υ; Γ;L ` spawn x e : partial c; Υ

T-LOCK-FIRST

Υ; Γ; [] ` p : τ1; Υ RaceFreePath(Γ, [], p)

FinalAlias(Γ, p, x) Υt = NewSubtrees([],Υ, x) ¬∃z.subtree(z) ∈ Υ Υ ∪Υt ; Γ; [x] ` e : τ ; Υ
′ ∀y∀c.τ 6= borrowed〈y〉 c

Υ; Γ; [] ` lock p e : τ ; Υ
′
/{z|z ∈ Υt}

T-LOCK-N
Υ; Γ;L ` p : τ1; Υ

τ1 = borrowed〈y〉 c RaceFreePath(Γ, L, p) FinalAlias(Γ, p, x) ValidCap(Γ, L, p, y) Υ; Γ; x :: L ` e : τ ; Υ
′

y ∈ L

∀z ∈ L : L = L
′
@[z] ∨ ∃p′.RaceFreePath(Γ, L, p

′
) ∧ FinalAlias(Γ, p′, z) ∧ Γ;L ` p′ : complete〈a〉 c ∀w∀c.τ = borrowed〈w〉 c⇒ w ∈ L

Υ; Γ;L ` lock p e : τ ; Υ
′

Figure 6. Source typing. MustAlias() is an external must-alias analysis, explained in Section 3.3.

4. Examples and Extensions
This section explains how lock capabilities can be used to verify our
motivating examples. We also discuss extensions to the core system
that may be necessary to capture those examples precisely. The
accompanying technical report [16] includes additional examples.

4.1 Opening Example
Section 1 gives an example of a very simple program that is sur-
prisingly difficult to verify. Here we describe how the example type
checks in our core language. We omit T2 and T4, which are similar
to T1 and T3, respectively. Core language code for the threads is in
Figure 7.

The typing derivation of Thread 1 is fairly simple. Assume
Γ = n2 7→ final partial Node, L = [], and Υ = . The
only rule permitting acquisition of locks when L is empty is T-
Lock-First. The target lock expression type checks simply with
the same input environment using T-Var. n2 is trivially a race free
path and a final alias of itself. Υt will contain subtree(n2) due
to the NewSubtrees hypothesis of T-LOCK-FIRST, which will be
used as the input Υ for the typing derivation of the critical section,

c l a s s Node { comple te<t h i s> Node l e f t , r i g h t ; }
Thread 1 : l o c k n2 { n u l l }
Thread 3 :
1 l o c k n1 {
2 l e t f i n a l n 1 l e f t = n1 . l e f t i n
3 l e t f i n a l n 1 r i g h t = n1 . r i g h t i n
4 / / Here , L = [n1]
5 / / Υ = subtree(()n1)
6 l o c k n1 . l e f t {
7 / / L = [n1left, n1]
8 l o c k n1 . r i g h t {
9 / / L = [n1right, n1left, n1]
10 n u l l
11 }}}

Figure 7. The introduction’s example, in our core language.

which is simply an application of T-NULL. The conclusion of T-
LOCK-FIRST removes all assertions using n2 from the resulting Υ
(because n2 was in Υt), and the output shape is empty.

Thread 3’s typing derivation is more involved. Its initial envi-
ronment is similar to thread 1: Γ = n1 7→ final partial Node,

L = [], and Υ = . The base of the typing derivation is again
T-LOCK-FIRST due to the similar input environment. The criti-
cal section on n1 (lines 2-11) type checks in an environment with
the same Γ, but an extended lock set and Υ. Υ picks up a sub-
tree assertion as in the first thread, so the environment entering
the critical section on line 2 is: Γ = n1 7→ final partial Node,
L = [n1], Υ = subtree(n1). The let expressions on lines 2 and
3 type check using T-Let, each adding a new final partial bind-
ing for the duration of their lexical scopes, which also adds must-
alias facts for any reasonable must-aliasing analysis. The input con-
text for line 6 is: Γ = n1 7→ final partial Node, n1left 7→
final partial Node, n1right 7→ final partial Node, L = [n1],
and Υ = subtree(n1). The acquisition of n1.left type checks
using T-LOCK-N. The read of n1.left type checks using T-
FIELD, which produces a value of type borrowed〈n1〉 Node: the
FieldAccess hypothesis internally types the variable access using
T-VAR, ensures data race freedom, and binds the ’this’ in the
field type; and the Alias hypothesis converts the field’s complete
type to a borrowed type. Because that value is guarded by n1,
the rule checks that n1 is in L, which it is. The borrowed lock
group information is still valid (ValidCap). To complete the use
of T-LOCK-N to type the acquisition of n1.left, its critical sec-
tion must also type check, in an environment with the same Γ and
Υ, but the extended lock set L = [n1left, n1] (entering line 8).
The derivation for this inner acquire and critical section uses T-
LOCK-N again, typing n1.right as borrowed〈n1〉 Node, check-
ing that n1 is in L and other hypotheses, and deriving the type
for the innermost critical section (null) using T-NULL in a further-
extended environment, with the same Γ and Υ as on line 8, but with
L = [n1right, n1left, n1]. Finishing the typing derivation for the
innermost critical section, T-LOCK-N ensures that the type of the
body (null) is not borrowed from n1right, keeping the type well-
formed for the enclosing context. A similar restriction is enforced
on the type exiting the T-LOCK-N derivation from lines 6-11. Each
of the let expressions then removes its bound variable from the out-
put context (enforcing lexical scoping), and finally the base of the
derivation (T-LOCK-FIRST) removes all uses of n1 from its output
Υ.

4.2 Tree Rotations
Figure 1 implements the clockwise rotation operation in a splay
tree. Splay trees are binary search trees with the additional property
that recently-accessed elements are faster to look up: a lookup
performs a series of rotations to lift the found element to the root
of the tree. A fine-grained locking implementation of a splay tree
would actually need to hold locks all the way from the root of
the tree to the located element. Thus it is a poor candidate for
fine-grained synchronization because external pointers to interior
nodes are not practically useful. However, we show it here because
it has been used to demonstrate the flexibility of other deadlock
freedom systems [6], because it is a challenging benchmark for
expressiveness, and because it reflects similar issues to those seen
in more practical examples, such as other binary trees or reordering
the elements in a linked list.

For each lock acquisition after the first, the type system ensures
that the target lock is guarded by the capability of an already-
held lock. In the innermost critical section, the type system keeps
track of the fact that the capability-granting trees rooted at n, x,
v name, and w name (the latter two being final partial references
to nodes) are mutually disjoint after the destructive reads, and
can therefore check that the capability-granting changes implied
by storing the unique references back into the heap preserve the
relation’s acyclicity.

Figure 1’s code shows how flexible the use of complete refer-
ences for strong updates is: nowhere does the code need to explic-

itly state what the new guard on any lock is. Instead the changes to
guards are entirely implicit in the heap changes that induce the new
capability grants. It also shows the value of leveraging must-alias
information in the type system. This example cannot be expressed
in a system that does not support must-aliasing, because there is no
way to express the node reordering operations in a way that does
not change the meaning of some path expression rooted at n before
it must be used. Without must-aliasing information it is impossi-
ble to track the capability-granting tree structures. This example
does not demonstrate flexibility of locking multiple locks with the
same guard, but shows that we can verify an example that only
two non-standard extensions to the standard static deadlock free-
dom approach can verify [6, 19]. While there is syntactic overhead
from requiring that any reference locked or unique reference moved
must alias a final variable, elaboration of a source language to an
intermediate language with these properties is straightforward.

4.3 Arrays
Treated as a structure with integer-named fields containing com-
plete references the array elements behave as the children in the
simple binary tree example. Locking one array element is always
safe, but acquiring multiple elements would require holding the
lock on the array itself. Concretely, a final reference arr to an array
of type complete Object[] (an array of complete references, in a
core language extended with arrays) might through dereference (as
in arr[i]) produce elements of type borrowed<arr> Object,
which could be locked in any number in any order while a lock is
held on the array arr itself.

This does trade some potential parallelism for verifiability, be-
cause rather than ensuring proper ordering on the array elements
this solution makes it safe to not use ordering by protecting the
ability to lock elements with the array’s lock; in cases where lock-
ing multiple elements of the array is relatively rare dynamically,
this would be acceptable. The dominant static deadlock freedom
approach offers no solution for locking multiple array elements.
Another possible approach is to lock cell referents in order of in-
creasing index. Unfortunately, the relative ordering of dynamically-
computed array indices is undecidable, so it is safe but difficult to
verify.

4.4 Method Calls
Extending our core language with method calls is relatively straight-
forward. For reasons of space, we only sketch this extension. Our
mechanism is inspired by Haller and Odersky’s capability-based
invalidation mechanism for borrowed references [17]. The key to
using borrowed and unique references as arguments to methods
is ensuring that no two borrowed arguments are aliases of each
other. In our core language, there is the additional matter of the tree
assertions a method might require upon entry and provide upon
return, and assumptions about held locks — all things typically
documented informally in code today.

In the core system without methods or loops presented here, L
happens to exactly describe the locks held dynamically. However
our type system naturally supports polymorphism over Υ and L.
The initial and final disjointness assertions only need to be partial;
the implementation may lose information before returning. In par-
ticular, extra disjointness assertions in the initial Υ are safe, and
a form of frame rule for Υ can be proven. For methods requiring
certain locks to be held on entry, the method is still safe if addi-
tional locks (additional capabilities) are held, with the exception
that methods acquiring an arbitrary partial reference would still re-
quire no locks to be held at the call site.

4.5 Binary Tree Search
While searching in a basic binary tree does not take advantage of
lock capabilities’ flexibility, we show it to demonstrate that our ap-
proach does not add substantial complexity to simple examples. For
brevity we extend the language and type system with basic support
for integers: constants, assignment, comparison, and arithmetic.

class BTree {
complete<this> left, right;
int data;
partial BTree find(int target)

with <this>
{

// \Upsilon=subtree(this)
// L=this::L’ for abstract L’
if (this.data == target) {

this
} else {

if (this.data < target) {
// Descend right
if (this.right) {

let final r = this.right in
lock (this.right) {

// Program point A
this.right.find(target)

}
} else {

null
}

} else {
// Descend left
if (this.left) {

let final l = this.left in
lock (this.left) {

this.left.find(target)
}

} else {
null

}
}

}
}
groupless BTree removeLeftChild()

with <this>
produces root(result),result||this

{
// Upsilon=subtree(this)
let final l = this.left in
dread(this.left)
// Upsilon=subtree(this),root(l),l||this

}
}
The find method introduces a basic method summary specify-

ing which capabilities (and thus, locks) the method requires to ex-
ecute. The clause with <this> specifies that the the capability
associated with the ’this’ instance must be provided by the caller
(caller synchronization). If an arguments’ capability is required (the
method assumes an argument is locked on method entry) it can be
referred to by the parameter’s formal name (e.g. with <this>,
<arg>). At the call site, the type system substitutes the actual ar-
guments in for the formal capability names in the method sum-
mary, and checks the instantiated capability requirements against
the locks held. Note that to satisfy a capability requirement at a
call site, a final alias to the required lock must already exist in the
caller’s frame if the capabilities match, since the required lock is in
L.

At program point A, the static lock set will be L = r :: this ::
L′, where L′ is an abstract (possibly empty) list of other locks
that may be held at the call site (lock set polymorphism). The fact
that L contains r satisfies the with <this> clause of the method
signature for the recursive call. When checking the call site, the
this in the signature is replaced by a final alias of the method
dispatch target (r), and that is checked against the set of locks
held at the call site. The presence of additional locks in L is sound
because the call does not assume an empty lock set.

The removeLeftChild method serves limited practical pur-
pose but demonstrates how Υ is treated in method summaries.
Methods may use an assume clause to specify a partial input Υ,
and a produces clause to specify a partial output Υ. subtree(this)
is implicitly present for the input Υ. All Υs may specify roots and
disjointness assertions. The output Υ may refer to the special vari-
able result referring to the return value, and only if the return
type is guardless. The input Υ may specify a new assertion local(x)
that behaves similarly to subtree(x) by providing well-formedness
constraints on Υ: giving a non-root variable relative to which to
specify disjointness. At call sites, the type system requires that the
roots of the capability-granting trees such local(x) assertions apply
to satisfy the disjointness constraints applied to those local anchors.

4.6 Counting Non-Zero Tree Elements
Another simple example to show that basic tasks are not made more
difficult by our system:

class Tree {
complete<this> left, right;
int data;
int CountNonZero()

with <this>
{

let final l = this.left in
let final r = this.right in
let final nleft = if (this.left) {

lock (this.left) {
this.left.CountNonZero()

}
} else { 0 } in

let final nright = if (this.right) {
lock (this.right) {

this.right.CountNonZero()
}

} else { 0 } in
let final nthis = if (this.data == 0) { 0 } else { 1 } in
(nleft + nright + nthis)

}
}

4.7 External Capabilities for Circular Lists
Another example where the flexible acquisition order plays a cen-
tral role is the circular lists commonly seen in operating system ker-
nels as the process or thread lists. The processes themselves form
a circular doubly-linked list. The locking discipline is as follows:
locking one node of the list is allowed, while multiple nodes may
be locked only if a lock over the whole list is held. There is no con-
sistent acyclic order on the list nodes, short of resorting to memory
addresses for sorting. No prior technique for static deadlock free-
dom verification can verify this example.

Capturing this sort of discipline in our core language requires
a small extension for objects’ field types to refer to external capa-
bilities. We can use class parameterization as in RCC/JAVA [13] to
refer to external locks (another use of final variables for lightweight
singleton types), along with a notion of fixed references, which are
the sort of reference one would expect in a system without lock
reordering: non-unique mutable reference types extended with ca-
pability information, not subject to strong updates. This allows the
list nodes to be guarded by the main list lock without a direct field
reference, and allows that guard information to be shared among
multiple references to each (doubly-linked) list node.
An example is shown in Figure 8. It shows an in-order traversal of
the circular list to locate some element. Because the exposed find
method requires the capability 〈l〉, only one thread at a time may
execute this code on a given circular list. But other threads may
simultaneously access individual list nodes by locking through par-
tial references to list nodes.

This extension would of course require small changes to field
typing, and a way to convert unique references into permanently-
fixed references. And because these fixed references define perma-

class CircularList {
fixed<this> CircularListNode<this> head;

}
class CircularListNode<ghost CircularList list> {

fixed<list> CircularListNode<list> prev;
fixed<list> CircularListNode<list> next;
complete<this> Object data;
public fixed<l> CircularListNode<l> find(partial Object target)

with <l>, <this>
{

if (this.data == target) { this }
else { let final fnext = this.next in

lock (this.next) { this.next.findBefore(target, this) }
}}
private fixed<l> CircularListNode findBefore(

partial Object target, fixed<l> CircularListNode<l> start)
with <l>, <this>

{
if (this == start) { null }
else {

if (this.data == target) { this }
else { let final fnext = this.next in

lock (this.next) { this.next.findBefore(target, start) }
}}}}

Figure 8. A circular list, using fixed-guard references and external
capabilities.

nent capability-granting relationships unrelated to heap structure,
several invariants would need slight adjustments.

4.8 Lock Capabilities with Lock Levels
It is possible to combine lock capabilities with the dominant ap-
proach for static deadlock freedom to afford the flexibility of each
where necessary. Previous work on statically ensuring deadlock
freedom has focused on lock levels [6, 12, 19]: a static partitioning
of the heap accompanied by a partial ordering on those partitions.
A static checker verifies that while a thread holds a lock in a cer-
tain level then any additional locks acquired must reside in a level
below the held lock. If thread A is blocked waiting for a lock l held
by thread B, any locks A already holds are in partitions ordered be-
fore the partition of l. Since B holds lock l and it may only acquire
locks in partitions ordered after l’s partition, it cannot block on a
lock held by thread A (or another thread transitively blocked on a
lock held by A).

This approach suffices for programs using coarse-grained lock-
ing such as that between multiple subsystems of a program and,
with some extensions, for certain narrow classes of programs using
fine-grained locking. But in general lock levels have poor support
for most fine-grained locking techniques, for programs that change
lock ordering dynamically, and for programs that acquire multiple
locks that are related but have no sensible ordering among them. By
contrast, lock capabilities are well suited to reasoning about local
lock orderings within a set of closely-related locks.

A lock capability system can be run within each partition of a
lock level system. Thus a thread may acquire a target lock when it
holds no locks; when it holds locks only in levels ordered before
the level of the target lock; or when it holds a lock that grants a
capability to acquire the target lock, and it holds no locks in levels
ordered after that of the granting lock. This allows, for example,
use of two fine-grained data structures in different levels. We have
not proven safety for this embedding, but expect no subtleties.

4.9 Unstructured Locking
As mentioned in Section 3.5, extending lock capabilities to support
unstructured locking primitives (i.e. explicit lock and unlock state-
ments) would require a few changes. First and foremost, the static
lock set would need to be flow-sensitive. Second, to take advantage
of the flexibility offered by unstructured locking, the criteria for or-

phaned locks would need to be refined to only prevent acquiring
locks that may (transitively) grant the capability to acquire some
lock the thread already holds (which is the actual unsafe behavior).
In Figure 4, this would mean permitting the thread to use b’s capa-
bility to acquire locks after releasing the lock on c, but not permit
the use of a’s, while the system presented here would prevent both
until the lock on c is released.

Extending to unstructured locking would permit such idioms
as hand-over-hand locking through data structures, or even parallel
instances of hand-over-hand locking, for example to acquire locks
guarded by each of multiple processes in the circular list example.
With unstructured locking, the capability-granting structure of the
circular list example suggests a verifiably deadlock-free and fairly
parallel solution to the well-known Dining Philosophers Problem,
having a whole-problem lock guarding all “chopstick” locks. Al-
lowing early releases would still serialize the acquisition of mul-
tiple locks, but not their holding (which structured locking does
serialize, as in the circular list). Explicit early releases would allow
parallelism between multiple threads that each hold multiple locks;
once a thread acquired the necessary “chopstick” locks, it could
release the whole-problem lock, and continue using the chopstick-
lock-protected resources while other threads acquired the whole-
problem lock and their chopsticks.

5. Soundness
We have proven that our type system ensures deadlock freedom.
The full proof is in the appendices. This section sketches the proof.

The argument relies on two proofs: type preservation and a
separate deadlock-freedom preservation proof that accounts for
changes in the capability-granting relation. We define deadlock
formally as a cycle of threads each waiting for the next to release
a lock. Proving that the absence of such cycles is preserved is
equivalent to proving progress up to null dereference. It is possible
for a thread in our system to become permanently “stuck” because
it tries to dereference null, or because it blocks waiting for a thread
that diverges while holding a lock. Our system is not designed to
prevent such errors. It ensures that, modulo null pointers, there is
always at least one thread that is not blocked and there are no cycles
of threads blocked on each other.

Type preservation is tedious, but mostly straightforward to
prove given the run-time type rules and appropriate invariants.
The typing rules for run-time expressions extend each rule with
a heap typing Σ giving the class for each heap location, and a
group typing φ specifying the lock group for each location. Σ is
global, while there is a separate φ for each thread, giving the lock
group for those locations whose unique reference the thread con-
trols. The domains of the φs are disjoint, isolating the lock group
information necessary for strong updates. Additional invariants in-
clude various well-formedness constraints on type contexts, that
the capability-granting relation is a forest, that no two threads with
root assumptions also have subtree assertions for locks capability-
reachable from each other’s roots (used to prove that after adding a
capability-granting edge, other threads’ Υ contexts are still valid),
and that φ for each thread contains all possible names (final vari-
ables) for the lock group of each lock whose unique reference the
thread controls.

Proof of deadlock freedom relies on what is essentially an-
other preservation proof over an extended semantics. Intuitively,
in a system without changes in the capability-granting relation,
the deadlock freedom argument is straightforward: because the
capability-granting relation is acyclic, the relation of which threads
are blocked on which others must also be acyclic because there
must always be a thread at the “bottom” of any capability tree
which can continue to execute without blocking. Crucial to that
simplicity is that any blocked thread would have a path in the graph

represented by the capability-granting relation from its first lock
acquired to the blocking lock, since the thread must have followed
some contiguous path of capability granting edges (by locking) to
gain the capability to acquire the blocking lock, and we are (tem-
porarily) assuming no capability-granting changes.

With changes to the capability-granting relation, the argument
is more complex. After acquiring several locks, a thread can split a
capability tree. Thus the argument for acyclic locking order among
threads is no longer so direct. But an important observation is that
at the time each new lock is acquired, there is a capability-granting
edge from some held lock to the new lock. A dynamic log of each
thread’s capability uses should be able to show that in a directed
graph of those capability uses, no dependency path exists from one
thread’s locks, to some other thread(s)’ locks, and back to the first
thread’s locks.

We extend program state with such a log, a capability-use graph
representing the use of capabilities by each thread, and prove that
the absence of these problematic paths in the graph is preserved.
Such a path must exist in the capability-use graph for a deadlocked
program state. Graph vertices are locks that are held (l ∈ Ls)
or would be acquired by a thread’s next reduction step (l for a
thread whose expression is some E[lock l e]). An edge a i→ b is
present if the lock a granted the capability to acquire b at the time
thread i acquired b or blocked trying. Intuitively each path through
the graph represents a dynamically possible dependency chain of
threads blocking on locks, for the program being executed. In this
graph, there is a path from the first lock acquired by a thread to
its most recent acquisition, even with changes to the capability-
granting relation. A deadlock manifests in this graph as a path
between locks held by the same thread that traverses edges from
at least one other thread: either a cycle among threads or a path that
leaves the edges of a thread and returns without a cycle. The cycle
case is prevented by acyclicity of the capability-granting relation,
and the straight line path is prevented by the “orphaned lock”
premise of T-LOCK-N. Preserving the absence of such a path in
the capability-use graph preserves deadlock freedom.

We believe this proof approach can be extended to support
unstructured locking, reader-writer locks,2 and embedding within
lock levels (as in Section 4.8), with only minor changes. The only
assumptions the proof approach makes about what the type system
enforces are that the capability-granting relation is acyclic, and that
the type system prevents the use of capabilities that may reach
orphaned locks.

6. Related Work
Our system builds on work in a number of related areas, including
prior approaches to static deadlock detection and work on linear
and unique types. We begin with a discussion of the dominant
approach to statically verifying deadlock freedom — lock levels
— and then discuss other related work.

6.1 Lock Levels
The most common and well-established approach to statically ver-
ifying deadlock freedom is a family of techniques called lock lev-
els [6, 12, 18–21, 26]. The heart of the approach is a static parti-
tioning of locks into levels, and a fixed partial ordering on those
partitions. Then a verifier checks that any time a thread acquires a
lock it either holds no locks, or the target lock’s level is ordered
after the level of every lock it already holds.

2 We have not proven the extension sound, but believe splitting capabilities
for read and write acquisitions is straightforward: multiple threads can
safely possess the same read-acquire-capability because read-locks are not
exclusive. The first write-lock must either occur when no locks are held, or
be a lock held for reading. Standard locks should be treated as write locks.

The lock levels verification approach typically places two seri-
ous limitations on code:

• Total Ordering: It must be possible to establish a total ordering
on any set of locks that are held concurrently.

• Fixed Ordering: It is not possible to dynamically change the
relative acquisition order of two or more locks. This restriction
has two components:

Partition Ordering: It is not possible to change the order-
ing of partitions dynamically.

Partition Membership: It is not possible to move locks
among partitions.

Lock levels are adequate for coarse-grained lock ordering, such as
between layered subsystems of a program. However, these restric-
tions are limiting for dynamic data structures using fine-grained
locking.

The total ordering restriction is problematic in any structure
where there is no natural ordering on the locks acquired. Our
circular OS process list example is a great demonstration of this:
because there is no sensible way to totally order the list nodes so
any thread can acquire multiple locks, the list cannot be expressed
in a lock levels system. Because process locks can be acquired
in any order by a thread holding the guarding capability, making
the process list nodes all children of the whole-list lock makes
it possible to verify safety of this locking discipline using lock
capabilities.

Lock capabilities’ acquisition order flexibility also extends
beyond “siblings” in the capability-granting relation. A thread
holding a lock could lock a grandchild before a child (such as
btree.left.left before btree.right), assuming the (differ-
ent) child guarding the grandchild (e.g., btree.left) was locked
appropriately in advance. In (non-parameterized) lock level sys-
tems, this would butt heads with the total ordering restriction. In
some parameterized lock levels systems, it would be possible to
fix an order on the children for cases like locking both children of
a binary tree node by declaring that for a node in level n, the left
child would be in level n + 1, the right in n + 2, etc. to establish
a total ordering on the nodes acquired. But as additional layers of
a structure need to be accessed as well, spacing the relative lev-
els of the children appropriately becomes increasingly difficult and
unnatural. In the capability-based view, if the parent node grants
the capability for both children, this style of locking behavior is
entirely natural.

The fixed ordering restriction causes problems in algorithms
that change lock orders dynamically, such as rebalancing binary
trees, or even removing a node from a binary tree. Recall that there
are two sub-restrictions that combine to produce the fixed ordering
restriction: the partition ordering restriction, and the partition
membership restriction. Lifting either of those sub-restrictions is
sufficient to allow changing the relative ordering of locks. For
example, in a system with only one of these restrictions, it would
be possible to verify deadlock freedom for code reversing the list-
order of a fine-grained linked list, because either the partitions for
each list node could be reordered, or the nodes themselves could
be moved between partitions. To the best of our knowledge no lock
level system permits partition reordering. So the determining factor
is the presence or absence of the partition membership restriction.

Lifting the partition membership restriction requires control of
aliasing to ensure no reference to a moved object has an out-of-
date level for its referent. To the best of our knowledge, the partition
membership restriction is present in all but two pieces of lock levels
work: SAFEJAVA [6], which uses ad hoc extensions and an unspec-
ified flow-sensitive analysis dealing with reachability and aliasing;
and CHALICE [19–21], which uses fractional permissions [7] to

strictly control aliasing of a ghost variable that defines an object’s
lock level.

Boyapati et al.’s SAFEJAVA [6] extends lock levels with simple
tree-based orderings of locks within a level. A thread in SAFEJAVA
is permitted to acquire a lock when it holds no locks, holds only
locks in levels ordered before the target lock, or the target lock is a
tree-descendent of the most recently acquired lock. This permits
more flexibility for fine-grained locking than basic lock levels,
but still suffers from the total ordering restriction. SAFEJAVA also
supports reordering within a tree, but uses an unspecified analysis
pass to maintain the tree invariant. Our system can in some sense
be seen as a generalization of SAFEJAVA’s tree-based ordering,
extending past trees and exploiting exclusivity of the parent lock
to achieve greater flexibility. We also fully specify the analysis
to maintain the capability-granting relation’s forest property, while
Boyapati et al. provide only a basic intuition for how their analysis
works. SAFEJAVA’s use of the tree ordering within a lock level
is the inspiration for the lock capability embedding described in
section 4.8. SAFEJAVA also includes intra-level ordering based on
fixed DAGs between locks, which capabilities could be extended to
support, and a separate class of unordered locks with a new locking
primitive to acquire n locks at once by internally providing a total
ordering on the locks (e.g. memory order).

Leino et al. describe CHALICE, a system using a novel variation
on lock levels to avoid deadlock [19, 20]. It avoids some reordering
problems in systems with fixed spacing of lock levels by using a
dense lattice of unnamed lock levels (any two ordered lock levels
have levels between them), and using relative clauses for threads
with full permission for a lock’s level ghost variable to reorder
a lock relative to other locks. CHALICE also uses fractional per-
missions [7] to control sharing and modification of not only data,
but also the ghost field defining an object’s level. It still enforces
the total ordering restriction, and because lock acquisition requires
partial access to the level field CHALICE cannot support objects
that are both reorderable (which requires full permission) and ac-
quirable by arbitrary threads (requires sharing small permissions to
each thread), such as the children from the four thread example in
Section 1. CHALICE can verify programs that, for example, reverse
the order of a linked list’s nodes while still permitting acquisition
in list order. CHALICE allows some controlled sharing of relative
ordering information using fractional permissions; lock capabili-
ties could be adapted for this sharing, either by treating a lock’s
guard as a ghost field with fractional permissions [7] or using a
counting permission type system [3] to track propagation. Bringing
some of inspiration from CHALICE to bear on lock capabilities, we
could apply fractional permissions or counting permissions [3] to
the guard portion of complete references, allowing controlled shar-
ing of guards while still permitting strong updates to the guards.
These sharing approaches could also lay the groundwork for sup-
porting a SAFEJAVA-style DAG ordering, but with mutation.

With lock capabilities, changing the relation of which locks
grant capabilities to acquire other locks effectively breaks both the
partition ordering and partition membership sub-restrictions of
lock levels: reversing the capability-granting relationship between
two locks reverses the possible acquisition order of locks they
guard, and to be able to change that relationship requires being able
to associate the original “parent” capability-granting lock with the
capability of its former child. We also lift the total ordering restric-
tion on lock acquisition, the cost of which is the need to handle the
orphaned lock problem. Systems with the total ordering restriction
trivially avoid orphaned lock issues because any capability that is
unsafe to use (because it precedes an orphaned lock in the capabil-
ity granting relation) comes from a lock that is not “ordered after”
the orphaned lock itself.

There has also been work using similar terminology to ours
for techniques to avoid deadlock in message passing code [18],
including an extension to CHALICE [21]. These systems enforce
a partial order similar to lock levels on channel sends, using an
additional system of obligations to ensure that threads do not block
waiting to receive on a channel unless some other thread holds
an obligation to send a message on that channel. This is also
similar to an approach for adapting deadlock-freedom techniques
to unstructured primitives [26], where a thread that acquires a lock
also picks up a statically enforced obligation to release the lock
later.

Table 3 summarizes the limitations of lock levels, along with
important examples that run afoul of those limitations. Lock capa-
bilities suffer from none of the problematic limitations we listed for
lock levels.

6.2 Other Static Techniques for Deadlock Freedom
Attiya et al. [2] describe core results about the range of locking
protocols for fully encapsulated data structure implementations that
can be verified as deadlock-free and atomic. Their results include
the DYNAMIC TREE LOCKING protocol, which is similar to the
locking protocol described here, but there are crucial differences.
First, their technique is only applicable to strongly encapsulated
implementations of data structures where the heap structure is the
only control of lock ordering, and where encapsulated locks are
globally unique when a data structure is not under modification.
Thus they can verify strongly encapsulated binary tree implemen-
tations, but could not verify the circular list without requiring ref-
erences from the global list lock to every node. Attiya’s distinc-
tion between external locks visible outside the module, and inter-
nal locks that are globally unique (have only one reference in the
program) is also important: this also prevents verification of the
circular list example as it is used in OS kernels, where all process
object locks are visible throughout the kernel. We make no distinc-
tion between global or module-local locks. Part of what allows our
approach to handle the circular list example is that we crucially dis-
tinguish heap-directed capability-granting edges from fixed, heap-
agnostic edges in the capability-granting relation, while they con-
flate safe acquisition order with heap structure. Their protocol is
also described in axiomatic terms, though they briefly describe ex-
periences with an analysis implemented in an analysis framework;
we have provided a concrete description of how to enforce a safe
locking protocol, but have yet to implement it. The fact that they
guarantee atomicity of each module operation is also important,
and results in very different expressiveness between our systems
even within a module: their locking protocols do not allow threads
to reacquire locks released since a thread’s first acquisition. Thus
they do not need to address the problems with orphaned locks. This
also prevents their technique from generalizing to condition vari-
ables, while ours does so naturally (with further work needed to
prevent lost wake-ups). Our deadlock-freedom type system could
be coupled with a separate atomicity analysis. If they sacrificed
atomicity by allowing reacquisitions (when it would not cause
deadlock), they would still have no problems with orphaned locks,
because the encapsulation assumption forces any other threads to
start locking from exposed locks, preventing other threads from
holding the recently-released descendant of the thread’s first lock,
at the cost of increased sharing.

Attiya et al.’s work grew out of work from the database commu-
nity [9] on locking protocols for locking in databases of directed
graphs. This work focused entirely on what would be safe and se-
rializable, axiomatically, in a database under the assumption that
locking protocols would be enforced by a central concurrency man-
agement system.

Limitation Unverifiable Example Reason Lock Levels Cannot Verify
Total Ordering OS kernel circular list No total order on list nodes

Trees Specifying a total order for all but the simplest example is difficult
Array-order locking Ordering on dynamically computed indices is generally undecidable

Partition Ordering Reversing a
fine-grained linked list

No mechanism to reorder partitions
Partition Membership Requires strong updates / aliasing control

Table 3. Examples that cannot be checked by lock levels due to that technique’s limitations, and why the examples violate the corresponding
restriction. Each example can be checked by a lock capabilities system because lock capabilities do not suffer from the problematic
restrictions.

Wang et al. [30] describe a way of both verifying deadlock free-
dom and synthesizing logic to dynamically avoid deadlock at run-
time. Their analysis converts the control flow graph of a target pro-
gram into a Petri net of a special shape, where the property of al-
lowing deadlock can be expressed in what is a standard form for
properties on Petri nets, for which there are known algorithms to
enrich a Petri net to avoid such a property. Such an enriched petri
net is then translated back to additional instrumentation that avoids
deadlock dynamically. Some of the instrumentation they generate
strongly resembles the locking protocol for lock capabilities; for
example, they automatically synthesize solutions equivalent to our
array access solution [29]. However, the results of the process can
be unpredictable. The instrumentation synthesis has generated low-
overhead code in experiments, but there is no guarantee of good
behavior. Because the synthesis process is iterative, each iteration
adding new locks to avoid deadlocks present in the previous itera-
tion, many layers of locks could be introduced where a programmer
could explicitly insert fewer, and have their use verified as correct
using lock capabilities. Their approach is also highly sensitive to re-
solving non-aliasing between locks: their tool tends to generate per-
type locks to acquire before any lock of each type, because it cannot
differentiate unrelated locks for the same type. Their tool could be
enriched with an aliasing analysis, but even that would have dif-
ficulty with recursive structures like binary trees. Our technique
gains precision from using complete references for such structures,
and in conjunction with lock levels can naturally separate uses of
the same basic structure in unrelated parts of a program.

6.2.1 Hybrid Static/Dynamic Deadlock Prevention
Recently there has been work on statically ensuring deadlock free-
dom with the aid of an enriched lock acquisition primitive, which
does not require fixing any lock order. This is also called dead-
lock avoidance due to the dynamic component to ensuring dead-
lock freedom. Boudol [4] and Gerakios et al. [14, 15] describe type
and effect systems that inform an extended locking primitive about
which locks a thread will acquire before releasing the current target
lock. This extended locking primitive then does not try to acquire
its target lock unless all locks that will be acquired before releasing
the target lock are also available. This requires a locking primitive
taking time at best linear in the number of locks that will be held
concurrently.

Gerakios et al.’s benchmarks are a naı̈ve implementation of the
dining philosophers problem (yielding an expected performance
gain from improved parallelism over the deadlock-free execution
with standard primitives3); and several simple benchmarks show-
ing no performance penalty, some with only one lock, several with
two locks, and one with more than two locks, but where no more
than two are ever acquired concurrently. These do not explore the

3 Note that in a system with unstructured locking using standard primitives,
the best deadlock free solution could be verified by an unstructured adapta-
tion of lock capabilities: each stick lock is guarded by a single global lock,
and philosophers eat by acquiring the global lock, acquiring the two needed
stick locks, releasing the global lock, and eating.

effects of the lock primitive on deep locking paths as sometimes oc-
cur in highly concurrent software. Additionally, their benchmarks
other than the dining philosophers use only currently-working code
modified to use their primitive; these programs have total orderings
on locks held simultaneously, which means that acquisitions of n
locks are likely to often fail checking one of the first couple locks
anyways, because all threads acquire locks in the same order. Pro-
grams written without assuming any lock ordering and which ac-
quire more than two locks at once are likely to have very different
performance characteristics for this primitive than those explored.

It is also not clear how these systems interact with verification
of race freedom. If the target of a future lock acquisition depends on
the content of memory protected by an earlier acquisition, checking
that lock’s state during the earlier acquisition requires a data race;
not only do the semantics for the locking construct require a data
race, but if the locking primitive’s check of the racily-identified
lock succeeds before another thread correctly changes the lock the
relevant field points to, it appears that the approach becomes un-
sound (the core language for which they prove soundness is not
capable of expressing this situation). This would cause problems
verifying examples such as fine-grained binary trees. One version
of Gerakios et al.’s system [14] also ensures data race freedom,
but the reference typing is so restrictive that the type of a muta-
ble reference to a lock uniquely identifies the only lock that could
ever be referenced by that cell (through singleton types that can-
not be abstracted). Gerakios et al. have an implementation of this
deadlock-free system [15], which must therefore either race and be
unsound, or conservatively over-approximate the locks read from
memory using the results of their pointer analysis. The latter would
make acquiring multiple locks in a structure like a recursive binary
tree very expensive.

These orderless-locking systems have an additional penalty,
which is that separate compilation is not supported, and it is not
clear how to extend the systems. Essentially, in this system a func-
tion type τ1 is a subtype of function type τ2 only if τ1 includes
fewer lock acquisitions. Consider for example, swapping out a
coarse-grained storage library for a fine-grained one with the same
interface, in a program that holds locks while using the storage li-
brary. The fine-grained library acquires more locks internally, so
this change would require re-type-checking and recompiling the
whole program to generate code specifying additional future ac-
quisitions for many lock primitives. Lock levels support modular-
ity better through adding lock levels that do not interfere with other
code, and lock capabilities support modularity better by using rel-
atively local properties. Put another way, in orderless-locking sys-
tems the typing of an individual lock acquisition depends on both
the context in which it occurs and the body of the lock statement4,
while for lock levels and lock capabilities the typing depends only
on the outer context, requiring only that the body is well-typed, not
the particulars of its typing.

4 Roughly; Gerakios et al.’s system supports unstructured locking.

6.3 Linear/Unique Types, and Strong Updates
There has been a long line of work on linear and unique types in
programming languages, much of which permits forms of tempo-
rary aliasing known as borrowing [8, 11, 17]. A core thread that
runs through nearly all prior work on unique types is the assump-
tion that the common case is a single reference, and any aliasing is
temporary and strictly controlled. This is a crucial assumption for
the typical motivation for unique and linear types, which is resource
isolation to make operations like memory deallocation safe.

Another use of linearity has been to permit strong updates to
types. Alias types [25, 27] allow unique type assertions to be used
for strong updates, or for the assertions to be made non-linear, after
which no further strong updates are permitted to that object.

Our use of partial uniqueness can weaken uniqueness in a
different manner because the motivation for using uniqueness does
not require (or even desire) the ability to recollect all references to
an object at one program point; we require strict control of only a
single part of an object’s type. Thus we permit arbitrary aliasing
at a partial type, but maintain uniqueness of the reference that
defines which lock grants the capability to acquire an object, to
allow strong updates to only the portion of an object’s type isolated
to its complete reference.

CHALICE [19–21] uses fractional permissions [7] to control
access and updates to ghost fields of objects, where those ghost
fields define the level of a lock within a lock level system. The
permissions guard field individually, which allows CHALICE to
express structures where usable references to locks are shared,
but the ordering information is restricted to one or a few known
locations. This is similar to our use of partial uniqueness, and lock
capabilities could be adapted to use fractional permissions to permit
more sharing of an object’s guard information without resorting to
fixed references (Section 4.7) and losing the ability to change the
lock’s guard.

Müller and Rudich describe a system of ownership transfer in
Universe Types with Transfer (UTT) [23] which resembles our use
of strong updates to change the guard of a lock. One key difference
is the granularity of the update: UTT transfers ownerships of groups
of objects, rather than of individual objects, a byproduct of the fact
that it supports multiple references carrying the same owner by
using external uniqueness [17], which can be duplicated within a
module but not shared outside of it (for example, allowing a doubly-
linked list). Because we use total uniqueness we cannot express
some of the same examples. The flip side to the external vs. total
uniqueness choice is that while UTT’s ownership transfer is union-
based (transfer unions the owned sets; a list’s nodes cannot be
transferred into another list then back out without taking the other
list’s original nodes with them), our partially-unique references
support changing the guard of individual locks as much as desired,
moving locks into and out of lock groups almost arbitrarily (subject
to checks to ensure an acyclic capability granting relationship).
Our mechanism is also a very simple extension to basic unique
references; while we only use partial uniqueness here for part
of a type that corresponds closely to a tree-based ordering, the
mechanism could just as easily be applied to share parts of a data
structure, e.g. partial references of the form x : ref (int∗ ∗float),
which has possible security uses for modules of differing levels of
trust whose type safety can still be verified.

6.4 Static Data Race Prevention
There has been a substantial amount of work on type systems for
static race freedom [5, 6, 12, 13], and even some hybrid static/dy-
namic approaches [10]. A full survey is beyond the scope of this pa-
per, but perhaps the best-known is RCC/JAVA [1], from which we
borrow the technique of using final variable names for lightweight
singleton types (or in our case, singleton lock groups).

6.5 Capability Systems
There has been a variety of work on capability type systems, mostly
focused on memory safety. Walker, Crary, and Morrisett describe
a capability calculus to control safe memory use and dealloca-
tion [28]. Smith, Walker, and Morrisett describe alias types, a type
system for typed assembly language that ensures memory safety
while allowing strong updates for operations such as object initial-
ization [25, 27]. These systems are focused on ensuring that code
accessing some memory cannot do so without a capability that is
unavailable after that memory is released. Our system ensures code
cannot acquire more than one lock without capabilities that become
unavailable after releasing the granting locks.

6.6 Aliasing Analyses
A full overview of aliasing analyses is beyond the scope of this
paper. However, Might et al. [22] and Smaragdakis et al. [24]
provide good overviews of the precision of current state-of-the-art
pointer analyses. We believe the precision necessary for resolving
aliasing in our type system is met by recent work; we only require
intraprocedual aliasing analysis for recent local assignments and
destructive reads among local variables and fields of locked objects.
Alternatively, a treatment of aliasing could be baked into the type
system by adapting techniques like alias types [25, 27], as an early
version of our system did.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe Locking:

Static Race Detection for Java. ACM TOPLAS, 28, March 2006.
[2] H. Attiya, G. Ramalingam, and N. Rinetzky. Sequential Verification

of Serializability. In POPL, 2010.
[3] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission

Accounting in Separation Logic. In POPL, 2005.
[4] G. Boudol. A Deadlock-Free Semantics for Shared Memory Concur-

rency. In ICTAC, 2009.
[5] C. Boyapati and M. Rinard. A Parameterized Type System for Race-

Free Java Programs. In OOPSLA, 2001.
[6] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe

Programming: Preventing Data Races and Deadlocks. In OOPSLA,
2002.

[7] J. Boyland. Checking Interference with Fractional Permissions. In
SAS, 2003.

[8] J. T. Boyland and W. Retert. Connecting Effects and Uniqueness with
Adoption. In POPL, 2005.

[9] V. K. Chaudhri and V. Hadzilacos. Safe Locking Policies for Dynamic
Databases. In PODS, 1995.

[10] D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types
for Race Safety. In VAMP, September 2007.

[11] M. Fähndrich and R. DeLine. Adoption and Focus: Practical Linear
Types for Imperative Programming. In PLDI, 2002.

[12] C. Flanagan and M. Abadi. Types for Safe Locking. In ESOP, 1999.
[13] C. Flanagan and S. N. Freund. Type-Based Race Detection for Java.

In PLDI, 2000.
[14] P. Gerakios, N. Papaspyrou, and K. Sagonas. A Type System for

Unstructured Locking that Guarantees Deadlock Freedom without
Imposing a Lock Ordering. In PLACES, 2010.

[15] P. Gerakios, N. Papaspyrou, and K. Sagonas. A Type and Effect
System for Deadlock Avoidance in Low-level Languages. In TLDI,
2011.

[16] C. S. Gordon, M. D. Ernst, and D. Grossman. Static Lock Capabil-
ities for Deadlock Freedom. Technical Report UW-CSE-11-10-01,
Computer Science and Engineering, University of Washington, Seat-
tle, WA, USA, 2011.

[17] P. Haller and M. Odersky. Capabilities for Uniqueness and Borrowing.
In ECOOP, 2010.

Σ : Location 7→ Class φ : Value 7→ Variable

Σ;φ; Υ; Γ;L ` e : τ ; Υ′ cont.

T-ANY-LOCATION
Σ(l) = c

Σ;φ; Υ; Γ;L ` l : partial c; Υ

T-UNIQUE-NULL
Γ(y) = final τ null ∈ MustAlias(·, y) root(y) ∈ Υ

Σ;φ; Υ; Γ;L ` null : guardless c; Υ

T-UNIQUE-LOC
Γ(y) = final τ l ∈ MustAlias(·, y) root(y) ∈ Υ

Σ;φ; Υ; Γ;L ` l• : guardless c; Υ

T-BORROWED-VALUE
φ(v) = x p ∈ MustAlias(·, v) Γ;L ` p : complete〈x〉 c

Σ;φ; Υ; Γ;L ` v : borrowed〈x〉 c; Υ

T-WITHLOCK
Σ;φ; Υ; Γ;L ` l : τ1; Υ1

FinalAlias(Γ, l, x) Υt = NewSubtrees(L,Υ, x)

∀z.subtree(z) ∈ Υt ⇒ subtree(z) ∈ Υ1

Σ;φ; Υ1; Γ; x :: L ` e : τ2; Υ2 τ2 = borrowed〈y〉 c⇒ y ∈ L

Σ;φ; Υ; Γ;L ` withlock l e : τ2; Υ2 /{z|z ∈ Υt}

Figure 9. Runtime typing. These rules supplement runtime equiv-
alents of the source typing rules from Figures 6 and 5, which are
mostly the same rules with the additional Σ and φ static contexts,
unused. The exception is the runtime version of T-SPAWN, which
uses an empty φ to type check its body. Σ maps dynamic locations
to class types. φ associates values (locations and null) with lock
groups.

[18] N. Kobayashi. A New Type System for Deadlock-Free Processes. In
CONCUR, August 2006.

[19] K. R. Leino and P. Müller. A Basis for Verifying Multi-threaded
Programs. In ESOP, 2009.

[20] K. R. Leino, P. Müller, and J. Smans. Verification of Concurrent
Programs with Chalice. In Foundations of Security Analysis and
Design V, 2009.

[21] K. R. Leino, P. Müller, and J. Smans. Deadlock-free Channels and
Locks. In ESOP, March 2010.

[22] M. Might, Y. Smaragdakis, and D. Van Horn. Resolving and Exploit-
ing the k-CFA Paradox: Illuminating Functional vs. Object-oriented
Program Analysis. In PLDI, 2010.

[23] P. Müller and A. Rudich. Ownership Transfer in Universe Types. In
OOPSLA, 2007.

[24] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick Your Contexts
Well: Understanding Object-Sensitivity. In POPL, 2011.

[25] F. Smith, D. Walker, and J. G. Morrisett. Alias Types. In ESOP, 2000.

[26] K. Suenaga. Type-Based Deadlock-Freedom Verification for Non-
Block-Structured Lock Primitives and Mutable References. In APLAS,
2008.

[27] D. Walker and G. Morrisett. Alias Types for Recursive Data Struc-
tures. In TIC, 2000.

[28] D. Walker, K. Crary, and G. Morrisett. Typed Memory Management
via Static Capabilities. ACM TOPLAS, 22, July 2000.

[29] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:
Dynamic Deadlock Avoidance for Multithreaded Programs. In OSDI,
2008.

[30] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke. The theory
of deadlock avoidance via discrete control. In POPL, 2009.

A. Type Preservation
A.1 A Note on Static Must-Alias Analyses
In this proof, we treat the must-alias analysis as if it has oracle se-
mantics. That is, in any dynamic context, p ∈ MustAlias(·, p′) ⇔
V |H(p) = V |H(p′) (the analysis says two paths are aliased if and
only if they are at that runtime execution point). This simplifies the
proof by making it easier to derive must-alias facts when needed
from equalities implied by other hypotheses.

This does not complicate the proof that type checking under the
source type system implies successful checking under the runtime
system, or make the system impractical. Any must-alias facts that
can be proven using a sound static must-alias analysis can also
be proven by our oracle must-alias analysis because the type rules
never negate the results of the alias analysis.

A.2 Type Preservation Proof
Lemma 1 (Value Effects). If Σ;φ; Υ; Γ;L ` e : τ ; Υ′ and e is a
value, then Υ = Υ′.

Proof. By induction on the derivation of Σ;φ; Υ; Γ;L ` e :
τ ; Υ′.

Lemma 2 (Environment Strengthening). If Σ;φ; Υ; Γ;L ` e :
τ ; Υ′ then

1. for l 6∈ Dom(Σ), Σ, l 7→ c;φ; Υ; Γ;L ` e : τ ; Υ′

2. for l 6∈ Dom(φ), x, Σ;φ[l 7→ x]; Υ; Γ;L ` e : τ ; Υ′

3. for all x, Σ;φ[null 7→ x]; Υ; Γ;L ` e : τ ; Υ′

4. for [x||y] 6∈ Υ, Σ;φ; Υ, x||y; Γ;L ` e : τ ; Υ′′ where Υ′′ ⊆
Υ, x||y

5. for [root(x)] 6∈ Υ, Σ;φ; Υ, root(x); Γ;L ` e : τ ; Υ′′ where
Υ′′ ⊆ Υ, root(x)

6. for x 6∈ Dom(Γ), Σ;φ; Υ; Γ, x 7→ τ ;L ` e : τ ; Υ′

and

7. If Σ ` V : Γ, then for l 6∈ Dom(Σ), Σ, l 7→ c ` V : Γ

Proof. By induction on each derivation.

Lemma 3 (Thread Type Preservation). If

H1. Σ;φ; Υ; Γ;L ` E[e] : τ ; Υ′ (the thread’s expression type
checks)

H2. H, i, V,Ls, e → H ′, V ′,Ls ′, e′ (the thread performs a local
reduction)

H3. Ls = LsE@LsL (with the next two hypotheses, the dynamic
lock set is partitionable into those corresponding to the static
lock set L and those matching withlock expressions in E[e])

H4. Γ;V ` LsL : L
H5. LsE ` E[e]
H6. ` P (the program is well-typed)
H7. ` H : Σ (the heap is well-typed)
H8. φ; Γ; Ls ` H (φ reflects only the capability grants for the

locks held)
H9. H;V ` Υ (the heap and local variables are accurately mod-

eled by Υ)
H10. Σ ` V : Γ (local variables are typed correctly)
H11. H `i Ls (the heap respects the reduced thread’s lock set)
H12. Γ ` Υ (Υ is well-formed w.r.t. Γ; it references only final

variables)
H13. CompleteForest(H) (the heap reflects a forest-shaped capa-

bility granting relation)
H14. ValidUniques(H, (i, V,Ls, e),Σ, (φ,Υ,Γ)) (each object this

thread might access has at most one unique reference)

TT : tid→ (φ,Υ,Γ) φ : l 7→ 〈x〉

Ls ` E[e]

CS-NO-MORE
E[e] doesn’t contain withlock

[] ` E[e]

CS-RECUR
E 6= withlock Ls ` E′[e] E = . . . E

′
[e] . . .

Ls ` E[e]

CS-LOCK-HELD
Ls ` E[e]

Ls@[l] ` withlock l E[e]

φ; Γ; Ls ` H

T-VALID-CAP-ORACLE
φ(v) = 〈x〉 ⇔ ∃f, l′ ∈ Ls.FinalAlias(Γ, l′, x) ∧H(l

′
) = 〈c, F, o〉 ∧ P ` complete〈this〉 cf f ∈ Fields(c) ∧ F (f) = v

v ∈ Dom(φ)⇒ v = null ∨ v = l
•

φ; Γ; Ls ` H

H;V ` Υ

T-VALID-TREE-ASSERTIONS
root(x) ∈ Υ⇒ ¬∃l, f.H(l) = 〈c, F, o〉 ∧ P ` complete〈this〉 cf f ∈ Fields(c) ∧ Dup(F (f)) = Dup(V (x))

x||y ∈ Υ⇒ ¬∃f1 . . . fn.V (y) = l1 ∧ ∀i > 1 :

0@ H(li−1) = 〈ci−1, Fi−1, oi−1〉∧
P ` complete〈this〉 ci fi−1 ∈ Fields(ci−1)∧
l
•
i = Fi−1(fi−1)

1A ∧ ln = Dup(V (x))

subtree(x) ∈ Υ ∧ subtree(y) ∈ Υ⇒ x = y x ∈ Υ ∧ y ∈ Υ⇒ x = y ∨ V (x) 6= V (y) ∨ subtree(x) ∨ subtree(y)
x ∈ Υ⇒ root(x) ∈ Υ ∨ subtree(x) ∈ Υ x||y ∈ Υ⇒ root(x) ∈ Υ ∨ root(y) ∈ Υ

root(x) ∈ Υ ∧ subtree(y) ∈ Υ⇒ x 6= y x ∈ Υ ∧ y ∈ Υ ∧ V (x) = V (y)⇒ ¬∃z1 . . . zn.(∀i ∈ (1..n− 1).zi||zi+1 ∈ Υ) ∧ z1 = x ∧ zn = y

H;V ` Υ

Σ ` V : Γ

T-VALID-LOCAL-TYPES
V (x) = l⇒ Γ(x) = q α c ∧ Σ(l) = c Γ(x) = q guardless c⇒ V (x) = null ∨ V (x) = l

•
V (x) = l

• ⇒ Γ(x) = q guardless c

Σ ` V : Γ

H `i Ls

T-LOCKS-HELD
∀l ∈ Ls : H(l) = 〈cl, Fl, Some(i)〉

H `i Ls

Γ ` Υ

T-FINAL-VAR-TREES
root(x) ∈ Υ⇒ Γ(x) = final τ subtree(x) ∈ Υ⇒ Γ(x) = final τ x||y ∈ Υ⇒ Γ(x) = final τ ∧ Γ(y) = final τ

Γ ` Υ

` H : Σ

T-HEAP
H(l) = 〈c, F, o〉 ⇔ Σ(l) = c H(l) = 〈c, F, o〉 ⇒ F (f) = lf ⇒ P ` αf cf f ∈ Fields(c) ∧ Σ(lf) = cf

H(l) = 〈c, F, o〉 ⇒ F (f) = l
•
f ⇒ P ` guardless cf f ∈ Fields(c) ∧ Σ(lf) = cf

H(l) = 〈c, F, o〉 ⇒ P ` guardless cf f ∈ Fields(c)⇒ (F (f) = l
•
f ∧ Σ(lf) = cf) ∨ F (f) = null

` H : Σ
P ` H; Ts : Σ;TT

T-PROGRAM-STATE
` P ` H : Σ ∀i : TT (i) = (φi,Υi; Γi) ∀i : Ts(i) = (Vi,Lsi, ei) ∀i : φi; Γi; Lsi ` H

∀i : H;Vi ` Υi ∀i : Σ ` Vi : Γi ∀i : Lsi ` ei ∀i : H `i Lsi ∀i : Σ;φi; Υi; Γi; [] ` ei : τi; Υ
′
i CompleteForest(H)]

i

Dom(φi/null)
]
i

Lsi ValidUniques(H,Ts,Σ, TT)
]
i

{l|root(x) ∈ Υi ∧ Dup(Vi(x)) = l} ∀i, j : SeparateTrees(H,Vi,Υi, Vj ,Υj)

P ` H; Ts : Σ;TT

Γ;V ` Ls : L
T-MATCH-NO-LOCKS

Γ;V ` ∅ : ∅

T-MATCH-LOCK
Γ(x) = final τ V (x) = l Γ;V ` Ls : L

Γ;V ` l :: Ls : x :: L

ValidUniques(H,Ts,Σ, TT) ≡ ∀l ∈ Dom(H) :

0@ NumUniqueFieldsHolding(H,Σ, l•)+
NumUniqueVarsHolding(Ts, TT, l•)+
NumUniqueTypedLiterals(Ts, TT, l•)

1A ≤ 1

SeparateTrees(H,V1,Υ1, V2,Υ2) ≡

0@„ subtree(x) ∈ Υ1∧
subtree(y) ∈ Υ2

«
⇒

0@ ¬∃r ∈ Υ1, t ∈ Υ2, f1 . . . fk, g1 . . . gn.
H|complete(V1(r).f1 . . . fk) = V2(y)∧
H|complete(V2(t).g1 . . . gn) = V1(x)

1A1A
Figure 10. Program state typing and uniqueness preservation predicates.

then there exists a Σ′, φ′,Υ′′,Γ′ such that

C1. Σ′;φ′; Υ′′; Γ′;L ` E[e′] : τ ; Υ′′′ (the reduced expression
type checks)

C2. Υ′ ⊆ Υ′′′ (the new final tree assertions contain at least the
same disjointness information as the original final assertions.

C3. subtree(x) ∈ Υ′′ ⇒ (subtree(x) ∈ Υ ∨ ¬∃z.subtree(z) ∈
Υ) (the reduction preserves the current subtree)

C4. Ls ′ = Ls ′E@LsL (the new dynamic lock set is also partition-
able, to those matched in the new expression and those in L)

C5. Ls ′E ` E[e′]
C6. Σ ⊆ Σ′

C7. Γ ⊆ Γ′

C8. RaceFreePath(Γ, L, E[e]) ⇒ RaceFreePath(Γ′, L, E[e′])
(if the expression was a race-free path, the new expression is
as well)

C9. Path(E[e])∧Path(e)∧Path(e′)⇒ E[e′] ∈ MustAlias(·, E[e])
(if the expression reduced was a path, the resulting expression
is a must-alias of the original path).

C10. ` H ′ : Σ′ (the heap is still well-typed)
C11. φ′; Γ′; Ls ′ ` H ′ (φ′ reflects the capability grants for the locks

held)
C12. H ′;V ′ ` Υ′′ (disjointness assertions are still true)
C13. Σ′ ` V ′ : Γ′ (local variables are still well-typed)
C14. H ′ `i Ls ′ (the heap respects the reduced thread’s new lock

set)
C15. Γ′ ` Υ′′ (Υ′′ is well-formed w.r.t. Γ′)
C16. CompleteForest(H ′) (the still heap reflects a forest-shaped

capability granting relation)
C17. H(l) = 〈c, F,Some(j)〉 ⇒ j 6= i⇒ H ′(l) = 〈c, F,Some(j)〉

(the reduction does not release or steal another thread’s lock)
C18. ValidUniques(H ′, (i, V ′,Ls ′, e′),Σ′, (φ′,Υ′′,Γ′)) (the thread

preserves uniqueness)
C19. l• ∈ (H ′, V ′, e′)⇒ l• ∈ (H,V, e) ∨ l 6∈ Dom(H)
C20. root(x) ∈ Υ′′ ∧ root(x) 6∈ Υ⇒ (∃l.H(l) = 〈c, F, o〉 ∧P `

complete〈this〉 cf f ∈ Fields(c) ∧ Dup(F (f)) = V (x)) ∨
V ′(x) 6∈ Dom(H) (any new roots were either capability-
reachable or non-existent in the previous state)

C21. [x||y] ∈ Υ′′ ∧ [x||y] 6∈ Υ ⇒ (∃l, l′, f.Hcomplete(l)(f) =
l′ ∧ V ′(x) = l′ ∧ Υ; Γ;L ` r � l ∧ ([r||y] ∈ Υ ∨ r =
y))∨ (∃l, l′, f.Hcomplete(l)(f) = l′∧V ′(y) = l′∧Υ; Γ;L `
r � l∧([x||r] ∈ Υ∨r = x))∨V ′(x) 6∈ Dom(H)∨V ′(y) 6∈
Dom(H) (any new non-reachability assertions are from just-
broken reachability relationships or newly allocated objects)

C22. ∃l, l′, f .H ′complete(l)(f) = l′ ∧ (¬Hcomplete(l)(f) = l′) ⇒
V (y) = l′∧V (x) = l∧ [x||y] ∈ Υ (any new reachability was
asserted as safe in the previous state)

Proof. By induction on the derivation of Σ;φ; Υ; Γ;L ` E[e] :
τ ; Υ′ (H1).

• Case T-IF:
Case E 6= [·]:
− Σ;φ; Υ; Γ;L ` if E′[e] et ef : τ ; Υ′

By inversion on T-IF:
− Σ;φ; Υ; Γ;L ` E′[e] : τc; Υc

− Σ;φ; Υ; Γ;L ` et : τ ; Υt

− Σ;φ; Υ; Γ;L ` ef : τ ; Υf

− Υ′ = Υt ∩Υf

By induction:
− ∃Σ′, φ′,Υ′′,Γ′.Σ′;φ′; Υ′′; Γ′;L ` E′[e′] : τc; Υ′c
− Υc ⊆ Υ′c
− . . .

Typing of the branches is preserved by Lemma 2 with poten-
tially larger sets of tree assertions, whose intersection must
therefore be a superset of Υ′, so T-IF may be re-applied.
Case E = [·]: By the form of T-IF (H1), the whole if
construct is the redex e:
− Σ;φ; Υ; Γ;L ` if v et ef : τ ; Υ′

Two local reduction rules could apply to this construct: E-
IF-TRUE and E-IF-FALSE:
− Case E-IF-TRUE:H, i, V, Ls, if l[•] et ef → H,V, Ls, et.

By inversion on the typing derivation, Σ;φ; Υ; Γ;L `
et : τ ; Υt (C1), and by the definition of set intersection,
Υ′ ⊆ Υt, so let Υ′′′ = Υt (C2). Other proof goals are
straightforward to derive.

− Case E-IF-FALSE: Similar to the E-IF-TRUE subcase.
• Case T-WVAR:

Case E 6= [·]: By the form of T-WVAR, the typing deriva-
tion must be of the form:
− Σ;φ; Υ; Γ;L ` x := E′[e] : τ ; Υ′

By inversion on T-WVAR:
− Γ(x) = τx
− Σ;φ; Υ; Γ;L ` E′[e] : τx; Υ′

− τ = Alias(τx)
By induction:
− ∃Σ′, φ′,Υ′′,Γ′.Σ;φ; Υ; Γ;L ` E′[e′] : τx; Υ′′′

− Υ′ ⊆ Υ′′′

− . . .
Thus T-WVAR may be re-applied.
Case E = [·]: By the form of T-WVAR, the whole assign-
ment construct is the redex e:
− Σ;φ; Υ; Γ;L ` x := v : τ ; Υ′

By inversion on T-WVAR and Lemma 1:
− Γ(x) = τx
− Σ;φ; Υ; Γ;L ` v : τx; Υ
− τ = Alias(τx)

Only one local reduction rule could apply: E-WVAR, so by
inversion on H2
− H, i, V,Ls, x := v → H,V [x 7→ v],Ls,Dup(v)

By the value typing judgements, trivially any untagged du-
plicate of a location literal typed at a certain type τ can be
typed at Alias(τ), so
− Σ;φ; Υ; Γ;L ` Dup(v) : τ ; Υ (C1)

Most proof goals carry over unchanged from the previous
state’s typing. The remaining assertions are straightforward
to derive. For example, Σ ` V ′ : Γ (C13) holds because the
only changed portion is the mapping for x, which was re-
placed with null (holds trivially) or a location with the same
class type and by inversion on the value typing, correct tag.
Assertions about Υ (C12,15) still hold because the modified
variable was not final. Uniqueness is preserved (C18,19) be-
cause if the value was a unique reference it moved from
an expression literal to a local variable, and possibly some
other unique reference was overwritten depending on Γ(x).

• Case T-VAR: By the form of T-VAR,
Σ;φ; Υ; Γ;L ` x : τ ; Υ′

There is no sub-context, so x is the redex expression, and steps
to some v = Dup(V (x)) by inversion on E-VAR (H2). By
inversion on T-VAR and expansion of ValidCap():

Γ(x) = q τx
τ = Alias(τx)
Υ = Υe

τ = borrowed〈y〉 c ⇒ x ∈ MustAlias(·, p) ∧ Γ;L ` p :
complete〈y〉 c

τ is either partial c or borrowed〈y〉 c by the definition of
Alias(). If it is a partial type, it is straightforward to derive a
typing of v by either using T-NULL or inverting on Σ;` V : Γ
(H10) and applying T-ANY-LOCATION. If τe is a borrowed
type, then by inversion on the typing:

x ∈ MustAlias(·, p) ∧ Γ;L ` p : complete〈y〉 c
Clearly, v ∈ MustAlias(·, x), so v ∈ MustAlias(·, p) as well.
By φ; Γ; Ls ` H (H8):

φ(v) = y
making it possible to apply T-BORROWED-VALUE. In either
case:

Σ;φ; Υ; Γ;L ` v : τ ; Υ (C1)
x and v are both race-free paths (C8), and share any final aliases
(C9). All other proof goals either carry over directly from the
previous state or are straightforward to derive.

• Case T-FIELD:
Case E 6= [·]: By the form of T-FIELD:
− Σ;φ; Υ; Γ;L ` E′[e].f : τ ; Υ

By inversion on T-FIELD and unfolding FieldAccess():
− Σ;φ; Υ; Γ;L ` E′[e] : α c; Υ
− LockedFinalAlias(Γ, L, E′[e], x)
− RaceFreePath(Γ, L, E′[e])
− P ` τf f ∈ Fields(c)
− τ = Alias(τf [x/this])

By induction:
− Σ′;φ′; Υ′′; Γ′;L ` E′[e′] : α c; Υ′′′

− Υ ⊆ Υ′′′

− . . .
− RaceFreePath(Γ′, L, E′[e′])
− E′[e′] ∈ MustAlias(·, E′[e])

By the aliasing result:
− LockedFinalAlias(Γ′, L, E′[e′], x)

Other proof obligations are straightforward to derive.
CaseE = [·]: This means the whole expression is the redex,
so:
− Σ;φ; Υ; Γ;L ` l.f : τ ; Υ (H1)

By inversion on T-FIELD and unfolding FieldAccess():
− Σ;φ; Υ; Γ;L ` l : α c; Υ
− LockedFinalAlias(Γ, L, l, x)
− RaceFreePath(Γ, L, l)
− P ` τf f ∈ Fields(c)
− τ = Alias(τf [x/this])

Only one local reduction could apply to this expression, E-
FIELD:
− H, tid, V, Ls, l.f → H,V, Ls,Dup(H(l)(f)) (H2)

Let v = Dup(H(l)(f)) be the new expression. τ is either a
partial reference type or a borrowed reference type. Typing
v as a partial reference of the correct class is straightforward
by ` H : Σ (H7) and T-ANY-LOCATION or T-NULL. If it is
a borrowed type borrowed〈x〉 c, then by the value’s origin
(field types may only be partial or complete):
− l.f ∈ MustAlias(·, v)
− Γ;L ` l.f : complete〈x〉 c

And by φ; Γ; Ls ` H (H8):
− φ(v) = x

So T-BORROWED-VALUE can be applied. In either case:
− Σ;φ; Υ; Γ;L ` v : τ ; Υ (C1)

Clearly, v ∈ MustAlias(·, l.f). l.f and v are both race free
paths (C8) and share any final aliases (C9), proving the race-
free-path and aliasing obligations. Other proof obligations
are straightforward to prove.

• Case T-DVAR: By the form of T-DVAR,
Σ;φ; Υ; Γ;L ` dread(x) : τ ; Υ′

There is no sub-context, so dread(x) is the redex expression,
and steps to some v = V (x) (H2). By inversion on T-DVAR:

Γ(x) = guardless c
τ = guardless c
Υ′ = Υ
FinalAlias(Γ, x, y)
root(y) ∈ Υ

Only one local reduction rule applies to this syntax, E-DVAR:
H, tid, V, Ls, dread(x)→ H,V [x 7→ null], Ls, V (x)

Let v = V (x) be the new expression. It is straightforward to
apply T-UNIQUE-NULL or T-UNIQUE-LOC to derive

Σ;φ; Γ; Υ;L ` v : τ ; Υ (C1)
by exploiting the fact that x and v were aliased in the initial
state, and v will share any of x’s aliases from that state (the
value is appropriately tagged by inversion on Σ ` V : Γ,
H10). Most other proof obligations carry over directly from the
previous state. For the others:

Uniqueness is preserved (C18,19): a unique reference moved
from a local variable to a literal.
Σ ` V ′ : Γ (C13) is straightforward because V ′ is un-
changed from V except for one non-final variable now map-
ping to null.
H;V ′ ` Υ (C12) is straightforward to rederive because no
final variable or heap cell changed.

• Case T-WFIELD-COMPLETE:
Case E = E′[e].f := e2: By inversion on T-WFIELD-
COMPLETE and unfolding the definition of FieldAccess():
− Σ;φ; Υ; Γ;L ` E′[e] : τp; Υ
− RaceFreePath(Γ, L, E′[e])
− LockedFinalAlias(Γ, L, E′[e], x)
− P ` τf f ∈ Fields(Class(τp))
− τ ′ = τf [x/this] = complete〈x〉 c
− Σ;φ; Υ; Γ;L ` e2 : guardless c; Υ2

− y ∈ MustAlias(·, e2)
− root(y) ∈ Υ2

− Υ2; Γ;L ` r � E′[e]
− [r||y] ∈ Υ2

− Υ′ = Υ2/y
− τ = borrowed〈x〉 c

By induction:
− Σ′;φ′; Υ′′; Γ′;L ` E′[e′] : α c; Υ′′′

− Υ ⊆ Υ′′′

− . . .
− RaceFreePath(Γ′, L, E′[e′])
− E′[e′] ∈ MustAlias(·, E′[e])

By the aliasing result:
− LockedFinalAlias(Γ′, L, E′[e′], x)

Other proof obligations are straightforward to derive.
Case E = l.f := E′[e]: Similar to the previous subcase.
Case E = [·]: The whole field write is the redex:
− Σ;φ; Υ; Γ;L ` l.f := v : τ ; Υ′ (H1)

By inversion on T-WFIELD-COMPLETE and unfolding
FieldAccess():
− Σ;φ; Υ; Γ;L ` l : τp; Υ
− RaceFreePath(Γ, L, l)
− LockedFinalAlias(Γ, L, l, x)
− P ` τf f ∈ Fields(Class(τp))
− τ ′ = τf [x/this] = complete〈x〉 c
− Σ;φ; Υ; Γ;L ` v : guardless c; Υ2

− y ∈ MustAlias(·, v)
− root(y) ∈ Υ2

− Υ2; Γ;L ` r � l

− [r||y] ∈ Υ2

− Υ′ = Υ2/y
− τ = borrowed〈x〉 c

Let φ′ = φ[Dup(v) 7→ x], additionally removing l0 if
initially H(l)(f) = l•0 (i.e. the field write overwrote a
unique reference) and removing null if no other unique
field of the modified object holds null after the write. It is
straightforward to apply T-BORROWED-VALUE to derive
− Σ;φ′; Υ′; Γ;L ` v : borrowed〈x〉 c; Υ′ (C1)

Because only the thread expression and a single heap field
were modified, most proof obligations follow almost di-
rectly from hypotheses. We must prove the others:
− (C11) φ′; Ls ` H ′: This is trivial if v = null. Other-

wise, v = l′• (by inversion on the value typing) for some
l′•, so H ′ = H[l.f 7→ l′•] and f is a complete field of
the modified object, and by construction of φ′ above we
removed any location whose unique reference was over-
written. Other assertions in φ still hold in the new heap,
allowing us to apply T-VALID-CAP-ORACLE.

− (C12) H ′;V ` Υ′: Because of the non-aliasing con-
straint on tree roots from H;V ` Υ (H9), and the fact
that Υ′ removes any assertions violated by the field write
to create H ′.

− (C15) Γ ` Υ′: Υ′ is a subset of Υ, so this is trivial.
− (C16) CompleteForest(H ′): By H;V ` Υ and as-

sumptions from inverting T-WFIELD-COMPLETE, inH
there was no path of complete references from the stored
value to l. So by adding a complete reference from l to
the stored value (if non-null), no cycle was introduced.

Most other proof obligations are straightforward to derive,
including the lemma result that this newly-created capabil-
ity reachability was the result of a disjointness assertion in
the previous state (C22).

• Case T-WFIELD-PARTIAL:
Case E = E′[e].f := e2: Σ;φ; Υ; Γ;L ` E′[e].f := e2 :
τ ; Υ′. By inversion on T-WFIELD-PARTIAL and unfolding
FieldAccess():
− Σ;φ; Υ; Γ;L ` E′[e] : τp; Υ
− RaceFreePath(Γ, L, E′[e])
− LockedFinalAlias(Γ, L, E′[e], x)
− P ` τf f ∈ Fields(Class(τp))
− τ = τf = partial c
− Σ;φ; Υ; Γ;L ` e2 : τ ; Υ′

The case finishes by induction and re-application of T-
WFIELD-PARTIAL.
Case E = l.f := E′[e]: Similar to the previous case.
Case E = [·]: The whole expression is the redex:
− Σ;φ; Υ; Γ;L ` l.f := v : τ ; Υ′ (H1)

Only one local evaluation rule could apply: E-WFIELD
(H2):
− H, tid, V, Ls, l.f := v → H[l.f 7→ v], V, Ls,Dup(v)

By inversion on T-WFIELD-PARTIAL, Lemma 1, and un-
folding FieldAccess():
− Σ;φ; Υ; Γ;L ` l : τl; Υ
− RaceFreePath(Γ, L, l)
− LockedFinalAlias(Γ, L, l, x)
− P ` τf f ∈ Fields(Class(τl))
− τe = τf = partial c
− Σ;φ; Υ; Γ;L ` v : τ ; Υ
− Υ = Υ′

Applying T-ANY-LOCATION or T-NULL anew after invert-
ing, it is straightforward to rederive:
− Σ;φ; Υ; Γ;L ` Dup(v) : τ ; Υ′ (C1)

Other proof obligations are straightforward to derive.
• Case T-DFIELD:

Case E 6= [·]:
− Σ;φ; Υ; Γ;L ` dread(E′[e].f) : guardless c; Υ′

This case proceeds much like the inductive cases for T-
WFIELD-PARTIAL and T-WFIELD-COMPLETE.
Case E = [·]: The whole expression must be the redex:
− Σ;φ; Υ; Γ;L ` dread(l.f) : guardless c; Υ′ (H1)

Only one local evaluation rule could apply, E-DFIELD
(H2):
− H, tid, V, Ls, dread(l.f)→ H[l.f 7→ null], V, Ls,H(l)(f)

By inversion on T-DFIELD, Lemma 1 and unfolding FieldAccess():
− Σ;φ; Γ; Υ;L ` l : τl; Υ
− RaceFreePath(Γ, L, l)
− LockedFinalAlias(Γ, L, l, x)
− P ` τf f ∈ Fields(Class(τl))
− τ ′ = τf [x/this] = complete〈x〉 c
− FinalAlias(Γ, l.f, t)
− t 6∈ Υ
− Υ; Γ;L ` r � p
− Υ′ = Υ ∪ {root(t)} ∪ {t||z|∀z.[r||z] ∈ Υ′}

Let v = H(l)(f) be the new expression. Let φ′ be φwithout
the mapping v 7→ y for any y aliased to l if v is a location,
otherwise φ′ = φ. It is straightforward to apply T-UNIQUE-
NULL or T-UNIQUE-LOC to derive:
− Σ;φ′; Γ; Υ′ ` v : guardless c; Υ′ (C1)

Many assertions carry over directly or in obvious ways from
assertions about the initial state. For the others:
− (C11) φ′; Γ; Ls ` H ′: By construction φ′ is appropri-

ately weakened to reflect the change in the heap.
− (C12)H ′;V ` Υ′′: By construction of the new heap and

the uniqueness assertion of the previous state, v is a root;
there is no complete reference in the heap that points to
it. Similarly, the added tree disjointness assertions also
match the new heap. All added assertions use t, which
is a root in Υ′′. Any variable used in an assertion in Υ′′

must have a corresponding root or subroot assertion. t’s
referent was not a root in the previous state, so no root
variable in Υ′′ aliases t. By t 6∈ Υ, there there is no
subtree assertion for t. Aliased tree roots are not asserted
to be (transitively) disjoint from each other, because the
new tree is only asserted as disjoint from the single tree
it was severed from.

− (C15) Γ ` Υ′′: By Γ ` Υ and construction of Υ′′, Υ′′

only uses final variable names.
− (C16) CompleteForest(H ′): Because CompleteForest(H)

and H ′ removes a single complete reference edge.
− (C18,19) Uniqueness is preserved; a unique reference

moves from a field to an expression literal.
− (C20,21) The new root in the tree assertions comes from

a reference that was not previously a root, and the new
tree disjointness assertions refer to this new root.

• Case T-NEW: The allocation construct has no inner evalua-
tion contexts, so this expression is the whole redex. Only one
local reduction rule could apply, E-NEW (H2):

H, tid, V, Ls, let guardless x, final y = new c in ebody →
H[l 7→ 〈c,NullFieldsc,None〉], V [x 7→ l•, y 7→ l], Ls, ebody

By inversion on T-NEW (H1):

Υbody = Υ ∪ {root(y)} ∪ {y||z|∀z.tree(z) ∈ Υ}
Σ;φ; Υbody; Γ[x 7→ guardless c][y 7→ final partial c];L `
e : τ ; Υb

Υe = Υb/y
Let Γ′ = Γ[x 7→ guardless c][y 7→ final partial c]. Let
Σ′ = Σ[l 7→ c]. By construction of H ′ and Σ′, and ` H : Σ
(H7), clearly
` H ′ : Σ′ (C10)

Most obligations are straightforward to derive because they are
either straightforward to extend for the small change to the heap
and expression, or are assertions about unchanged state. By
construction of V ′, Σ′, and Γ′, and Σ ` V : Γ (H10):

Σ′ ` V ′; Γ′ (C13)
By construction, Υbody only adds assertions to Υ using vari-
ables that were either already in Υ and are therefore final by
Γ ` Υ (H12), or refer to y, which is final in Γ′, so

Γ′ ` Υbody (C15)
H ′;V ′ ` Υbody (C12) is straightforward to derive, as are the
uniqueness obligations:

(C18) ValidUniques(H ′, (i, V ′,Ls, ebody),Σ′, (φ,Υbody,Γ
′)).

(C19) l• ∈ (H ′, V ′, e′)⇒ l• ∈ (H,V, e) ∨ l 6∈ Dom(H)
Because l was not in the domain of the previous state’s heap, the
added assertions about non-reachability of the new allocation
satisfy the implication about the new tree assertions being larger
than the previous (C2). The proof obligations constraining new
tree roots and disjointness assertions are also satisfied, because
those additions refer to the new allocation (C20,21).

• Case T-LET:
Case E 6= [·]: Proceeds by inversion on T-LET, induction,
and Lemma 2 (environment strengthening).
Case E = [·]: The let expression is the current redex. Only
one local reduction rule applies:
− H, tid, V, Ls, let q x = v in ebody → H,V [x 7→
v], Ls, ebody (H2)

By inversion on T-LET (H1) and Lemma 1:
− Σ;φ; Υ; Γ;L ` v : τ1; Υ
− Σ;φ; Υ; Γ[x 7→ q τ1];L ` ebody : τ ; Υb where the final

modifier is present only if it was present in the original
expression

− Υ′ = Υb/x
We already have a typing for the new expression. Clearly
Υ′ ⊆ Υb (C2). If the variable bound is final, then φ must
be extended by Lemma 2 with mappings to x for any map-
pings to final aliases of x to prove φ′; Γ′; Ls ` H (C11).
Other assertions of well-typed states are either unchanged
from previous states; or are straightforward to derive by the
extension of V and Γ and the typing for v from inverting
on T-LET, like Σ ` V ′ : Γ′ (C13), H;V ′ ` Υ (C12), and
Γ′ ` Υ (C15). Uniqueness is clearly preserved (C18,19);
the step either does not affect uniqueness, or moves a unique
reference from an expression literal to a local variable.

• Case T-LOCK-FIRST:
Case E 6= [·]: Proceeds by inversion on T-LOCK-FIRST,
induction, and Lemma 2 (environment strengthening).
Case E = [·]: The lock expression is the redex:
− Σ;φ; Υ; Γ;L ` lock l ebody : τ ; Υ′ (H1)
− L = [] (H1)

Because L = [] and Γ;V ` LsL : L, LsL = [], and
the redex contains no withlocks, so LsE = [] and therefore
Ls = []. Thus only one local reduction could have applied,
E-LOCK (H2):

− H, i, V,Ls, lock l e → H[l 7→ 〈c, F,Some(i)〉], V, l ::
Ls,withlock l e where H(l) = 〈c, F,None〉

By inversion on T-LOCK-FIRST and Lemma 1:
− Σ;φ; Υ; Γ; [] ` l : τl; Υ

− RaceFreePath(Γ, [], l[•])

− FinalAlias(Γ, l[•], x)
− Υt = NewSubtrees([],Υ, x)
− ¬∃z.subtree(z) ∈ Υ
− Σ;φ; Υ ∪Υt; Γ; [x] ` ebody : τ ; Υb

− τe = borrowed〈y〉 c⇒ y ∈ []
− Υ′ = Υb/{z|z ∈ Υt}

It is straightforward to apply T-WITHLOCK with exactly
those hypotheses to derive:
− Σ;φ; Υ ∪Υt; Γ; [] ` withlock l ebody : τ ; Υ′

Let φ′ = φ[l′ 7→ x|∀l′.l′ is stored in a unique field of l]. By
Lemma 2, and setting Υ′′ = Υ ∪Υt:
− Σ;φ′; Υ′′; Γ; [] ` withlock l ebody : τ ; Υ′ (C1)

By construction of Υ′′ and the assumption that there was no
subtree assertion in Υ, we maintained well-formedness of
Υ′′, particularly that there is at most subtree assertion:
− H ′;V ` Υ′′ (C12)

Because by assumption we know there was no subtree as-
sertion in Υ, we satisfy the constraint on new subtree asser-
tions:
− subtree(x) ∈ Υ′′ ⇒ (subtree(x) ∈ Υ∨¬∃z.subtree(z) ∈

Υ) (C3)
By CS-NO-MORE:
− [l] ` withlock l ebody

By construction of the new heap:
− H(l) = 〈c, F,Some(j)〉 ⇒ j 6= i ⇒ H ′(l) =
〈c, F,Some(j)〉 (C17)

By H `i Ls (H11, where Ls = []) and construction of the
new heap H ′:
− H ′ `i [l] (C14)

By φ; Γ; Ls ` H (H8) and construction of φ′ and H ′:
− φ′; Γ; l :: Ls ` H ′ (C11)

By LsE ` E[e] (H5), the transformation step taken, and
CS-LOCK-HELD:
− l :: LsE ` E[e′] (C5)
− Ls ′E = l :: LsE
− Ls ′ = Ls ′E@LsL (C4)

Other proof obligations are straightforward to derive.
• Case T-LOCK-N:

Case E 6= [·]: Proceeds by inversion on T-LOCK-N, induc-
tion, and Lemma 2 (environment strengthening).
Case E = [·]: This case is almost identical to the T-LOCK-
FIRST base case, except for a few additional hypotheses
from inverting T-LOCK-N (used in the deadlock freedom
proof, but not directly relevant to type preservation), and
the fact that either E-LOCK or E-RECLOCK could have
performed the local reduction (H2) because the static lock
set L was not constrained to be empty.

• Case T-WITHLOCK:
Case E 6= [·]: By the structure of withlock expressions:
− Σ;φ; Υ; Γ;L ` withlock l E′[e] : τ ; Υ′

By inversion on T-WITHLOCK and Lemma 1:
− Σ;φ; Υ; Γ;L ` l : τl; Υ
− FinalAlias(Γ, l, x)
− Υt = NewSubtrees(L,Υ, x)
− ∀z.subtree(z) ∈ Υt ⇒ subtree(z) ∈ Υ

− Σ;φ; Υ; Γ;x :: L ` E′[e] : τ ; Υb

− τ = borrowed〈y〉 c⇒ y ∈ L
− Υ′ = Υb/{z|z ∈ Υt}

By the hypotheses above, Γ;V ` l :: LsL : x :: L, so by
induction:
− Σ′;φ′; Υ′′; Γ′;x :: L ` E′[e′] : τ ; Υ′′′

− Υ′ ⊆ Υ′′′

− subtree(x) ∈ Υ′′ ⇒ subtree(x) ∈ Υ∨¬∃z.subtree(z) ∈
Υ

− . . .
− Ls ′ = Ls ′′E@(l :: LsL)
− Ls ′′E ` E′[e′]

By CS-LOCK-HELD and letting Ls ′E = Ls ′′E@[l]:
− Ls ′E ` E[e′]
− Ls ′ = Ls ′E@LsL

Other proof obligations follow directly from induction re-
sults, using Lemma 2 and the subtree preservation (C3) to
apply T-WITHLOCK with the inductive results to derive a
thread typing (C1).
Case E = [·]: The whole withlock expression is the cur-
rent redex. Two local reduction rules could have applied:
E-UNLOCK and E-RECUNLOCK (H2). The two are very
similar, so we describe only the former case in detail.
− H, i, V, l :: Ls ′,withlock l v → [l 7→ 〈c, F,None〉], V,Ls ′, v

where l 6∈ Ls ′ and H(l) = 〈c, F,Some(i)〉.
Clearly LsE = [l], Ls ′E = [], Ls ′E ` E[v] and Ls ′ =
Ls ′E@LsL. By inversion on T-WITHLOCK (H1) and Lemma
1:
− Σ;φ; Υ; Γ;L ` l : τl; Υ
− FinalAlias(Γ, l, x)
− Υt = NewSubtrees(L,Υ, x)
− ∀z.subtree(z) ∈ Υt ⇒ subtree(z) ∈ Υ
− Σ;φ; Υ; Γ;x :: L ` E′[e] : τ ; Υb

− τ = borrowed〈y〉 c⇒ y ∈ L
− Υ ∪Υt = Υb

− Υ′ = Υb/{z|z ∈ Υt}
Let φ′ be φ less the mappings to x and its final aliases (since
this is a non-recursive lock release, no alias of xwill be in L
by H4, Γ;V ` Ls : L). For any typing of v, it is possible to
reconstruct it in a context with φ′ and L rather than x :: L,
by value typing and the fact that if τe was a borrowed type
guarded by x (or its alias), then x ∈ L (or its alias is) and
then by construction φ′(v) = x, so letting Υ′′ = Υ′:
− Σ;φ′; Υ′′; Γ;L ` v : τe; Υ (C1)

Many proof obligations follow directly from hypotheses
about the previous state because the heap structure and local
variables are unchanged. For others:
− By construction (marking that the lock is released),
H ′ `i Ls ′ (C14), and other threads’ lock ownership
as recorded in the heap is preserved (C17).

− By construction of φ′, φ′; Γ; Ls ′ ` H ′ (C11).
− Uniqueness is clearly preserved (C18,19).

• Case T-SUB-TYPE: By induction and fresh application of T-
SUB-TYPE.

• Case Value Typing: For T-ANY-LOCATION, T-UNIQUE-
NULL, T-UNIQUE-LOC, T-BORROWED-VALUE, and T-NULL.
None of these rules type expressions with subcontexts, so the
evaluation context must be [·] and the redex is the value itself.
But there is no evaluation rule that steps from a value, which
violates the assumption H, i, V,Ls, e → H ′, V ′,Ls ′, e′ (H2),
so these cases hold vacuously.

• Case T-SPAWN: Similar to the previous set of cases, there
is no local evaluation step of the form H, i, V,Ls, e →
H ′, V ′,Ls ′, e′ (H2) when e is a spawn expression, so this case
holds vacuously.

Lemma 4 (Type Preservation). If P ` H; Ts : Σ;TT and
H; Ts → H ′; Ts ′ then

• If a lock expression was reduced and was typed with T-LOCK-
N, its lock was typed as a borrowed reference with the same
lock group as its complete reference.

• ∃Σ′, TT ′.Σ ⊆ Σ′, TT differs from TT ′ only for the threads
reduced.

Proof. By induction on the derivation of H; Ts → H ′; Ts ′.

• Case E-THREAD: By inversion on E-THREAD:
H, (i, V,Ls, E[e])→ H ′, (i, V ′,Ls ′, E[e′])

By inversion on E-CONTEXT:
H, i, V,Ls, e→ H ′, V ′,Ls ′, e′

By inversion on T-PROGRAM-STATE, using φ = φi, Υ = Υi,
etc. and eliding the results quantifying many assertions over all
threads:
` P (the program is well-typed)
` H : Σ (the heap is well-typed)
φ; Γ; Ls ` H (φ reflects only the capability grants for the
locks held)
H;V ` Υ (the heap and local variables are accurately
modeled by Υ)
Σ ` V : Γ (local variables are typed correctly)
Ls ` E[e] (the dynamic lock set matches the unreduced
withlock expressions)
H `i Ls (the heap respects the reduced thread’s lock set)
Γ ` Υ (Υ is well-formed w.r.t. Γ; it references only final
variables)
Σ;φ; Υ; Γ; [] ` E[e] : τ ; Υ′ (the thread’s expression type
checks)
CompleteForest(H) (the heap reflects a forest-shaped ca-
pability granting relation)U
i Dom(φi) (no lock’s guard is known to multiple threads)U
i Lsi (the lock sets of all threads are disjoint)

ValidUniques(H,Ts,Σ, TT) (each object has no more
than 1 unique reference)U
i{l|root(x) ∈ Υi ∧Dup(Vi(x)) = l} (no more than one

thread may assert a lock is the root of a capability-granting
tree)
∀i, j : SeparateTrees(H,Vi,Υi, Vj ,Υj) (there is an over-
lap of tree disjointness assertions between threads that
would tie two threads’ tree assertions together too closely;
that overlap is not possible to create, but this assertion ex-
plicitly states that it has not been produced)

By Lemma 3, there exists a Σ′, φ′,Υ′′,Γ′,Υ′′′ such that
Σ′;φ′; Υ′′; Γ′; [] ` E′[e′] : τ ; Υ′′′

Υ′ ⊆ Υ′′′

subtree(x) ∈ Υ′′ ⇒ (subtree(x) ∈ Υ∨¬∃z.subtree(z) ∈
Υ) (the reduction preserves the current subtree)
` H ′ : Σ′

φ′; Γ′; Ls ′ ` H ′
H ′;V ′ ` Υ′′

Σ′ ` V ′ : Γ′

Ls ′ ` E′[e′]

H ′ `i Ls ′

Γ′ ` Υ′′

CompleteForest(H ′)
H(l) = 〈c, F,Some(j)〉 ⇒ j 6= i⇒ H ′(l) = 〈c, F,Some(j)〉
ValidUniques(H ′, (i, V ′,Ls ′, e′),Σ′, (φ′,Υ′′,Γ′))
l• ∈ (H ′, V ′, e′)⇒ l• ∈ (H,V, e) ∨ l 6∈ Dom(H)
root(x) ∈ Υ′′ ∧ root(x) 6∈ Υ ⇒ (∃l.H(l) = 〈c, F, o〉 ∧
P ` complete〈this〉 cf f ∈ Fields(c) ∧ Dup(F (f)) =
V (x)) ∨ V ′(x) 6∈ Dom(H)
[x||y] ∈ Υ′′ ∧ [x||y] 6∈ Υ ⇒ (∃l, l′, f.Hcomplete(l)(f) =
l′ ∧ V ′(x) = l′ ∧ Υ; Γ;L ` r � l ∧ ([r||y] ∈ Υ ∨
r = y)) ∨ (∃l, l′, f.Hcomplete(l)(f) = l′ ∧ V ′(y) =
l′ ∧ Υ; Γ;L ` r � l ∧ ([x||r] ∈ Υ ∨ r = x)) ∨ V ′(x) 6∈
Dom(H) ∨ V ′(y) 6∈ Dom(H) (any new non-reachability
assertions are from just-broken reachability relationships or
newly allocated objects)
∃l, l′, f .H ′complete(l)(f) = l′ ∧ (¬Hcomplete(l)(f) =
l′) ⇒ V (y) = l′ ∧ V (x) = l ∧ [x||y] ∈ Υ (any new
reachability was asserted as safe in the previous state)

These results are sufficient to update most typing assertions for
the reduced thread, and preservation for other threads’ typings
follows from Lemma 2, with a few exceptions:U

i Ls ′i: If Ls ′i ⊆ Lsi this is trivial. Otherwise, any lock
in Ls ′i but not in Lsi must not have been in the dynamic
lock set of any other thread of the previous state, by ∀j :
Lsj `j H and the lemma result that other threads’ locks
are preserved. So the lock sets must still be disjoint.U
i Dom(φ′i/null): Because by φ′; Γ′; Ls ′ ` H ′ and the

lock set disjointness just proven, any additions to φ′i’s non-
null domain would be a location not in any other thread’s
φj .
ValidUniques(H ′,Ts ′,Σ′, TT ′) Follows from the individ-
ual thread uniqueness preservation results.U
i{l|root(x) ∈ Υ′i ∧ Dup(V ′(x)) = l}: From ∀j :

H;Vj ` Υj on the previous state and the restrictions on
the growth of Υ to Υ′′ from the lemma results.
∀i, j : SeparateTrees(H ′, V ′i ,Υ

′
i, V

′
j ,Υ

′
j): If no complete

fields are overwritten, this property is clearly preserved. If
some complete field was mutated, we perform a case analy-
sis based onH, i, V,Ls, e→ H ′, V ′,Ls ′, e′. By inspection
of that set of rules, there are only two applicable rules: E-
WFIELD-COMPLETE and E-DFIELD (no other rules mod-
ify fields that affect the capability-granting relation).
− Case E-WFIELD-COMPLETE:

To prove ∀i, jSeparateTrees(H ′, V ′i ,Υ
′
i, V

′
j ,Υ

′
j), we

prove by contradiction.
Assume a (sub)tree t rooted at the stored value in the re-
duced thread capability-reaches a subtree x in the other
thread, and a (sub)tree r in the other thread capability-
reaches the root that (transitively) grants the capability
for l in the reduced thread; in this case only would the
complete-field-write violate the implication in the tree
separation invariant. But by the fact that it is in an as-
sertion and reachable, that root-of lookup result must be
a subtree in the reduced thread, which could only occur
if the implication was already violated in the previous
state, which was not the case.
To show that no unreachability assertion in another
thread was invalidated, consider the possible relation-
ships between the values referenced by [a||b] ∈ Υj for
another thread j, and the assertion [z||y] ∈ Υ where
z is the root transitively granting the capability for l.
Most cases are trivially safe, or hold vacuously because

they violate the assumption that one of the variable in a
tree disjointness assertion must be a root. The only other
case is one where a is capability-reachable from z, and
y is capability-reachable from b. By H;V ` Υ for each
thread, a and y must be subtrees. But this would violate
the tree separation invariant of the previous state, which
we know held, so this case holds vacuously. Thus we
may apply T-PROGRAM-STATE to the new state using
the previous state’s typings for other threads.

− Case E-DFIELD: ∀i, j : SeparateTrees(H,Vi,Υi, Vj ,Υj)
is clearly preserved.
Other threads’ non-reachability assertions remain valid
(the transition did not make anything capability-reachable
where it wasn’t before). Then apply T-PROGRAM-
STATE.

• Case E-SPAWN:
H, {(i, V, Ls,E[spawn x e])} ∪ Ts0 →
H, {(i, V ′, Ls, E[null]), (j, Vnew, [], e)} ∪ Ts0

By inversion on E-SPAWN:
j is a fresh thread ID
V ′ = V [x 7→ null]
Vnew = {x 7→ V (x)}

By inversion on T-PROGRAM-STATE:
. . .
Σ;φi; Υi; Γi; [] ` E[spawn x e] : τi; Υ′i
. . .

By induction on the structure ofE, using T-NULL and inverting
on T-SPAWN in the base case:

Γi(x) = α c
Σ; ∅; ∅; {x 7→ final partial c}; [] ` e : τ ; Υe

Σ;φi; Υi; Γi; [] ` E[null] : τi; Υ′i
Deriving the necessary hypotheses to apply T-PROGRAM-
STATE to the new state is straightforward.

B. Source Typing Implies Runtime Typing
The proof that any program that type checks under the source type
system also type checks under the runtime type system is fairly
straightforward. The proof proceeds by induction on the derivation
under the source type system, and relies on two main facts:

• The additional runtime contexts (Σ and φ) are unused in the
runtime typing judgements for expressions that are also in the
source language.

• Any results from a sound static the must-alias analysis on the
source must also be provable by the runtime type system’s
oracle must-alias analysis, and the rules never negate a must-
alias result.

C. Typing Implies Deadlock Freedom
The argument for how our lock capability type system prevents
deadlock is not as obvious as how lock levels prevent deadlock, be-
cause the capability-granting relation in our type system can change
over time, including among held locks. If it were not possible to
change the capability-granting relation, deadlock freedom would
follow almost directly from the fact that the capability-granting re-
lation is acyclic. With changes to that relation, however, there is in
some sense a view across time of dynamically executable lock ac-
quisition orders, that ignores lock reordering and will remain free of
cycles between locks held by different threads because the granting
relation remains acyclic and locks are always acquired in accor-
dance with the capability-granting relation.

Our strategy for proving deadlock freedom is to define an ex-
tended program semantics that explicitly models the dynamically
executed capability use / lock acquisition orders, and to prove the
absence of certain types of paths in this transition system as a pre-
served property, where those certain paths represent deadlock sce-
narios. It would be possible to incorporate this into the standard
type preservation proof from Appendix A, but we have separated
the proofs to simplify presentation.

We call the model of how capabilities are used across time the
capability-use graph. Its vertices are held locks (as heap locations).
Its edges are capability uses: if a program reduces a lock expression
that typed an acquisition of location l based on the fact that x
granted the capability for l, the graph picks up an edge from x’s
referent (say lx) to l, lx → l. When the program releases a lock,
the incoming edge to that lock is removed from the capability-
use graph for that thread. If a thread reduces to a state where
its next reduction would acquire another lock, we say there is an
intended edge from the location granting the capability for that
lock to that next-to-acquire lock (there is no intended edge, or
incoming edge for the first lock acquired). The union of all threads’
capability-use graphs (the joint capability-use graph and intended
edges will contain no paths between locks held by the same thread
that crosses multiple threads’ edges. Those paths represent the
deadlock scenarios because such a path is either:

• A dependency cycle among threads following the capability-
granting relation (which contradicts the fact that the capability-
granting relation remains acyclic), or

• A path from a lock held by one thread, through one or more
locks held by other threads, and back to a lock held by the orig-
inal thread. This would contradict the “orphaned lock” check
that disallows the original thread from acquiring locks if some
other thread might hold a lock that (transitively) grants the ca-
pability to acquire one of the original thread’s orphaned locks.

Figure 11 gives formal definitions for the extended semantics, and
properties used in the deadlock freedom proof. Because there is so
much new technical machinery for the deadlock freedom proof, we
first provide a sketch of a deadlock freedom proof for a system
without reordering, but still using capability-use graphs for the
proof. Then we outline what must change to extend the proof to
handle changes in the capability-granting relation.

Proof Sketch — Without Reordering By induction on evaluation
steps. By inverting on the global step, we find some local reduction
that occurred in a particular thread. Those local reductions fall into
one of several categories:

• Uninteresting Reductions: These are rules like conditional
evaluation, allocation, or binding, which do not produce values
or affect the set of locks held, and can be roughly ignored (re-
ally, we apply G-MATCH-REDUCTION to carry the capability-
use graphs through to the next evaluation step).

• Forbidden Reductions: Destructive reads and writing com-
plete references are banned for this sketch, as we consider only
executions without reordering.

• Reductions to Values: Borrowing reads, and storing partial
or borrowed values can produce values, which may be inside
a lock acquisition’s inner context. These reductions may in-
duce intended edges in the capability-use graph for the reduced
thread, when the thread reduces to some E[lock l e]. If the
thread holds no locks yet, there is no intended edge (there is no
source for such an edge), and no new bad paths are introduced.
If the thread does hold locks, an edge showing that the thread
depends on acquiring the lock l is added to the joint capability-
use graph. This is trivially safe if the lock is unowned or owned

by the reduced thread. If it is owned by another thread, it is still
safe; this edge will correspond to some edge in the (tree-shaped)
capability-granting relation, so it must be the first-lock acquired
by the other thread, which then cannot transitively be blocked
on any thread blocked on the reduced thread. These cases are
the heart of the proof.

• Lock Acquisition: Reductions that acquire locks essentially
just move what were previously intended edges in the joint
graph to being executed edges in the thread’s individual capability-
use graph. Because the lock was necessarily unacquired previ-
ously, there are no outgoing edges from the acquired lock, so
no new paths were created in the joint graph. Then because the
joint graph was safe before the reduction, it is free of bad paths
afterwards as well.

• Lock Releases: These simply remove edges from the capability-
use graphs, and are trivially safe.

Adding Reordering Handling reordering primarily reduces what
can be directly deduced from the capability-granting relation, be-
cause a single thread’s locks may be unrelated in the capability-
granting relation. To bridge such reachability gaps, we track an ad-
ditional partial order of which threads effectively (transitively) grant
the capability to acquire the first-acquired lock of other threads.
The definition follows the natural intuition for this property; thread
A effectively grants the capability to thread B’s first-acquired lock
if:

• There is a direct path in the capability-granting relation from
some lock thread A holds to B’s first lock, or

• There is a path through the capability-granting relation from
the referent of a groupless reference in A’s local variables or
expression literal to B’s first lock.

This notion of effective granting is used in the evaluation cases
that produce values to augment information about the capability-
granting relation itself when proving the absence of an incoming
intended edge. Because the edges of the joint capability-use graph
represent previously executed uses of capabilities, reordering gener-
ally leaves paths from the first lock acquired to locks held. The only
exception is when reordering allows a thread to release the lock di-
rectly granting the capability to acquire another lock it still holds,
in which case a gap would exist, but the type system prevents such
a thread from acquiring new locks, and therefore blocking, until it
releases enough locks to make its local cap-use graph contiguous.

Lemma 5 (Lock-in-Hole Typing). If

• Σ;φ; Υ; Γ;L ` E[lock l e] : τ ; Υ′

• Ls = LsE@LsL
• LsE ` E[lock l e]
• Γ;V ` LsL : L

then

• Σ;φ; Υs; Γ;L′@L ` lock l e : τ ′; Υ′′

• L′@L = [] ∨ (φ(l) = x ∧ V (x) = lx ∧ x ∈ L′@L ∧ (∀z ∈
L′@L : L′@L = L′′′@[z]∨∃p′.RaceFreePath(Γ, L′@L, p′)∧
FinalAlias(Γ, p′, z) ∧ Γ;L′@L ` p′ : complete〈a〉 c))

• Γ;V ` Ls : L′@L

This lemma is used when reasoning about the edges in the joint
capability-use graph that come from pending lock acquisitions (or
blocking); it is essentially used to retrieve the guarding lock of
a lock about to be acquired, which determines the head of the
directed edge.

Capability-Use Graph κ ::= (V,E)
Cap-Use Graph Vertices V : Location set
Cap-Use Graph Edges E : Location→ Location stack
Thread Graph Map G : ThreadID→ κ
Joint Lock Ordering Graph J : Edge-Labeled Graph

G-MATCH-NO-LOCKS
∀i : Vertices(G(i)) = ∅ ∀i : Edges(G(i)) = [] ∀i : Ts(i) = (Vi,Lsi, ei) ∀i : Lsi = []

G ≡ Ts

G-MATCH-REDUCTION
G0 ≡ Ts0 H,Ts0 → H

′
,Ts ∀i : Vertices(G(i)) = Lsi G = StepGraph(G0,Ts0,Ts)

G ≡ Ts

StepGraph(G,Ts,Ts
′
) =

8>>>>>>>>><>>>>>>>>>:

G if ∀i : Lsi = Ls′i
G if |Ts| < |Ts′|
G[i 7→ ({l}, [])] if Lsi = [] ∧ Ls′i = [l]

G[i 7→ (Vertices(G(i)) ∪ {l}, [l0 7→ l] :: Edges(G(i)))]
if Lsi 6= [] ∧ l :: Lsi = Ls′i∧
l0 = Vi(φi(l))

G[i 7→ ({lv|lv ∈ Tail(Edges(G(i)))},Tail(Edges(G(i))))] if Lsi = l :: Ls′i ∧ |Ls′i| > 1
G[i 7→ ({l0}, [])] if Lsi = l :: Ls′i ∧ Ls′i = [l0]
G[i 7→ (∅, [])] if Lsi = l :: Ls′i ∧ Ls′i = []

Join(G, TT,Ts) =

 [
i

{l1
i7→ l2|l1 7→ l2 ∈ Edges(G(i))}

!
∪ {l0

i7→ l|Lsi 6= [] ∧ ei = Ei[lock l eb] ∧ l0 = Vi(φi(l))}

SafeCapUse(J,G) = ∀i.¬∃a, b ∈ Vertices(G(i)).∃l j7→ l
′ ∈ (a 7→ . . . 7→ b ⊆ J).j 6= i

ThreadOrder(H,Ts, TT, i, j) ≡ Lsj = Ls
′
j@[lj] ∧

0@ (∃li ∈ Lsi.CapReach(H, li, lj))∨
(∃xi.Γi = guardless c ∧ CapReach(H,Vi(xi), lj))∨

(∃li.l•i ∈ ei ∧ CapReach(H, li, lj))

1A
PartialThreadOrder(H,Ts, TT) ≡6= ∃t0 . . . tn−1.(∀i ∈ (0..n− 1)ThreadOrder(H,Ts, TT, ti, ti+1 mod n))

Figure 11. Formal definitions for capability-use graphs, extended program states, and extended state properties.

Proof. By induction on the structure of the typing derivation. Most
cases are entirely straightforward; we show only the non-trivial
cases.

• Case T-WITHLOCK:
Case E 6= [·]: In this case:
− Σ;φ; Υ; Γ;L ` withlock l1 E

′[lock l e] : τ ; Υ′

By inversion on T-WITHLOCK and Lemma 1:
− Σ;φ; Υ; Γ;L ` l1 : τ1; Υ
− FinalAlias(Γ, l, x)
− Υt = NewSubtrees(L,Υ, x)
− Σ;φ; Υ ∪Υt; Γ;x :: L ` E′[lock l e] : τ ; Υb

− τ = borrowed〈y〉 c⇒ y ∈ L
− Υ′ = Υb/Υt

By T-MATCH-LOCK and the aliasing result from inversion:
− Γ;V ` l :: LsL : x :: L

By assumption and inversion on CS-LOCK-HELD:
− LsE = Ls ′E@[l]
− Ls ′E ` E′[lock l e]

By induction, using the typing of E′[lock l e]:
− Σ;φ; Υs; Γ;L′′@(x :: L) ` lock l e : τ ′; Υ′′

− L′′@(x :: L) = [] ∨ (φ(l) = w ∧ V (w) = lw ∧
w ∈ L′@L ∧ (∀z ∈ L′@L : L′@L = L′′′@[z] ∨
∃p′.RaceFreePath(Γ, L′@L, p′)∧FinalAlias(Γ, p′, z)∧
Γ;L′@L ` p′ : complete〈a〉 c))

− Γ;V ` Ls : L′′@(x :: L)
Let L′ = L′′@[x].
Case E = [·]: In this case the body of the withlock is a
value, so this case holds vacuously.

• Case T-LOCK-FIRST:

CaseE 6= [·]:E = lockE′[lock l e] ebody . Straightforward
inversion on the typing, plus induction.
Case E = [·]: E = [lock l e]. Let L′ = [], and by inversion
on T-LOCK-FIRST,L = [], and thereforeL′@L = []. Other
goals follow from the inductive hypotheses.

• Case T-LOCK-N:
CaseE 6= [·]:E = lockE′[lock l e] ebody . Straightforward
inversion on the typing, plus induction.
Case E = [·]: E = [lock l e]. Let L′ = []. By inversion
on T-LOCK-N, further inversion on the typing of the lock
location l via T-BORROWED-VALUE, and the induction hy-
potheses.

Lemma 6 (Capability-Use Graph Preservation). If

• P ` H; Ts : Σ;TT
• H;Ts→ H ′; Ts ′

• G ≡ Ts
• J = Join(G,TT,Ts)
• SafeCapUse(J,G)
• PartialThreadOrder(H,Ts)

then there exists a Σ′, TT ′, G′ such that

• P ` H ′; Ts ′ : Σ′;TT ′

• G′ ≡ Ts ′

• J ′ = Join(G′, TT ′,Ts ′)
• SafeCapUse(J ′, G′)
• PartialThreadOrder(H ′,Ts ′)

Proof. By induction on H; Ts → H ′; Ts ′:

• Case E-THREAD: By inversion on E-THREAD:

H, (i, V,Ls, E[e])→ H ′, (i, V ′,Ls ′, E[e′])
By inversion on E-CONTEXT:

H, i, V,Ls, e→ H ′, V ′,Ls ′, e′

By induction on H, i, V,Ls, e→ H ′, V ′,Ls ′, e′:
Case E-IF-TRUE, E-IF-FALSE, E-NEW, E-LET: These

cases do not affect lock sets or the capability-granting re-
lation in any nontrivial way, and because they do not reduce
to values (since we use a local store rather than substitution
for variables) the new thread state will not be a lock state-
ment in an evaluation context’s hole, and therefore cannot
add any intended edges to the joint capability graph. The
cases proceed in a straightforward manner, simply re-using
hypotheses with the fact that G′ = G and J ′ = J to re-
apply G-MATCH-REDUCTION.
Case E-VAR: This case is only interesting for its demon-

stration of dealing with the possible addition of an intended
edge. The reasoning for intended edges is the same across
all cases that may do so, so this case is presented in detail to
show that reasoning in detail without the distraction of other
invariants changing. Because the reasoning is identical in all
other cases, we elide the handling of new intended edges in
all cases following this one.
By Lemma 4, there exists Σ′, TT ′ such that
− P ` H ′; Ts ′ : Σ′;TT ′

Ls = Ls ′, so StepGraph(G,Ts,Ts ′) = G, and set-
ting G′ = G it is straightforward to apply G-MATCH-
REDUCTION to conclude:
− G′ ≡ Ts ′

Because G′ = G and only one thread’s expression was
changed, the only possible change from J to
J ′ = Join(G′, TT ′,Ts ′) is if e′i = E′[lock l eb]. In this
case, by inversion on the new program state typing and
Lemma 5:
− Σ′;φ′i; Υ′i,s; Γ′i;L ` lock l eb : τ ′; Υ′′i
− L = [] ∨ (φ′i(l) = x ∧ V ′i (x) = lx ∧ x ∈ L ∧ (∀z ∈
L : L = L′@[z] ∨ ∃p′.RaceFreePath(Γ′i, L, p

′) ∧
FinalAlias(Γ′i, p

′, z) ∧ Γ′i;L ` p′ : complete〈a〉 c))
− Γ′i;V

′
i ` Ls ′i : L

If L = [], then by the last lemma result Ls ′i = [], and
no intended edge will be added to J because GuardOf is
undefined. Otherwise, by case analysis on the owner of l’s
lock:
− H ′(l) = 〈c, F,None〉. The target lock is unowned. By

inversion on G ≡ Ts we know that the vertices for each
thread’s capability use graph is the same as the thread’s
set of held locks. By inversion on the new program state
typing we know that those are accurately reflected in
the heap’s lock owner fields. Adding the tentative edge
lx

i7→ l to J will preserve the SafeCapUse assertion
because no thread holds the lock on l.

− H ′(l) = 〈c, F,Some(i)〉. This leads to a recursive
acquisition. The tentative edge lx 7→ l introduced cannot
introduce a multi-thread path in J ′ between locks held
by the same thread unless there already was one in J ,
which by the inductive hypothesis is not the case.

− H ′(l) = 〈c, F,Some(j)〉 where j 6= i. This acquisition
attempt will block until thread j releases lock l. The only
way that adding lx

i7→ l to the joint graph would create
a multi-thread cycle if if there was already a path in J
from some lock held by thread j to some lock held by
thread i. This could only happen through two types of
paths:

· The path ends with a tentative edge incoming to
the first lock acquired by thread i. Because by the
Lemma 5 results ThreadOrder(H ′,Ts ′, TT ′, i, j),
and PartialThreadOrder(H,Ts, TT), there is no
sequence of threads granting capabilities to each oth-
ers’ locks starting with a lock held by thread j and
ending with the first lock acquired by thread i. So
there is no tentative edge ending at thread i’s first
lock, and this case cannot introduce a multi-thread
cycle.

· The path ends with a tentative edge to another lock
held by thread i. For this to be the case, thread i
must have orphaned a lock, which can’t be the case
because by the lemma results above thread i has no
orphaned locks because L 6= [].

Thus, SafeCapUse(J ′, G′).
In all cases for E-VAR, the PartialThreadOrder assertion
is preserved because the capability-granting relation and the
locations of unique references are unaffected.
Case E-FIELD: Similar to the previous case.

Case E-WVAR: H, i, Vi,Lsi, x := v → H,Vi[x 7→
v],Lsi, v. By Lemma 4, there exists Σ′, TT ′ such that
− P ` H ′; Ts ′ : Σ′;TT ′

Lsi = Ls ′i, so G′ = StepGraph(G,Ts,Ts ′) = G. It is
straightforward to apply G-MATCH-REDUCTION to derive:
− G′ ≡ Ts ′

This evaluation step produces a value, and the same argu-
ment for producing SafeCapUse(J ′, G′) applies as in the
E-VAR case. The remaining proof obligation is
PartialThreadOrder(H ′,Ts ′). We prove it by inversion on
the typing derivation for the initial state, and by case analy-
sis on Γi(x) as used in T-WVAR:
− Γi(x) = final τ : By induction on the program typing

and the thread typing derivation, this was not the case.
− Γi(x) = guardless c: This case stores a unique ref-

erence into a local variable, which affects thread or-
dering in two ways. First, it may overwrite a non-null
unique reference, which may either reduce or preserves
the thread ordering. Second, it moves a unique refer-
ence from an expression literal in ei to a local variable
in V ′i . This preserves the ordering of thread i with re-
spect to any locks capability-reachable from v because
it changes the location from satisfying the third clause
of ThreadOrder to satisfying the second, if it didn’t
already satisfy the first clause. Thus because the rel-
ative ordering of all threads is preserved or removed,
PartialThreadOrder(H ′,Ts ′, TT ′).

− Γi(x) = partial c or Γi(x) = borrowed〈y〉 c: These
cases do not affect the PartialThreadOrder assumptions
of the previous state, so they are trivially preserved.

Case E-WFIELD: Similar to the previous case, ex-
cept that storing to a unique field may remove capability-
reachability for the overwritten value instead of simply
removing its satisfaction of clauses in ThreadOrder, and
similarly with the storage of a unique value changing that
value from satisfying the third clause to the first clause of
ThreadOrder.
Case E-LOCK: By Lemma 4, there exists Σ′, TT ′ such

that
− P ` H ′; Ts ′ : Σ′;TT ′

By Lemma 5:
− Σ;φi; Υi,s; Γi;L ` lock l eb : τ ′; Υ′′i

− L = [] ∨ (φi(l) = x ∧ Vi(x) = lx ∧ x ∈ L ∧ (∀z ∈
L : L = L′@[z] ∨ ∃p′.RaceFreePath(Γi, L, p

′) ∧
FinalAlias(Γi, p

′, z) ∧ Γi;L ` p′ : complete〈a〉 c))
− Γi;Vi ` Lsi : L

By induction on L:
− Case L = []: By the last lemma result Lsi = [], so
G′ = StepGraph(G,Ts,Ts ′) = G[i 7→ ({l}, [])]. It
is straightforward to apply G-MATCH-REDUCTION to
derive:
· G′ ≡ Ts ′

This adds no new edges to the joint graph J ′, so
SafeCapUse(J ′, G′). This also changes thread order-
ing, placing thread i between any thread that might con-
trol the unique reference to l and any threads whose first-
acquired lock are capability-reachable from l. The order-
ing remains acyclic, so PartialThreadOrder(H ′,Ts ′, TT ′).

− Case L = lo :: Lo: By the lemma results above, this
case adds to the joint graph J ′ an edge that would have
been an intended edge in J . Because the vertices of G
match the held locks in the initial state by G ≡ Ts ,
and because by the lemma results the new edge was re-
flected in the capability-granting relation, there are not
outgoing edges from l in J ′ and by inversion on the
program typing for the initial state, no other incoming
edges. So SafeCapUse(J ′, G′). Anything effectively
capability-reachable from thread i before is still effec-
tively capability-reachable, in some cases simply begin-
ning from a different lock. So
PartialThreadOrder(H ′,Ts ′, TT ′). It is straightfor-
ward to apply G-MATCH-REDUCTION to derive:
· G′ ≡ Ts ′

Note that this reduction does not produce a value, and there-
fore does not reduce the thread to a state that imposes a new
intended edge in J ′.
Case E-UNLOCK: This case is straightforward; it may

add a new tentative edge to the joint graph, but otherwise
removes an edge from G and J , preserving multi-thread
acyclicity of the joint graph, and potentially removing itself
from the thread ordering relation if it releases its only lock.
Case E-RECLOCK: This case is straightforward; the ad-

ditional edge in G′ and J ′ is between two locks held by
the same thread, and may therefore only complete a multi-
thread cycle in J ′ if there was already such a cycle in
J , which contradicts the inductive hypothesis because we
know that J lacked any multiple thread cycles when the
edge added to G was present in J as a tentative edge. It also
does not affect thread ordering because the reduced thread
holds the same set of locks, and it cannot reduce the thread
to a state that imposes a new intended edge.
Case E-RECUNLOCK: Similar to the E-UNLOCK case

above.
Case E-DVAR: Similar to the E-WVAR case, but with

the unique reference moving the opposite direction, and no
overwriting can occur.
Case E-DFIELD: By Lemma 4, there exists Σ′, TT ′ such

that
− P ` H ′; Ts ′ : Σ′;TT ′

Lsi = Ls ′i, so G′ = StepGraph(G,Ts,Ts ′) = G. It is
straightforward to apply G-MATCH-REDUCTION to derive:
− G′ ≡ Ts ′

This reduction does not change the effective thread order-
ing, because those threads whose first locks were reachable

from the mutated (locked) object are now reachable from a
unique reference present as a literal in e′i.
This evaluation step can produce a value, and therefore
could introduce an intended edge in J ′ = Join(G′, TT ′,Ts ′);
the argument for proving SafeCapUse(J ′, G′) is the same
as demonstrated in the E-VAR case.

• Case E-SPAWN: By Lemma 4, there exists Σ′, TT ′ such that
P ` H ′; Ts ′ : Σ′;TT ′

Because no lock sets changed from Ts to Ts ′ but a new thread
was created, G′ = StepGraph(G,Ts,Ts ′) = G. By inversion
on the new state’s program typing, the newly created thread
j holds no locks (Ls ′j = []). By inversion on the program
typing for the new state and induction on the reduced thread’s
(i) typing derivation, the x passed to the new thread had a
particular type Γi(x). By case analysis on the type:

Γi(x) 6= guardless c: Thread ordering is unaffected.
Γi(x) = guardless c: Thread ordering strictly decreases,
because thread i will no longer be ordered before any
threads holding locks capability-reachable from Vi(x).

Either way, PartialThreadOrder(H ′,Ts ′, TT ′). Because the
reduction in thread i cannot produce a non-null value as the
target of a lock expression, J ′ = J , so SafeCapUse(J ′, G′).

Lemma 7 (Deadlock Freedom). If ` P and
(∅, {(tid0, ∅, [],Expression(P))}) →∗ (H,Ts), then (H,Ts) is
not deadlocked.

Proof. A state is deadlocked if there is some cycle of threads such
that each is blocked trying to acquire a lock held by the next
thread in the cycle. This manifests in the joint capability use graph
of a state as a path between two locks held by the same thread
that uses edges from multiple threads. That is precisely one of
the conditions that Lemma 6 preserves the absence of, and since
the initial program state clearly satisfies the criteria to apply both
preservation lemmas (4 and 6), any state reachable must not be
deadlocked.

