
Evaluation of Version Control
Merge Tools

1

Benedikt Schesch
ETH Zürich

Ryan Featherman
Microsoft

Kenneth J. Yang
University of
Washington

Ben R. Roberts
University of
Washington

Michael D. Ernst
University of
Washington

Merging Algorithms make mistakes

2

AST merge can solve this

Too conservative algorithms Incorrect Merges

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A di! algorithm’s readability does not materially a!ect its suc-
cess for merging. Handlingwhitespace is important, however: about
1/8 of con"icts are due to whitespace alone (#g. 7).

Current merge tools work con"ict-by-con"ict (except when call-
ing out to a refactoring-detection tool). Accounting for the context
of a con"ict (e.g., other code in the same #le) leads to better merges.

A merge algorithm that merely augments Git’s handling of im-
port statements usually outperforms Spork, IntelliMerge, and
other tools. This suggests that #nding simple solutions to common
problems is a more e!ective approach to building a merge tool than
complex algorithms that handle relatively uncommon cases. The
research community should reward the former as well as the latter.

2 MERGE ALGORITHMS
2.1 Terminology
The input to a VCS merge is a pair of commits or branch heads,
called the parent commits. The VCS stores the result in a merge
commit, which is a commit with two parents.

A commit represents a single state of the #le system that the
VCS manages. To perform a merge, a VCS calls out to a three-way
merge tool [?], passing the parent commits and their base commit.
The base commit is the nearest common ancestor in the VCS. Use
of a three-way merge tool simpli#es the task of merging two #le
system states to the task of integrating two sets of changes: the
changes from the merge base to parent 1, and the changes from the
merge base to parent 2.

To the best of our knowledge, every three-way merge algorithm
has two phases: alignment and resolution. The biggest di!erences
are the program representation and the change representation.

The alignment or matching phase, identi#es the unchanged sec-
tions in all three versions, thus determining the relative position of
changes. The alignment phase is performed by a tool such as di!.
A line-based di! consists of alternating common (unchanged) code
sequences and hunks. A hunk is a set of contiguous added, removed,
and/or changed lines between versions of a #le. For generality to
non-line-based tools, this paper uses the term “change” rather than
“hunk”. The common code sequences are typically left implicit in
the di! representation.

The resolution phase of three-way merging uses the following
algorithm. For each change C in a 3-way di!, let C1 be the di!erence
between the base and parent 1 and let C2 be the di!erence between
the base and parent 2. C1 and C2 are at the same location in the
source code.
• If C1 is the same as C2, use it; equivalently, if parent 1 is the
same as parent 2, use it.

• If C1 is empty, use C2; equivalently, if the base is the same as
parent 1, use parent 2.

• If C2 is empty, use C1; equivalently, if the base is the same as
parent 2, use parent 1.

• If C1 di!ers from C2, report a con"ict; equivalently, if the base,
parent 1, and parent 2 all di!er, report a con"ict.
Alternative merging schemes have been proposed that utilize a

di!erent representation of a program than its lines. For example, the
Abstract Syntax Tree (AST) is a parsed representation of a program
that represents program constructs with parent–child relationships.
The line-based representation of two changes might be a con"ict,

def main():

n = 128

print(n)

Merge base

def main():

n_people = 128

print(n_people)

Left

def main():

n = 64

print(n)

Right

def main():

n_people = 64

print(n_people)

Merged

Figure 1: Mergeable changes that line-based merge reports
as a con!ict.

def mult(a,b):

return a*b

def main():

a = 3*5

print(a)

Merge base

def multiply(a,b):

return a*b

def main():

a = 3*5

print(a)

Left

def mult(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Right

def multiply(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Merged (incorrectly)

Figure 2: Con!icting changes that line-based merge cleanly,
but incorrectly, merges. Most previous evaluations count this
as a successful merge.

but the tree-based representation might not be a con"ict because
the two changes occur in di!erent places in the tree even though
they appear on the same line in the source code. Tree-based [? ? ? ?
? ? ? ? ? ? ? ? ? ? ?] and graph-based [? ? ?] merge algorithms can
correctly merge edits that line-based tools consider a con"ict.

2.2 Weaknesses of Merge Algorithms
Every merge algorithm su!ers from two complementary prob-

lems. (1) It might fail to merge semantically independent changes
to the same code construct (that is, it might leave a con"ict for the
user to resolve), (2) It might incorrectly merge changes in di!er-
ent constructs that are semantically related. Figures 1 and 2 give
examples.

Figure 1 shows changes that line-based Git Merge reports as a
con"ict, but a more sophisticated algorithm could resolve. Parent
1 renames variable n to n_people. Parent 2 changes the value of
n. Since these changes occur on the same line, Git Merge reports
a merge con"ict. In fact, the two changes (rename a variable and
change a value) are semantically independent and can be performed
independently, in either order. Another example of an undesirable
con"ict is when Parent 1 changes the indentation of a line, while
Parent 2 makes a code change to that line.

Figure 2 shows an example of an incorrect merge that Git Merge
would perform. Parent 1 renames the function mult to multiply,
while Parent 2 adds an invocation of mult. These changes are on
di!erent lines, and so Git Merge integrates them cleanly. In the

2

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A di! algorithm’s readability does not materially a!ect its suc-
cess for merging. Handlingwhitespace is important, however: about
1/8 of con"icts are due to whitespace alone (#g. 7).

Current merge tools work con"ict-by-con"ict (except when call-
ing out to a refactoring-detection tool). Accounting for the context
of a con"ict (e.g., other code in the same #le) leads to better merges.

A merge algorithm that merely augments Git’s handling of im-
port statements usually outperforms Spork, IntelliMerge, and
other tools. This suggests that #nding simple solutions to common
problems is a more e!ective approach to building a merge tool than
complex algorithms that handle relatively uncommon cases. The
research community should reward the former as well as the latter.

2 MERGE ALGORITHMS
2.1 Terminology
The input to a VCS merge is a pair of commits or branch heads,
called the parent commits. The VCS stores the result in a merge
commit, which is a commit with two parents.

A commit represents a single state of the #le system that the
VCS manages. To perform a merge, a VCS calls out to a three-way
merge tool [?], passing the parent commits and their base commit.
The base commit is the nearest common ancestor in the VCS. Use
of a three-way merge tool simpli#es the task of merging two #le
system states to the task of integrating two sets of changes: the
changes from the merge base to parent 1, and the changes from the
merge base to parent 2.

To the best of our knowledge, every three-way merge algorithm
has two phases: alignment and resolution. The biggest di!erences
are the program representation and the change representation.

The alignment or matching phase, identi#es the unchanged sec-
tions in all three versions, thus determining the relative position of
changes. The alignment phase is performed by a tool such as di!.
A line-based di! consists of alternating common (unchanged) code
sequences and hunks. A hunk is a set of contiguous added, removed,
and/or changed lines between versions of a #le. For generality to
non-line-based tools, this paper uses the term “change” rather than
“hunk”. The common code sequences are typically left implicit in
the di! representation.

The resolution phase of three-way merging uses the following
algorithm. For each change C in a 3-way di!, let C1 be the di!erence
between the base and parent 1 and let C2 be the di!erence between
the base and parent 2. C1 and C2 are at the same location in the
source code.
• If C1 is the same as C2, use it; equivalently, if parent 1 is the
same as parent 2, use it.

• If C1 is empty, use C2; equivalently, if the base is the same as
parent 1, use parent 2.

• If C2 is empty, use C1; equivalently, if the base is the same as
parent 2, use parent 1.

• If C1 di!ers from C2, report a con"ict; equivalently, if the base,
parent 1, and parent 2 all di!er, report a con"ict.
Alternative merging schemes have been proposed that utilize a

di!erent representation of a program than its lines. For example, the
Abstract Syntax Tree (AST) is a parsed representation of a program
that represents program constructs with parent–child relationships.
The line-based representation of two changes might be a con"ict,

def main():

n = 128

print(n)

Merge base

def main():

n_people = 128

print(n_people)

Left

def main():

n = 64

print(n)

Right

def main():

n_people = 64

print(n_people)

Merged

Figure 1: Mergeable changes that line-based merge reports
as a con!ict.

def mult(a,b):

return a*b

def main():

a = 3*5

print(a)

Merge base

def multiply(a,b):

return a*b

def main():

a = 3*5

print(a)

Left

def mult(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Right

def multiply(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Merged (incorrectly)

Figure 2: Con!icting changes that line-based merge cleanly,
but incorrectly, merges. Most previous evaluations count this
as a successful merge.

but the tree-based representation might not be a con"ict because
the two changes occur in di!erent places in the tree even though
they appear on the same line in the source code. Tree-based [? ? ? ?
? ? ? ? ? ? ? ? ? ? ?] and graph-based [? ? ?] merge algorithms can
correctly merge edits that line-based tools consider a con"ict.

2.2 Weaknesses of Merge Algorithms
Every merge algorithm su!ers from two complementary prob-

lems. (1) It might fail to merge semantically independent changes
to the same code construct (that is, it might leave a con"ict for the
user to resolve), (2) It might incorrectly merge changes in di!er-
ent constructs that are semantically related. Figures 1 and 2 give
examples.

Figure 1 shows changes that line-based Git Merge reports as a
con"ict, but a more sophisticated algorithm could resolve. Parent
1 renames variable n to n_people. Parent 2 changes the value of
n. Since these changes occur on the same line, Git Merge reports
a merge con"ict. In fact, the two changes (rename a variable and
change a value) are semantically independent and can be performed
independently, in either order. Another example of an undesirable
con"ict is when Parent 1 changes the indentation of a line, while
Parent 2 makes a code change to that line.

Figure 2 shows an example of an incorrect merge that Git Merge
would perform. Parent 1 renames the function mult to multiply,
while Parent 2 adds an invocation of mult. These changes are on
di!erent lines, and so Git Merge integrates them cleanly. In the

2

 Git Merge

 outputs a

 conflict

AST Merging (Spork, IntelliMerge)

3

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A di! algorithm’s readability does not materially a!ect its suc-
cess for merging. Handlingwhitespace is important, however: about
1/8 of con"icts are due to whitespace alone (#g. 7).

Current merge tools work con"ict-by-con"ict (except when call-
ing out to a refactoring-detection tool). Accounting for the context
of a con"ict (e.g., other code in the same #le) leads to better merges.

A merge algorithm that merely augments Git’s handling of im-
port statements usually outperforms Spork, IntelliMerge, and
other tools. This suggests that #nding simple solutions to common
problems is a more e!ective approach to building a merge tool than
complex algorithms that handle relatively uncommon cases. The
research community should reward the former as well as the latter.

2 MERGE ALGORITHMS
2.1 Terminology
The input to a VCS merge is a pair of commits or branch heads,
called the parent commits. The VCS stores the result in a merge
commit, which is a commit with two parents.

A commit represents a single state of the #le system that the
VCS manages. To perform a merge, a VCS calls out to a three-way
merge tool [?], passing the parent commits and their base commit.
The base commit is the nearest common ancestor in the VCS. Use
of a three-way merge tool simpli#es the task of merging two #le
system states to the task of integrating two sets of changes: the
changes from the merge base to parent 1, and the changes from the
merge base to parent 2.

To the best of our knowledge, every three-way merge algorithm
has two phases: alignment and resolution. The biggest di!erences
are the program representation and the change representation.

The alignment or matching phase, identi#es the unchanged sec-
tions in all three versions, thus determining the relative position of
changes. The alignment phase is performed by a tool such as di!.
A line-based di! consists of alternating common (unchanged) code
sequences and hunks. A hunk is a set of contiguous added, removed,
and/or changed lines between versions of a #le. For generality to
non-line-based tools, this paper uses the term “change” rather than
“hunk”. The common code sequences are typically left implicit in
the di! representation.

The resolution phase of three-way merging uses the following
algorithm. For each change C in a 3-way di!, let C1 be the di!erence
between the base and parent 1 and let C2 be the di!erence between
the base and parent 2. C1 and C2 are at the same location in the
source code.
• If C1 is the same as C2, use it; equivalently, if parent 1 is the
same as parent 2, use it.

• If C1 is empty, use C2; equivalently, if the base is the same as
parent 1, use parent 2.

• If C2 is empty, use C1; equivalently, if the base is the same as
parent 2, use parent 1.

• If C1 di!ers from C2, report a con"ict; equivalently, if the base,
parent 1, and parent 2 all di!er, report a con"ict.
Alternative merging schemes have been proposed that utilize a

di!erent representation of a program than its lines. For example, the
Abstract Syntax Tree (AST) is a parsed representation of a program
that represents program constructs with parent–child relationships.
The line-based representation of two changes might be a con"ict,

def main():

n = 128

print(n)

Merge base

def main():

n_people = 128

print(n_people)

Parent 1

def main():

n = 64

print(n)

Parent 2

def main():

n_people = 64

print(n_people)

Merged

Figure 1: Mergeable changes that line-based merge reports
as a con!ict.

def mult(a,b):

return a*b

def main():

a = 3*5

print(a)

Merge base

def multiply(a,b):

return a*b

def main():

a = 3*5

print(a)

Parent 1

def mult(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Parent 2

def multiply(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Merged (incorrectly)

Figure 2: Con!icting changes that line-based merge cleanly,
but incorrectly, merges. Most previous evaluations count this
as a successful merge.

but the tree-based representation might not be a con"ict because
the two changes occur in di!erent places in the tree even though
they appear on the same line in the source code. Tree-based [? ? ? ?
? ? ? ? ? ? ? ? ? ? ?] and graph-based [? ? ?] merge algorithms can
correctly merge edits that line-based tools consider a con"ict.

2.2 Weaknesses of Merge Algorithms
Every merge algorithm su!ers from two complementary prob-

lems. (1) It might fail to merge semantically independent changes
to the same code construct (that is, it might leave a con"ict for the
user to resolve), (2) It might incorrectly merge changes in di!er-
ent constructs that are semantically related. Figures 1 and 2 give
examples.

Figure 1 shows changes that line-based Git Merge reports as a
con"ict, but a more sophisticated algorithm could resolve. Parent
1 renames variable n to n_people. Parent 2 changes the value of
n. Since these changes occur on the same line, Git Merge reports
a merge con"ict. In fact, the two changes (rename a variable and
change a value) are semantically independent and can be performed
independently, in either order. Another example of an undesirable
con"ict is when Parent 1 changes the indentation of a line, while
Parent 2 makes a code change to that line.

Figure 2 shows an example of an incorrect merge that Git Merge
would perform. Parent 1 renames the function mult to multiply,
while Parent 2 adds an invocation of mult. These changes are on
di!erent lines, and so Git Merge integrates them cleanly. In the

2

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A di! algorithm’s readability does not materially a!ect its suc-
cess for merging. Handlingwhitespace is important, however: about
1/8 of con"icts are due to whitespace alone (#g. 7).

Current merge tools work con"ict-by-con"ict (except when call-
ing out to a refactoring-detection tool). Accounting for the context
of a con"ict (e.g., other code in the same #le) leads to better merges.

A merge algorithm that merely augments Git’s handling of im-
port statements usually outperforms Spork, IntelliMerge, and
other tools. This suggests that #nding simple solutions to common
problems is a more e!ective approach to building a merge tool than
complex algorithms that handle relatively uncommon cases. The
research community should reward the former as well as the latter.

2 MERGE ALGORITHMS
2.1 Terminology
The input to a VCS merge is a pair of commits or branch heads,
called the parent commits. The VCS stores the result in a merge
commit, which is a commit with two parents.

A commit represents a single state of the #le system that the
VCS manages. To perform a merge, a VCS calls out to a three-way
merge tool [?], passing the parent commits and their base commit.
The base commit is the nearest common ancestor in the VCS. Use
of a three-way merge tool simpli#es the task of merging two #le
system states to the task of integrating two sets of changes: the
changes from the merge base to parent 1, and the changes from the
merge base to parent 2.

To the best of our knowledge, every three-way merge algorithm
has two phases: alignment and resolution. The biggest di!erences
are the program representation and the change representation.

The alignment or matching phase, identi#es the unchanged sec-
tions in all three versions, thus determining the relative position of
changes. The alignment phase is performed by a tool such as di!.
A line-based di! consists of alternating common (unchanged) code
sequences and hunks. A hunk is a set of contiguous added, removed,
and/or changed lines between versions of a #le. For generality to
non-line-based tools, this paper uses the term “change” rather than
“hunk”. The common code sequences are typically left implicit in
the di! representation.

The resolution phase of three-way merging uses the following
algorithm. For each change C in a 3-way di!, let C1 be the di!erence
between the base and parent 1 and let C2 be the di!erence between
the base and parent 2. C1 and C2 are at the same location in the
source code.
• If C1 is the same as C2, use it; equivalently, if parent 1 is the
same as parent 2, use it.

• If C1 is empty, use C2; equivalently, if the base is the same as
parent 1, use parent 2.

• If C2 is empty, use C1; equivalently, if the base is the same as
parent 2, use parent 1.

• If C1 di!ers from C2, report a con"ict; equivalently, if the base,
parent 1, and parent 2 all di!er, report a con"ict.
Alternative merging schemes have been proposed that utilize a

di!erent representation of a program than its lines. For example, the
Abstract Syntax Tree (AST) is a parsed representation of a program
that represents program constructs with parent–child relationships.
The line-based representation of two changes might be a con"ict,

def main():

n = 128

print(n)

Merge base

def main():

n_people = 128

print(n_people)

Parent 1

def main():

n = 64

print(n)

Parent 2

def main():

n_people = 64

print(n_people)

Merged

Figure 1: Mergeable changes that line-based merge reports
as a con!ict.

def mult(a,b):

return a*b

def main():

a = 3*5

print(a)

Merge base

def multiply(a,b):

return a*b

def main():

a = 3*5

print(a)

Parent 1

def mult(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Parent 2

def multiply(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Merged (incorrectly)

Figure 2: Con!icting changes that line-based merge cleanly,
but incorrectly, merges. Most previous evaluations count this
as a successful merge.

but the tree-based representation might not be a con"ict because
the two changes occur in di!erent places in the tree even though
they appear on the same line in the source code. Tree-based [? ? ? ?
? ? ? ? ? ? ? ? ? ? ?] and graph-based [? ? ?] merge algorithms can
correctly merge edits that line-based tools consider a con"ict.

2.2 Weaknesses of Merge Algorithms
Every merge algorithm su!ers from two complementary prob-

lems. (1) It might fail to merge semantically independent changes
to the same code construct (that is, it might leave a con"ict for the
user to resolve), (2) It might incorrectly merge changes in di!er-
ent constructs that are semantically related. Figures 1 and 2 give
examples.

Figure 1 shows changes that line-based Git Merge reports as a
con"ict, but a more sophisticated algorithm could resolve. Parent
1 renames variable n to n_people. Parent 2 changes the value of
n. Since these changes occur on the same line, Git Merge reports
a merge con"ict. In fact, the two changes (rename a variable and
change a value) are semantically independent and can be performed
independently, in either order. Another example of an undesirable
con"ict is when Parent 1 changes the indentation of a line, while
Parent 2 makes a code change to that line.

Figure 2 shows an example of an incorrect merge that Git Merge
would perform. Parent 1 renames the function mult to multiply,
while Parent 2 adds an invocation of mult. These changes are on
di!erent lines, and so Git Merge integrates them cleanly. In the

2

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A di! algorithm’s readability does not materially a!ect its suc-
cess for merging. Handlingwhitespace is important, however: about
1/8 of con"icts are due to whitespace alone (#g. 7).

Current merge tools work con"ict-by-con"ict (except when call-
ing out to a refactoring-detection tool). Accounting for the context
of a con"ict (e.g., other code in the same #le) leads to better merges.

A merge algorithm that merely augments Git’s handling of im-
port statements usually outperforms Spork, IntelliMerge, and
other tools. This suggests that #nding simple solutions to common
problems is a more e!ective approach to building a merge tool than
complex algorithms that handle relatively uncommon cases. The
research community should reward the former as well as the latter.

2 MERGE ALGORITHMS
2.1 Terminology
The input to a VCS merge is a pair of commits or branch heads,
called the parent commits. The VCS stores the result in a merge
commit, which is a commit with two parents.

A commit represents a single state of the #le system that the
VCS manages. To perform a merge, a VCS calls out to a three-way
merge tool [?], passing the parent commits and their base commit.
The base commit is the nearest common ancestor in the VCS. Use
of a three-way merge tool simpli#es the task of merging two #le
system states to the task of integrating two sets of changes: the
changes from the merge base to parent 1, and the changes from the
merge base to parent 2.

To the best of our knowledge, every three-way merge algorithm
has two phases: alignment and resolution. The biggest di!erences
are the program representation and the change representation.

The alignment or matching phase, identi#es the unchanged sec-
tions in all three versions, thus determining the relative position of
changes. The alignment phase is performed by a tool such as di!.
A line-based di! consists of alternating common (unchanged) code
sequences and hunks. A hunk is a set of contiguous added, removed,
and/or changed lines between versions of a #le. For generality to
non-line-based tools, this paper uses the term “change” rather than
“hunk”. The common code sequences are typically left implicit in
the di! representation.

The resolution phase of three-way merging uses the following
algorithm. For each change C in a 3-way di!, let C1 be the di!erence
between the base and parent 1 and let C2 be the di!erence between
the base and parent 2. C1 and C2 are at the same location in the
source code.
• If C1 is the same as C2, use it; equivalently, if parent 1 is the
same as parent 2, use it.

• If C1 is empty, use C2; equivalently, if the base is the same as
parent 1, use parent 2.

• If C2 is empty, use C1; equivalently, if the base is the same as
parent 2, use parent 1.

• If C1 di!ers from C2, report a con"ict; equivalently, if the base,
parent 1, and parent 2 all di!er, report a con"ict.
Alternative merging schemes have been proposed that utilize a

di!erent representation of a program than its lines. For example, the
Abstract Syntax Tree (AST) is a parsed representation of a program
that represents program constructs with parent–child relationships.
The line-based representation of two changes might be a con"ict,

def main():

n = 128

print(n)

Merge base

def main():

n_people = 128

print(n_people)

Parent 1

def main():

n = 64

print(n)

Parent 2

def main():

n_people = 64

print(n_people)

Merged

Figure 1: Mergeable changes that line-based merge reports
as a con!ict.

def mult(a,b):

return a*b

def main():

a = 3*5

print(a)

Merge base

def multiply(a,b):

return a*b

def main():

a = 3*5

print(a)

Parent 1

def mult(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Parent 2

def multiply(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Merged (incorrectly)

Figure 2: Con!icting changes that line-based merge cleanly,
but incorrectly, merges. Most previous evaluations count this
as a successful merge.

but the tree-based representation might not be a con"ict because
the two changes occur in di!erent places in the tree even though
they appear on the same line in the source code. Tree-based [? ? ? ?
? ? ? ? ? ? ? ? ? ? ?] and graph-based [? ? ?] merge algorithms can
correctly merge edits that line-based tools consider a con"ict.

2.2 Weaknesses of Merge Algorithms
Every merge algorithm su!ers from two complementary prob-

lems. (1) It might fail to merge semantically independent changes
to the same code construct (that is, it might leave a con"ict for the
user to resolve), (2) It might incorrectly merge changes in di!er-
ent constructs that are semantically related. Figures 1 and 2 give
examples.

Figure 1 shows changes that line-based Git Merge reports as a
con"ict, but a more sophisticated algorithm could resolve. Parent
1 renames variable n to n_people. Parent 2 changes the value of
n. Since these changes occur on the same line, Git Merge reports
a merge con"ict. In fact, the two changes (rename a variable and
change a value) are semantically independent and can be performed
independently, in either order. Another example of an undesirable
con"ict is when Parent 1 changes the indentation of a line, while
Parent 2 makes a code change to that line.

Figure 2 shows an example of an incorrect merge that Git Merge
would perform. Parent 1 renames the function mult to multiply,
while Parent 2 adds an invocation of mult. These changes are on
di!erent lines, and so Git Merge integrates them cleanly. In the

2

Parent

Left

Right

AST

(abstract syntax tree)

Tree
Merge

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

A di! algorithm’s readability does not materially a!ect its suc-
cess for merging. Handlingwhitespace is important, however: about
1/8 of con"icts are due to whitespace alone (#g. 7).

Current merge tools work con"ict-by-con"ict (except when call-
ing out to a refactoring-detection tool). Accounting for the context
of a con"ict (e.g., other code in the same #le) leads to better merges.

A merge algorithm that merely augments Git’s handling of im-
port statements usually outperforms Spork, IntelliMerge, and
other tools. This suggests that #nding simple solutions to common
problems is a more e!ective approach to building a merge tool than
complex algorithms that handle relatively uncommon cases. The
research community should reward the former as well as the latter.

2 MERGE ALGORITHMS
2.1 Terminology
The input to a VCS merge is a pair of commits or branch heads,
called the parent commits. The VCS stores the result in a merge
commit, which is a commit with two parents.

A commit represents a single state of the #le system that the
VCS manages. To perform a merge, a VCS calls out to a three-way
merge tool [?], passing the parent commits and their base commit.
The base commit is the nearest common ancestor in the VCS. Use
of a three-way merge tool simpli#es the task of merging two #le
system states to the task of integrating two sets of changes: the
changes from the merge base to parent 1, and the changes from the
merge base to parent 2.

To the best of our knowledge, every three-way merge algorithm
has two phases: alignment and resolution. The biggest di!erences
are the program representation and the change representation.

The alignment or matching phase, identi#es the unchanged sec-
tions in all three versions, thus determining the relative position of
changes. The alignment phase is performed by a tool such as di!.
A line-based di! consists of alternating common (unchanged) code
sequences and hunks. A hunk is a set of contiguous added, removed,
and/or changed lines between versions of a #le. For generality to
non-line-based tools, this paper uses the term “change” rather than
“hunk”. The common code sequences are typically left implicit in
the di! representation.

The resolution phase of three-way merging uses the following
algorithm. For each change C in a 3-way di!, let C1 be the di!erence
between the base and parent 1 and let C2 be the di!erence between
the base and parent 2. C1 and C2 are at the same location in the
source code.
• If C1 is the same as C2, use it; equivalently, if parent 1 is the
same as parent 2, use it.

• If C1 is empty, use C2; equivalently, if the base is the same as
parent 1, use parent 2.

• If C2 is empty, use C1; equivalently, if the base is the same as
parent 2, use parent 1.

• If C1 di!ers from C2, report a con"ict; equivalently, if the base,
parent 1, and parent 2 all di!er, report a con"ict.
Alternative merging schemes have been proposed that utilize a

di!erent representation of a program than its lines. For example, the
Abstract Syntax Tree (AST) is a parsed representation of a program
that represents program constructs with parent–child relationships.
The line-based representation of two changes might be a con"ict,

def main():

n = 128

print(n)

Merge base

def main():

n_people = 128

print(n_people)

Parent 1

def main():

n = 64

print(n)

Parent 2

def main():

n_people = 64

print(n_people)

Merged

Figure 1: Mergeable changes that line-based merge reports
as a con!ict.

def mult(a,b):

return a*b

def main():

a = 3*5

print(a)

Merge base

def multiply(a,b):

return a*b

def main():

a = 3*5

print(a)

Parent 1

def mult(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Parent 2

def multiply(a,b):

return a*b

def main():

a = mult(3,5)

print(a)

Merged (incorrectly)

Figure 2: Con!icting changes that line-based merge cleanly,
but incorrectly, merges. Most previous evaluations count this
as a successful merge.

but the tree-based representation might not be a con"ict because
the two changes occur in di!erent places in the tree even though
they appear on the same line in the source code. Tree-based [? ? ? ?
? ? ? ? ? ? ? ? ? ? ?] and graph-based [? ? ?] merge algorithms can
correctly merge edits that line-based tools consider a con"ict.

2.2 Weaknesses of Merge Algorithms
Every merge algorithm su!ers from two complementary prob-

lems. (1) It might fail to merge semantically independent changes
to the same code construct (that is, it might leave a con"ict for the
user to resolve), (2) It might incorrectly merge changes in di!er-
ent constructs that are semantically related. Figures 1 and 2 give
examples.

Figure 1 shows changes that line-based Git Merge reports as a
con"ict, but a more sophisticated algorithm could resolve. Parent
1 renames variable n to n_people. Parent 2 changes the value of
n. Since these changes occur on the same line, Git Merge reports
a merge con"ict. In fact, the two changes (rename a variable and
change a value) are semantically independent and can be performed
independently, in either order. Another example of an undesirable
con"ict is when Parent 1 changes the indentation of a line, while
Parent 2 makes a code change to that line.

Figure 2 shows an example of an incorrect merge that Git Merge
would perform. Parent 1 renames the function mult to multiply,
while Parent 2 adds an invocation of mult. These changes are on
di!erent lines, and so Git Merge integrates them cleanly. In the

2

Is AST Merging any good?

4

No one knows!

Problems with previous evaluations:

1. Few tool comparisons

2. Cost of incorrect merges

3. Unrepresentative merges

• Cherry-picked examples

• Main branch only

Problem 1: Which merge tools?

5

Compared 16 merge tools

Do complex merging algorithms outperform simple heuristics?

• Imports: Resolve Java import conflict

• Spork and IntelliMerge do this

• Version-Numbers: Resolve version numbers conflicts

• I+Vn: Combines Imports and Version-Numbers

Problem 2: Incorrect merges

6

Conflict Merged

Correctly Incorrectly
Git Merge 51% 46% 3%

Spork [1] 35% 54% 11%

IntelliMerge [2] 26% 24% 50% Best Worst

[1] Larsén et al. (2023). Spork: Structured merge for Java with formatting preservation. IEEE Trans. Softw. Eng., 49(01), 64–83.

[2] Shen et al. (2019). IntelliMerge: A refactoring-aware software merging technique. In OOPSLA 2019 (pp. 170:1–170:28). Athens, Greece.

Old Methodology Our Methodology
Conflict Merged

Git Merge 51% 49%

Spork [1] 35% 65%

IntelliMerge [2] 26% 74%

Dataset: >6k merges with good test coverage

Which is best depends on #conflicts and #incorrect

Which merge algorithm is the best?

7

EffortReduction(T) =
Cost(Manual) − Cost(T)

Cost(Manual)

Cost(T) = numUnhandled(T) + numIncorrect(T) × k

k =
Cost of incorrect merge

Cost of unhandled merge

Effort Reduction Results

8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
!
or
t
R
ed
u
ct
io
n

Manual Merging

1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
!
or
t
R
ed
u
ct
io
n

Manual Merging

Git Merge

1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
!
or
t
R
ed
u
ct
io
n

Manual Merging

Git Merge

Spork

1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
!
or
t
R
ed
u
ct
io
n

Manual Merging

Git Merge

Spork

IntelliMerge

1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
!
or
t
R
ed
u
ct
io
n

Manual Merging

Git Merge

Spork

IntelliMerge

Imports

Version Numbers

I+Vn

1

Problem 3: Features branches are harder
Main branches

Feature branches

(not in Git history)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
!
or
t
R
ed
u
ct
io
n

Manual Merging

Git Merge

Spork

IntelliMerge

Imports

Version Numbers

I+Vn

1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
!
or
t
R
ed
u
ct
io
n

Manual Merging

Git Merge

Spork

IntelliMerge

Imports

Version Numbers

I+Vn

1

9

lower

Previous evaluations are not

indicative of real world merges

Contributions

10

1. New methodology corrects 3 problems with previous merge evaluations:

• Many merge tools

• Cost of incorrect merges (changes the ranking)

• Feature branch merges

2. Created new tools that outperform all others.

3. Simple tools outperform complex ones.

The research community should reward effectiveness.

4. Our merge tools, experimental scripts, and data are public.

11

Git Evaluation Results

12

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Tool Merges
Correct Unhandled Incorrect
% # % # %

Gitmerge-ort 2748 46% 3078 51% 157 3%
Gitmerge-ort-ignorespace 2889 48% 2905 49% 189 3%
Gitmerge-recursive-histogram 2748 46% 3078 51% 157 3%
Gitmerge-recursive-minimal 2748 46% 3078 51% 157 3%
Gitmerge-recursive-myers 2748 46% 3078 51% 157 3%
Gitmerge-recursive-patience 2751 46% 3074 51% 158 3%
Gitmerge-resolve 2703 45% 3124 52% 156 3%

Figure 5: Performance of di!erent Git Merge con"gurations.
Figure 6 visualizes this data.

0 2 4 6 8 10 12
Incorrect merges cost factor 𝐿

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E!
or
tR

ed
uc
tio

n

Gitmerge-ort
Gitmerge-ort-ignorespace
Gitmerge-recursive-histogram
Gitmerge-recursive-minimal
Gitmerge-recursive-myers
Gitmerge-recursive-patience
Gitmerge-resolve

Figure 6: E!ort reduction as a function of 𝐿 , the relative
cost of incorrect merges. This graph visualizes the data of
"g. 8. The best merge tool is Gitmerge-ort or Gitmerge-ort-
ignorespace, depending on 𝐿 .

between Java "les, and use its default merge strategy (ort) for all
other "les. Then, git merge can be invoked as usual.

5.5.4 IntelliMerge Wrapper. IntelliMerge only outputs merge re-
sults for Java "les. Our wrapper "rst runs IntelliMerge to merge
Java "les, and stores them in a temporary location. It then runs
Git Merge to generate merge results for all "les in-place. Finally,
it overwrites all the Java "les with the IntelliMerge versions. File
copying has a negligible e!ect on run time.

One complication is con#ict detection — IntelliMerge’s exit code
only indicates whether the tool completed without exception, rather
than whether the merge was clean as merge tools are expected
to do. Therefore, our wrapper ignores exit codes; it determines
whether a merge is successful by searching for con#ict markers
(e.g., “<<<<<<<”) that appear in con#icted "les.

6 RESULTS
6.1 Git Merge Con"gurations (RQ1)
Figures 5 and 6 show the performance of Git Merge con"gurations.
The di!erences are relatively small, but these small di!erences
are important. For example, section 7.2.2 gives an example of an
incorrect merge that compiles and passes some tests, but it contains

a race condition that was not in either parent. A merge may create
a defect that is not detected by the test suite. The resulting bug
might be detected long afterward (making it more expensive to "x)
or might be deployed to production (which is even more expensive).
Thus, bad merge resolutions can have very signi"cant implications.
[?] statistically justi"es special attention to merge failures.

6.1.1 Resolution Phase. Git Merge supports three resolution strate-
gies. Ort, the newest, is tied for the best, with now fewer correct
merges and no more incorrect merges than any other strategy. The
ort and recursive strategies, behave the same on this dataset, when
both use the Myers alignment algorithm. This surprised us, given
the hate that the recursive strategy received on forums.

6.1.2 Alignment Phase. The recursive strategy permits selecting a
di! algorithm to use for the alignment phase. Patience is a popular
di! algorithm because it is considered to create the most human-
readable di!s [?]. Although it has the most correct and incorrect
merges, it is nearly indistinguishable from the other alignment algo-
rithms. The “minimal” di! algorithm creates the smallest possible
di!s, at the cost of run time, but it performs identically (on our
dataset) to myers, a simple greedy algorithm. Di!erences that are
important to software developers when viewing di!s do not seem
to matter much to line-based merge tools. However, we found that
setting git to use the zdi!3 con#ict style (rather than di!3) hindered
downstream tools. zdi!3 moves lines common to both parents out
of a hunk and into the surrounding common text. This is considered
better for human inspection because the hunk is shorter, but it gives
an incorrect view of the base text.

6.1.3 Ignoring Space Changes. In our dataset, ignoring whitespace
decreases unhandled merges by 5%, but increases incorrect merges
by 10% (section 6.1.3). Figures 6 and 9 shows that Git Merge Ig-
norespace outperforms Git Merge if 𝐿 < 5; Git Merge is better if
𝐿 > 5.

This supports the folk wisdom that spacing con#icts can cause
issues for merge tools, and it supports the inclusion of the --ignore-
space-change argument to Git.

The absolute di!erence between Git Merge and Git Merge Ig-
norespace is small. Ignoring whitespace changes could be cata-
strophic in other languages, such as Python and YAML, where the
amount of white space (indentation) is semantically signi"cant (see
example in section 7.3.1).

6.1.4 Di!erences in Merge Output. Figure 7 shows, for each pair
of con"gurations, the number of times they produced clean merges
with distinct contents. Apart from Gitmerge-ort-ignorespace, all
the con"gurations produce the same output in most situations.
With regard to syntax ("g. 7), Gitmerge-ort-ignorespace is quite
di!erent from other git con"gurations. However, with regard to
semantics ("g. 5), Gitmerge-ort-ignorespace is relatively similar to
other git con"gurations. Perhaps most of the textual di!erences
were formatting di!erences rather than semantic changes.

We selected Git Merge and Git Merge Ignorespace to compare
with other merge tools (section 6.2). Henceforth, just “Git Merge”
means ort, which is Git’s default con"guration.

6

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Tool Merges
Correct Unhandled Incorrect
% # % # %

Gitmerge-ort 2748 46% 3078 51% 157 3%
Gitmerge-ort-ignorespace 2889 48% 2905 49% 189 3%
Gitmerge-recursive-histogram 2748 46% 3078 51% 157 3%
Gitmerge-recursive-minimal 2748 46% 3078 51% 157 3%
Gitmerge-recursive-myers 2748 46% 3078 51% 157 3%
Gitmerge-recursive-patience 2751 46% 3074 51% 158 3%
Gitmerge-resolve 2703 45% 3124 52% 156 3%

Figure 5: Performance of di!erent Git Merge con"gurations.
Figure 6 visualizes this data.

0 2 4 6 8 10 12
Incorrect merges cost factor 𝐿

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E!
or
tR

ed
uc
tio

n

Gitmerge-ort
Gitmerge-ort-ignorespace
Gitmerge-recursive-histogram
Gitmerge-recursive-minimal
Gitmerge-recursive-myers
Gitmerge-recursive-patience
Gitmerge-resolve

Figure 6: E!ort reduction as a function of 𝐿 , the relative
cost of incorrect merges. This graph visualizes the data of
"g. 8. The best merge tool is Gitmerge-ort or Gitmerge-ort-
ignorespace, depending on 𝐿 .

between Java "les, and use its default merge strategy (ort) for all
other "les. Then, git merge can be invoked as usual.

5.5.4 IntelliMerge Wrapper. IntelliMerge only outputs merge re-
sults for Java "les. Our wrapper "rst runs IntelliMerge to merge
Java "les, and stores them in a temporary location. It then runs
Git Merge to generate merge results for all "les in-place. Finally,
it overwrites all the Java "les with the IntelliMerge versions. File
copying has a negligible e!ect on run time.

One complication is con#ict detection — IntelliMerge’s exit code
only indicates whether the tool completed without exception, rather
than whether the merge was clean as merge tools are expected
to do. Therefore, our wrapper ignores exit codes; it determines
whether a merge is successful by searching for con#ict markers
(e.g., “<<<<<<<”) that appear in con#icted "les.

6 RESULTS
6.1 Git Merge Con"gurations (RQ1)
Figures 5 and 6 show the performance of Git Merge con"gurations.
The di!erences are relatively small, but these small di!erences
are important. For example, section 7.2.2 gives an example of an
incorrect merge that compiles and passes some tests, but it contains

a race condition that was not in either parent. A merge may create
a defect that is not detected by the test suite. The resulting bug
might be detected long afterward (making it more expensive to "x)
or might be deployed to production (which is even more expensive).
Thus, bad merge resolutions can have very signi"cant implications.
[?] statistically justi"es special attention to merge failures.

6.1.1 Resolution Phase. Git Merge supports three resolution strate-
gies. Ort, the newest, is tied for the best, with now fewer correct
merges and no more incorrect merges than any other strategy. The
ort and recursive strategies, behave the same on this dataset, when
both use the Myers alignment algorithm. This surprised us, given
the hate that the recursive strategy received on forums.

6.1.2 Alignment Phase. The recursive strategy permits selecting a
di! algorithm to use for the alignment phase. Patience is a popular
di! algorithm because it is considered to create the most human-
readable di!s [?]. Although it has the most correct and incorrect
merges, it is nearly indistinguishable from the other alignment algo-
rithms. The “minimal” di! algorithm creates the smallest possible
di!s, at the cost of run time, but it performs identically (on our
dataset) to myers, a simple greedy algorithm. Di!erences that are
important to software developers when viewing di!s do not seem
to matter much to line-based merge tools. However, we found that
setting git to use the zdi!3 con#ict style (rather than di!3) hindered
downstream tools. zdi!3 moves lines common to both parents out
of a hunk and into the surrounding common text. This is considered
better for human inspection because the hunk is shorter, but it gives
an incorrect view of the base text.

6.1.3 Ignoring Space Changes. In our dataset, ignoring whitespace
decreases unhandled merges by 5%, but increases incorrect merges
by 10% (section 6.1.3). Figures 6 and 9 shows that Git Merge Ig-
norespace outperforms Git Merge if 𝐿 < 5; Git Merge is better if
𝐿 > 5.

This supports the folk wisdom that spacing con#icts can cause
issues for merge tools, and it supports the inclusion of the --ignore-
space-change argument to Git.

The absolute di!erence between Git Merge and Git Merge Ig-
norespace is small. Ignoring whitespace changes could be cata-
strophic in other languages, such as Python and YAML, where the
amount of white space (indentation) is semantically signi"cant (see
example in section 7.3.1).

6.1.4 Di!erences in Merge Output. Figure 7 shows, for each pair
of con"gurations, the number of times they produced clean merges
with distinct contents. Apart from Gitmerge-ort-ignorespace, all
the con"gurations produce the same output in most situations.
With regard to syntax ("g. 7), Gitmerge-ort-ignorespace is quite
di!erent from other git con"gurations. However, with regard to
semantics ("g. 5), Gitmerge-ort-ignorespace is relatively similar to
other git con"gurations. Perhaps most of the textual di!erences
were formatting di!erences rather than semantic changes.

We selected Git Merge and Git Merge Ignorespace to compare
with other merge tools (section 6.2). Henceforth, just “Git Merge”
means ort, which is Git’s default con"guration.

6

Merge tools we did not evaluate

13

• Many other tools only have only a GUI interface, unsuitable for automated
testing

• DeepMerge and MergeBERT are not publicly available making it impossible to
evaluate

• JDime discards comments, file headers and arbitrarily reorders methods and
fields. Often requires more than 15 minutes for a merge.

General notes on merge tools

14

• Sporks implementation is buggy (in discussion with maintainers to fix it),
underlying algorithm might still be competitive

• Intellimerge compared itself to git but only on a few examples where git failed
and refactoring was the main problem. Implementation is also buggy and non
deterministic.

• Many other tools only have only a GUI interface, unsuitable for automated
testing

• DeepMerge and MergeBERT are not publicly available making it impossible to
evaluate

Character Merge Case Analysis

15

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Run time (seconds)
Tool Mean Median Max

Gitmerge-ort 0.04 0.04 1.19
Gitmerge-ort-ignorespace 0.04 0.04 1.22

Hires-Merge 0.23 0.13 17.3
Spork 2.55 1.06 653

IntelliMerge 1.04 0.50 89.3
Adjacent 0.17 0.05 76.9
Imports 0.11 0.07 7.86

Version Numbers 0.07 0.05 2.75
IVn 0.12 0.08 7.97

IVn-ignorespace 0.12 0.08 8.08

Figure 11: Merge tool run time.

Tool Merges
Correct Unhandled Incorrect

Main Other Main Other Main Other
Gitmerge-ort 53% 35% 44% 62% 3% 2%

Gitmerge-ort-ignorespace 56% 38% 41% 59% 3% 3%
Hires-Merge 57% 41% 39% 55% 4% 4%

Spork 62% 44% 28% 45% 11% 11%
IntelliMerge 27% 19% 21% 34% 52% 47%
Adjacent 58% 42% 39% 54% 4% 4%
Imports 56% 38% 41% 59% 3% 3%

Version Numbers 54% 36% 44% 61% 3% 2%
IVn 57% 41% 40% 57% 3% 3%

IVn-ignorespace 59% 42% 38% 54% 3% 4%

Figure 12: Results broken down by merge source: the main
branch or other branches. Each percentage indicates the frac-
tion of merges from that source that yielded that outcome.

Second, the success metric of the IntelliMerge paper is reduction
in the number of con!ict lines and hunks. Perhaps that metric does
not correlate with successful merges that lead to correct behavior.

The IntelliMerge paper acknowledges, as a limitation, that it
doesn’t evaluate the tool’s impact on Incorrect Merges, which it
refers to as False Negative Con!icts.

6.2.2 Run Time. Figure 11 shows the run times of each tool. Each
number is the median of 3 runs. Spork and IntelliMerge most of-
ten cause noticeable pauses. The IntelliMerge [?] paper reports a
median run time of 0.54 seconds, which is very close to our mea-
surement of 0.50 seconds. The IntelliMerge paper did not report
the mean, but our data show that it is twice as high. Adjacent’s
maximum run time is high because of its use of a 3-way dynamic
programming algorithm. Perhaps that algorithm could be cut o"
earlier without materially a"ecting the output.

6.3 Di!erences Between Merge Sources (RQ3)
Our dataset contains 3524 (59%) main branch merges and 2459 (41%)
other branch merges.

Figure 12 shows merge results by merge source (main branch
merges vs. other branch merges). Previous evaluations only use
main branch merges.

Merge tools perform better on main branch merges than on
other branch merges. An evaluation on only main branch merges

is misleading with respect to absolute performance. In real-world
usage, merge tools will perform worse than in previous studies.

However, the relative performance of tools is similar between
main and other branches. The di"erences do cause di"erent rank-
ings depending on 𝐿 , but primarily for tools whose E"ort Reduction
values were already similar. An evaluation on only main branch
merges is therefore an acceptable way to measure relative perfor-
mance, with a few caveats.

7 QUALITATIVE ASSESSMENT (RQ4)
We manually examined hundreds of merges in which two tools
produced di"erent results.

For each tool 𝑀 , we created two pools of merges: a pool where
𝑀 failed and all others succeeded, and a pool where 𝑀 succeeded
and all others failed. We randomly chose merges from each pool,
so we saw examples of each tool doing well and doing poorly.

For each selected merge, we compared the base, left, and right
versions, the programmer merge, and the results of merge tools. We
primarily used the di! and di!3 tools for these comparisons. Every
evaluation was performed by one author and reviewed by at least
two other authors. Disagreements were resolved by discussion.

The appendix [?] shows our analysis of 75 merges. Here we
present a subset of them. Each merge in our dataset has an index
such as “123-45”. We show edits in di"3 format, which gives the
left parent, then the base, then the right parent.

7.1 Hires Merge
7.1.1 Handling Refactorings With Multiple Inline Changes (3183-
11). Hires Merge works character-wise. This strategy deals with
refactorings quite e"ectively.

<<<<<<< LEFT

HashSet<Range> ranges = new HashSet<>();

||||||| BASE

HashSet<Range> ranges = new HashSet<Range>();

=======

Set<Range> ranges = new HashSet<Range>();

>>>>>>> RIGHT

Git Merge gets stuck because the left and right edited the same
line. Hires Merge comes up with a correct merge:

Set<Range> ranges = new HashSet<>();

7.1.2 Hires Merge Incorrectly Identifying Version Numbers (25267-
730). Merging character-by-character loses context. In this merge:

<<<<<<< LEFT

<version>23.7.0</version>

||||||| BASE

<version>23.6.0</version>

=======

<version>23.6.1</version>

>>>>>>> RIGHT

Hires Merge invented a nonexistent version number:

<version>23.7.1</version>

8

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Run time (seconds)
Tool Mean Median Max

Gitmerge-ort 0.04 0.04 1.19
Gitmerge-ort-ignorespace 0.04 0.04 1.22

Hires-Merge 0.23 0.13 17.3
Spork 2.55 1.06 653

IntelliMerge 1.04 0.50 89.3
Adjacent 0.17 0.05 76.9
Imports 0.11 0.07 7.86

Version Numbers 0.07 0.05 2.75
IVn 0.12 0.08 7.97

IVn-ignorespace 0.12 0.08 8.08

Figure 11: Merge tool run time.

Tool Merges
Correct Unhandled Incorrect

Main Other Main Other Main Other
Gitmerge-ort 53% 35% 44% 62% 3% 2%

Gitmerge-ort-ignorespace 56% 38% 41% 59% 3% 3%
Hires-Merge 57% 41% 39% 55% 4% 4%

Spork 62% 44% 28% 45% 11% 11%
IntelliMerge 27% 19% 21% 34% 52% 47%
Adjacent 58% 42% 39% 54% 4% 4%
Imports 56% 38% 41% 59% 3% 3%

Version Numbers 54% 36% 44% 61% 3% 2%
IVn 57% 41% 40% 57% 3% 3%

IVn-ignorespace 59% 42% 38% 54% 3% 4%

Figure 12: Results broken down by merge source: the main
branch or other branches. Each percentage indicates the frac-
tion of merges from that source that yielded that outcome.

Second, the success metric of the IntelliMerge paper is reduction
in the number of con!ict lines and hunks. Perhaps that metric does
not correlate with successful merges that lead to correct behavior.

The IntelliMerge paper acknowledges, as a limitation, that it
doesn’t evaluate the tool’s impact on Incorrect Merges, which it
refers to as False Negative Con!icts.

6.2.2 Run Time. Figure 11 shows the run times of each tool. Each
number is the median of 3 runs. Spork and IntelliMerge most of-
ten cause noticeable pauses. The IntelliMerge [?] paper reports a
median run time of 0.54 seconds, which is very close to our mea-
surement of 0.50 seconds. The IntelliMerge paper did not report
the mean, but our data show that it is twice as high. Adjacent’s
maximum run time is high because of its use of a 3-way dynamic
programming algorithm. Perhaps that algorithm could be cut o"
earlier without materially a"ecting the output.

6.3 Di!erences Between Merge Sources (RQ3)
Our dataset contains 3524 (59%) main branch merges and 2459 (41%)
other branch merges.

Figure 12 shows merge results by merge source (main branch
merges vs. other branch merges). Previous evaluations only use
main branch merges.

Merge tools perform better on main branch merges than on
other branch merges. An evaluation on only main branch merges

is misleading with respect to absolute performance. In real-world
usage, merge tools will perform worse than in previous studies.

However, the relative performance of tools is similar between
main and other branches. The di"erences do cause di"erent rank-
ings depending on 𝐿 , but primarily for tools whose E"ort Reduction
values were already similar. An evaluation on only main branch
merges is therefore an acceptable way to measure relative perfor-
mance, with a few caveats.

7 QUALITATIVE ASSESSMENT (RQ4)
We manually examined hundreds of merges in which two tools
produced di"erent results.

For each tool 𝑀 , we created two pools of merges: a pool where
𝑀 failed and all others succeeded, and a pool where 𝑀 succeeded
and all others failed. We randomly chose merges from each pool,
so we saw examples of each tool doing well and doing poorly.

For each selected merge, we compared the base, left, and right
versions, the programmer merge, and the results of merge tools. We
primarily used the di! and di!3 tools for these comparisons. Every
evaluation was performed by one author and reviewed by at least
two other authors. Disagreements were resolved by discussion.

The appendix [?] shows our analysis of 75 merges. Here we
present a subset of them. Each merge in our dataset has an index
such as “123-45”. We show edits in di"3 format, which gives the
left parent, then the base, then the right parent.

7.1 Hires Merge
7.1.1 Handling Refactorings With Multiple Inline Changes (3183-
11). Hires Merge works character-wise. This strategy deals with
refactorings quite e"ectively.

<<<<<<< LEFT

HashSet<Range> ranges = new HashSet<>();

||||||| BASE

HashSet<Range> ranges = new HashSet<Range>();

=======

Set<Range> ranges = new HashSet<Range>();

>>>>>>> RIGHT

Git Merge gets stuck because the left and right edited the same
line. Hires Merge comes up with a correct merge:

Set<Range> ranges = new HashSet<>();

7.1.2 Hires Merge Incorrectly Identifying Version Numbers (25267-
730). Merging character-by-character loses context. In this merge:

<<<<<<< LEFT

<version>23.7.0</version>

||||||| BASE

<version>23.6.0</version>

=======

<version>23.6.1</version>

>>>>>>> RIGHT

Hires Merge invented a nonexistent version number:

<version>23.7.1</version>

8

Merge Result:

Adjacent Case Analysis

16

Evaluation of Version Control Merge Tools ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

7.2 Adjacent
7.2.1 Refactoring on Adjacent Lines (1215-3280). Adjacent success-
fully merged scenarios involving refactoring, particularly when
variables were independent.

<<<<<<< LEFT

String comments = SourcesHelper.readerToString(reader);

CompilationUnit cu = new JavaParser().setSource(comments).parse();

||||||| BASE

String comments = SourcesHelper.readerToString(reader);

CompilationUnit cu = new InstanceJavaParser(comments).parse();

=======

String comments = readerToString(reader);

CompilationUnit cu = new InstanceJavaParser(comments).parse();

>>>>>>> RIGHT

7.2.2 Adjacent Lines are Interdependent (5184-31). The key weak-
ness in the adjacent strategy is its local view, disregarding context.
Consider this merge. The left parent changed the variable being
synchronized upon.

<<<<<<< LEFT

synchronized (cacheMap) {

List<DNSEntry> entryList = cacheMap.get(dnsEntry.getKey());

if (entryList != null) {

entryList.remove(dnsEntry);

||||||| BASE

List<DNSEntry> entryList = this.get(dnsEntry.getKey());

if (entryList != null) {

synchronized (entryList) {

entryList.remove(dnsEntry);

=======

List<DNSEntry> entryList = this.get(dnsEntry.getKey());

if (entryList != null) {

synchronized (entryList) {

result = entryList.remove(dnsEntry);

>>>>>>> RIGHT

}

}

/* Remove from DNS cache when no records remain with this key */

if (result && entryList.isEmpty()) {

this.remove(dnsEntry.getKey());

Adjacent readily merges the code, but without moving the outer
if-statement inside the synchronized block, leading to code that
compiles but contains a race condition.

synchronized (cacheMap) {

List<DNSEntry> entryList = cacheMap.get(dnsEntry.getKey());

if (entryList != null) {

result = entryList.remove(dnsEntry);

}

}

/* Remove from DNS cache when no records remain with this key */

if (result && entryList.isEmpty()) {

this.remove(dnsEntry.getKey());

}

Git Merge left this con!ict unhandled, forcing the programmer
to do the merge, which is a better outcome.

7.3 Git Merge Ignorespace
7.3.1 Extra Irrelevant Spaces (2955-73). Git Merge Ignorespace is
not confused by inconsequential spaces. It merges code like this:

<<<<<<< LEFT

* </p>

||||||| BASE

*!

=======

*

>>>>>>> RIGHT

Git Merge Ignorespace caused havoc when merging YAML "les
(e.g., 14378-60), where indentation matters and there may be multi-
ple occurrences of a key.

7.4 Spork
As explained in the appendix [?], Spork sometimes produced un-
compilable code, made gratuitous formatting changes, or omitted
method bodies. Spork’s maintainers acknowledged our bug reports
but have not "xed them. We spent well over a person-month trying
to "x the bugs ourselves, but were not able to address them all.
Then, we tried to refactor Spork to eliminate its dependence on
Spoon (which the Spork maintainers blamed for some of Spork’s
bugs), but they were so entangled that we were unable to do so.
We speculate that a better implementation of the Spork algorithm
could be a very e#ective merge tool.

7.4.1 Overlapping Unique Additions (35091-165). Spork’s strategy
of parsing code into an AST tree and matching methods by name
was quite successful when di#erent branches added di#erent meth-
ods at the same location. Examples like this were the bread and
butter of Spork’s successes.

7.5 Version Numbers
The Version Numbers tool starts with the output of Git Merge. It
never underperformed Git Merge.

7.6 Imports
The Imports tool starts with the output of Git Merge and only "xes
merges in import statements. It never introduces mistakes, because
it parses the entire "le looking for uses of imports. It can correct mis-
takes by re-introducing import statements that Git Merge removed
by a clean but incorrect merge.

8 THREATS TO VALIDITY
Construct validity. Testing is an imperfect proxy for correctness.
If tests fail, then most likely the merge is incorrect, but if tests pass,
the merge might still be incorrect. For instance, the merge might
be wrong in "les that are not executed by the test suite. Therefore,
our measured number of incorrect merges understates the problem
of incorrect merges.

Though testing is an imperfect proxy, we believe it is better
than the alternatives. One alternative would be an automated proof
that the merged program is equivalent to what is in the version
control repository or is equivalent to a merge of the branches [?],
though veri"cation is too expensive and unscaleable; furthermore,
what is committed to the repository may be wrong, as discussed in
section 9.3.1. The testing proxy is also used by the program repair
community, who discovered very serious errors in papers that did
not test repairs [?]. That community calls a patch that passes a test
suite “plausible”, and reserves “correct” for one that matches the
programmer’s intent (which is, in general, unknowable).

The values UnhandledCost and IncorrectCost are averages. A par-
ticular merge tool might produce better- or worse-than-average

9

Adjacent Case Analysis

17

Evaluation of Version Control Merge Tools ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

7.2 Adjacent
7.2.1 Refactoring on Adjacent Lines (1215-3280). Adjacent success-
fully merged scenarios involving refactoring, particularly when
variables were independent.

<<<<<<< LEFT

String comments = SourcesHelper.readerToString(reader);

CompilationUnit cu = new JavaParser().setSource(comments).parse();

||||||| BASE

String comments = SourcesHelper.readerToString(reader);

CompilationUnit cu = new InstanceJavaParser(comments).parse();

=======

String comments = readerToString(reader);

CompilationUnit cu = new InstanceJavaParser(comments).parse();

>>>>>>> RIGHT

7.2.2 Adjacent Lines are Interdependent (5184-31). The key weak-
ness in the adjacent strategy is its local view, disregarding context.
Consider this merge. The left parent changed the variable being
synchronized upon.

<<<<<<< LEFT

synchronized (cacheMap) {

List<DNSEntry> entryList = cacheMap.get(dnsEntry.getKey());

if (entryList != null) {

entryList.remove(dnsEntry);

||||||| BASE

List<DNSEntry> entryList = this.get(dnsEntry.getKey());

if (entryList != null) {

synchronized (entryList) {

entryList.remove(dnsEntry);

=======

List<DNSEntry> entryList = this.get(dnsEntry.getKey());

if (entryList != null) {

synchronized (entryList) {

result = entryList.remove(dnsEntry);

>>>>>>> RIGHT

}

}

/* Remove from DNS cache when no records remain with this key */

if (result && entryList.isEmpty()) {

this.remove(dnsEntry.getKey());

Adjacent readily merges the code, but without moving the outer
if-statement inside the synchronized block, leading to code that
compiles but contains a race condition.

synchronized (cacheMap) {

List<DNSEntry> entryList = cacheMap.get(dnsEntry.getKey());

if (entryList != null) {

result = entryList.remove(dnsEntry);

}

}

/* Remove from DNS cache when no records remain with this key */

if (result && entryList.isEmpty()) {

this.remove(dnsEntry.getKey());

}

Git Merge left this con!ict unhandled, forcing the programmer
to do the merge, which is a better outcome.

7.3 Git Merge Ignorespace
7.3.1 Extra Irrelevant Spaces (2955-73). Git Merge Ignorespace is
not confused by inconsequential spaces. It merges code like this:

<<<<<<< LEFT

* </p>

||||||| BASE

*!

=======

*

>>>>>>> RIGHT

Git Merge Ignorespace caused havoc when merging YAML "les
(e.g., 14378-60), where indentation matters and there may be multi-
ple occurrences of a key.

7.4 Spork
As explained in the appendix [?], Spork sometimes produced un-
compilable code, made gratuitous formatting changes, or omitted
method bodies. Spork’s maintainers acknowledged our bug reports
but have not "xed them. We spent well over a person-month trying
to "x the bugs ourselves, but were not able to address them all.
Then, we tried to refactor Spork to eliminate its dependence on
Spoon (which the Spork maintainers blamed for some of Spork’s
bugs), but they were so entangled that we were unable to do so.
We speculate that a better implementation of the Spork algorithm
could be a very e#ective merge tool.

7.4.1 Overlapping Unique Additions (35091-165). Spork’s strategy
of parsing code into an AST tree and matching methods by name
was quite successful when di#erent branches added di#erent meth-
ods at the same location. Examples like this were the bread and
butter of Spork’s successes.

7.5 Version Numbers
The Version Numbers tool starts with the output of Git Merge. It
never underperformed Git Merge.

7.6 Imports
The Imports tool starts with the output of Git Merge and only "xes
merges in import statements. It never introduces mistakes, because
it parses the entire "le looking for uses of imports. It can correct mis-
takes by re-introducing import statements that Git Merge removed
by a clean but incorrect merge.

8 THREATS TO VALIDITY
Construct validity. Testing is an imperfect proxy for correctness.
If tests fail, then most likely the merge is incorrect, but if tests pass,
the merge might still be incorrect. For instance, the merge might
be wrong in "les that are not executed by the test suite. Therefore,
our measured number of incorrect merges understates the problem
of incorrect merges.

Though testing is an imperfect proxy, we believe it is better
than the alternatives. One alternative would be an automated proof
that the merged program is equivalent to what is in the version
control repository or is equivalent to a merge of the branches [?],
though veri"cation is too expensive and unscaleable; furthermore,
what is committed to the repository may be wrong, as discussed in
section 9.3.1. The testing proxy is also used by the program repair
community, who discovered very serious errors in papers that did
not test repairs [?]. That community calls a patch that passes a test
suite “plausible”, and reserves “correct” for one that matches the
programmer’s intent (which is, in general, unknowable).

The values UnhandledCost and IncorrectCost are averages. A par-
ticular merge tool might produce better- or worse-than-average

9

Evaluation of Version Control Merge Tools ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

7.2 Adjacent
7.2.1 Refactoring on Adjacent Lines (1215-3280). Adjacent success-
fully merged scenarios involving refactoring, particularly when
variables were independent.

<<<<<<< LEFT

String comments = SourcesHelper.readerToString(reader);

CompilationUnit cu = new JavaParser().setSource(comments).parse();

||||||| BASE

String comments = SourcesHelper.readerToString(reader);

CompilationUnit cu = new InstanceJavaParser(comments).parse();

=======

String comments = readerToString(reader);

CompilationUnit cu = new InstanceJavaParser(comments).parse();

>>>>>>> RIGHT

7.2.2 Adjacent Lines are Interdependent (5184-31). The key weak-
ness in the adjacent strategy is its local view, disregarding context.
Consider this merge. The left parent changed the variable being
synchronized upon.

<<<<<<< LEFT

synchronized (cacheMap) {

List<DNSEntry> entryList = cacheMap.get(dnsEntry.getKey());

if (entryList != null) {

entryList.remove(dnsEntry);

||||||| BASE

List<DNSEntry> entryList = this.get(dnsEntry.getKey());

if (entryList != null) {

synchronized (entryList) {

entryList.remove(dnsEntry);

=======

List<DNSEntry> entryList = this.get(dnsEntry.getKey());

if (entryList != null) {

synchronized (entryList) {

result = entryList.remove(dnsEntry);

>>>>>>> RIGHT

}

}

/* Remove from DNS cache when no records remain with this key */

if (result && entryList.isEmpty()) {

this.remove(dnsEntry.getKey());

Adjacent readily merges the code, but without moving the outer
if-statement inside the synchronized block, leading to code that
compiles but contains a race condition.

synchronized (cacheMap) {

List<DNSEntry> entryList = cacheMap.get(dnsEntry.getKey());

if (entryList != null) {

result = entryList.remove(dnsEntry);

}

}

/* Remove from DNS cache when no records remain with this key */

if (result && entryList.isEmpty()) {

this.remove(dnsEntry.getKey());

}

Git Merge left this con!ict unhandled, forcing the programmer
to do the merge, which is a better outcome.

7.3 Git Merge Ignorespace
7.3.1 Extra Irrelevant Spaces (2955-73). Git Merge Ignorespace is
not confused by inconsequential spaces. It merges code like this:

<<<<<<< LEFT

* </p>

||||||| BASE

*!

=======

*

>>>>>>> RIGHT

Git Merge Ignorespace caused havoc when merging YAML "les
(e.g., 14378-60), where indentation matters and there may be multi-
ple occurrences of a key.

7.4 Spork
As explained in the appendix [?], Spork sometimes produced un-
compilable code, made gratuitous formatting changes, or omitted
method bodies. Spork’s maintainers acknowledged our bug reports
but have not "xed them. We spent well over a person-month trying
to "x the bugs ourselves, but were not able to address them all.
Then, we tried to refactor Spork to eliminate its dependence on
Spoon (which the Spork maintainers blamed for some of Spork’s
bugs), but they were so entangled that we were unable to do so.
We speculate that a better implementation of the Spork algorithm
could be a very e#ective merge tool.

7.4.1 Overlapping Unique Additions (35091-165). Spork’s strategy
of parsing code into an AST tree and matching methods by name
was quite successful when di#erent branches added di#erent meth-
ods at the same location. Examples like this were the bread and
butter of Spork’s successes.

7.5 Version Numbers
The Version Numbers tool starts with the output of Git Merge. It
never underperformed Git Merge.

7.6 Imports
The Imports tool starts with the output of Git Merge and only "xes
merges in import statements. It never introduces mistakes, because
it parses the entire "le looking for uses of imports. It can correct mis-
takes by re-introducing import statements that Git Merge removed
by a clean but incorrect merge.

8 THREATS TO VALIDITY
Construct validity. Testing is an imperfect proxy for correctness.
If tests fail, then most likely the merge is incorrect, but if tests pass,
the merge might still be incorrect. For instance, the merge might
be wrong in "les that are not executed by the test suite. Therefore,
our measured number of incorrect merges understates the problem
of incorrect merges.

Though testing is an imperfect proxy, we believe it is better
than the alternatives. One alternative would be an automated proof
that the merged program is equivalent to what is in the version
control repository or is equivalent to a merge of the branches [?],
though veri"cation is too expensive and unscaleable; furthermore,
what is committed to the repository may be wrong, as discussed in
section 9.3.1. The testing proxy is also used by the program repair
community, who discovered very serious errors in papers that did
not test repairs [?]. That community calls a patch that passes a test
suite “plausible”, and reserves “correct” for one that matches the
programmer’s intent (which is, in general, unknowable).

The values UnhandledCost and IncorrectCost are averages. A par-
ticular merge tool might produce better- or worse-than-average

9

Merge Result:

18

https://github.com/benedikt-schesch/AST-Merging-Evaluation

Github

https://github.com/plume-lib/merging

Testing infrastructure:

Merging Tool:

Git Merging Algorithm

19

Parent 1

Parent 2

Find Common
Ancestor

Unique ancestor does not always exist.

If none exists assume wlog two ancestors B1 and B2 exist:

1 - Resolve: Choose arbitrary between B1 and B2

2 - Recursive: Merge B1 and B2 and use the merge as base

3 - Ort (Default): Improved version of recursive

Base Diffing algorithm Resolution

Myers: Greedy algorithm

Minimal: Produces small diffs

Patience: Improve readability and avoid spurious matches

Histogram: Similar to patience but construct a histogram of element occurrence

Diff parent 1 and base and diff parent 2 and base.

If both diffs are the same use it.

If one element is missing in the other diff use it.

If the diffs do not match raise a conflict.

• Hires merge uses exactly the same idea as git but operates at a character
level instead of a line level

• Adjacent: Merge two adjacent lines as opposed to Git

Motivation

20

Conflict Merged

Git Merge 51% 49%

Spork [1] 35% 65%

IntelliMerge [2] 26% 74%

Conflict
Merged

Correctly Incorrectly

Git Merge 51% 46% 3%

Spork 35% 54% 11%

IntelliMerge 26% 24% 50%

Best

Worst
[1] Larsén et al. (2023). Spork: Structured merge for Java with formatting preservation. IEEE Trans. Softw. Eng., 49(01), 64–83.

[2] Shen et al. (2019). IntelliMerge: A refactoring-aware software merging technique. In OOPSLA 2019 (pp. 170:1–170:28). Athens, Greece.

Old Methodology

Our Methodology

