Evaluation of Version Control
Merge lools

Benedikt Schesch Ryan Featherman KennethJ. Yang Ben R. Roberts Michael D. Ernst
ETH Ziirich Microsoft University of University of University of

Washington Washington Washington

W

ETHZurich universiTyof = MiCI‘OSOﬁ:
WASHINGTON

Merging Algorithms make mistakes

Too conservative algorithms Incorrect Merges

Git Merge
outputs a
conflict

AST merge can solve this

2

AST Merging (Spork, IntelliMerge)

Left

def main():
Parent n = 128

def main():

Right

AST
(abstract syntax tree)

Is AST Merging any good?

No one knows!

Problems with previous evaluations:
1. Few tool comparisons

2. Cost of incorrect merges

3. Unrepresentative merges

* Cherry-picked examples
 Main branch only

Problem 1: Which merge tools?

Compared 16 merge tools

Do complex merging algorithms outperform simple heuristics?

* |Imports: Resolve Java import conflict
* Spork and IntelliMerge do this

e \ersion-Numbers: Resolve version numbers conflicts

e |+Vn: Combines Imports and Version-Numbers

Problem 2: Incorrect merges

Ola Methodology

Conflict

Merged

Correcitl

1G U -

Git Merge 51% 46% 4 3%
Spork [1] 35% 54% ok 11%
IntelliMerge [2] 26% 24% 74% 50%

Which is best depends on #conflicts and #incorrect

Dataset: >6k merges with good test coverage

[1] Larsén et al. (2023). Spork: Structured merge for Java with formatting preservation. IEEE Trans. Softw. Eng.,49(01), 64-83.
[2] Shen et al. (2019). IntelliMerge: A refactoring-aware software merging technique. In OOPSLA 2019 (pp. 170:1-170:28). Athens, Greece.

6

Pémist

Which merge algorithm is the best?

~ Cost of incorrect merge
~ Cost of unhandled merge

Cost(T) = numUnhandled(T) + numIncorrect(T) X k

Cost(Manual) — Cost(T)

EffortReduction(T) =
ffOr eaduc lOn() C0st(MClnual)

Effort Reduction Results

—— Manual Merging
m—— (5it Merge
0.5 - < Spork
' \ = == IntelliMerge
.\\. === |mports
\.\ Version Numbers
0.4 - N —
IS \ I—I—Vn
N
g QD
g N
E 0.3 - \,\\
5 VXN
&5 l \0 \
024 | Ny
S
|
| N
|
0.1 - | N
| N
| ‘
| \\’
0.0 -
l | | | | | | | .
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Incorrect merges cost factor k

8

Effort Reduction

0.6

0.5 -

—
S
]

=
o

=
N

0.1 7

0.0 -

Problem 3: Features branches are harder

Main branches

Incorrect merges cost factor k

Feature branches
(not in Git history)

Incorrect merges cost factor &

0.6
N Manual Merging Manual Merging
\. N = (it Merge = (5it Merge
\. Spork 0.5 - Spork
\’\\ == == IntelliMerge ' == == IntelliMerge
’\\ === [mports === [mports
’\\ Version Numbers Version Numbers
D — I+Vn 044 =~ / — I+Vn
. o D N
D : N lower
DN E N
\. o 0.3 S

! SN . \~\\ /
'. AN N

i N 0.2 - N,

|

|

'. Previous evaluations are not [« /

|

. iIndicative of real world merges .

| S S
— 001 - N

0.0 215 510 715 1(;.0 12|.5 15I.0 17I.5 20 0.0 215 510 7?5 10I.O 12I.5 15I.O 17I.5

20.0

Contributions

1. New methodology corrects 3 problems with previous merge evaluations:
» Many merge tools
» Cost of incorrect merges (changes the ranking)
» Feature branch merges

2. Created new tools that outperform all others.

3. Simple tools outperform complex ones.
The research community should reward effectiveness.

4. Our merge tools, experimental scripts, and data are public.

10

11

Git Evaluation Results

0.50
== Gitmerge-ort
Gitmerge-ort-ignorespace
e
Tool Merges " Gitmergeecursve patence
Correct Unhandled | Incorrect 0.40 - Gitmerge-resolve
% # % | # % -
Gitmerge-ort 2748 46% | 3078 51% | 157 3% :%
Gitmerge-ort-ignorespace 28389 48% | 2905 49% | 189 3% fo'%]
Gitmerge-recursive-histogram | 2748 46% | 3078 51% | 157 3% =
Gitmerge-recursive-minimal 2748 46% | 3078 51% | 157 3% 0.30 -
Gitmerge-recursive-myers 2748 46% | 3078 51% | 157 3%
Gitmerge-recursive-patience 2751 46% | 3074 51% | 158 3%
Gitmerge-resolve 2703 45% | 3124 52% | 156 3% o
0.20 | |
0 2 12

Incorrect merges cost factor k

12

Merge tools we did not evaluate

 Many other tools only have only a GUI interface, unsuitable for automated
testing

 DeepMerge and MergeBERT are not publicly available making it impossible to
evaluate

 JDime discards comments, file headers and arbitrarily reorders methods and
fields. Often requires more than 15 minutes for a merge.

13

General notes on merge tools

Sporks implementation is buggy (in discussion with maintainers to fix it),
underlying algorithm might still be competitive

Intellimerge compared itself to git but only on a few examples where git failed
and refactoring was the main problem. Implementation is also buggy and non
deterministic.

Many other tools only have only a GUI interface, unsuitable for automated
testing

DeepMerge and MergeBERT are not publicly available making it impossible to
evaluate

14

Character Merge Case Analysis

<<KKLKLLKLK

<versionX23.7.0

|1]]]] BASE
<versiony?Z3.6.0</version>

/version>

>>>>>>>\RIGHT

<versian

Merge Result:

<version>23.7.1< _.rsion>

15

Adjacent Case Analysis

<KL LEFT

String comments
CompilationUnit
[[11]]] BASE

String comments
CompilationUnit

String comments

CompilationUnit
>>>>>>> RIGHT

= SourcesHelper.readerToString(reader);
new JavaParser().setSource(comments).parse();

= SourcesHelper.readerToString(reader);
new InstanceJavaParser(comments).parse();

readerToString(reader);
new InstanceJavaParser(comments).parse();

Adjacent Case Analysis

<< LEFT
synchronized (cacheMap) {
List<DNSEntry> entryList = cacheMap.get(dnsEntry.getKey());

if (entrylList != null) { .
entryList.remove(dnsEntry); Merge ReSUIt
[[111]] BASE

synchronized (cacheMap) {
List<DNSEntry> entrylList = cacheMap.get(dnsEntry.getKey());
1f (entryList != null) {
result = entrylList.remove(dnsEntry);

List<DNSEntry> entryList = this.get(dnsEntry.getKey());
if (entryList != null) {
synchronized (entrylList) {
entryList.remove(dnsEntry);

_______ }

. e = ips . }
L1st<DNSEntry> entryList = this.get(dnsEntry.getKey()); /* Remove from DNS cache when no records remain with this key */
if (entryList != null) {

synchronized (entrylList) { 1f (result && entryList.isEmpty()) {

result = entrylList.remove(dnsEntry); this.remove(dnskntry.getKey());
>>>>>>> RIGHT ¥

b
b

/* Remove from DNS cache when no records remain with this key */
if (result && entrylList.isEmpty()) {
this.remove(dnsEntry.getKey());

17

Github

Testing infrastructure:

[=]

https://github.com/benedikt-schesch/AST-Merging-Evaluation
ol
1

%
b e

https://github.com/plume-lib/merging = =T rfl'r
e

[=]

Merging Tool:

18

Git Merging Algorithm

Unigque ancestor does not always exist.
If none exists assume wlog two ancestors B1 and B2 exist:
1 - Resolve: Choose arbitrary between B1 and B2

2 - Recursive: Merge B1 and B2 and use the merge as base

3 - Ort (Default): Improved version of recursive

Parent 1 ~__ ~ -

Fm:nggggon . Base —| Diffing algorithm

~

Diff parent 1 and base and diff parent 2 and base.
f both diffs are the same use it.
f one element is missing in the other diff use it.

f the diffs do not match raise a conflict.

J

Parent 2 L g >

Myers: Greedy algorithm

Minimal: Produces small diffs

Patience: Improve readability and avoid spurious matches

Histogram: Similar to patience but construct a histogram of element occurrence

Resolution

* Adjacent: Merge two adjacent lines as opposed to Git
 Hires merge uses exactly the same idea as git but operates at a character

level iInstead of a line level

19

Motivation
Old Methodology

Conflict Merged
Git Merge 51% 49%
Spork [1] 35% 65%
IntelliMerge [2] 26% 74% Best

Our Methodology

Merged
Conflict
Correctly Incorrectly
Git Merge 46%
Spork 54%
IntelliMerge 26% 24% 50%

[1] Larsén et al. (2023). Spork: Structured merge for Java with formatting preservation. IEEE Trans. Softw. Eng.,49(01), 64-83.
[2] Shen et al. (2019). IntelliMerge: A refactoring-aware software merging technique. In OOPSLA 2019 (pp. 170:1-170:28). Athens, Greece.

20

Worst

