
Mock Object Creation for Test Factoring

David Saff Michael D. Ernst
MIT Computer Science & Artificial Intelligence Lab

{saff,mernst}@csail.mit.edu

Abstract

Test factoringcreates fast, focused unit tests from slow system-
wide tests; each new unit test exercises only a subset of the func-
tionality exercised by the system tests. Augmenting a test suite
with factored unit tests, and prioritizing the tests, should catch er-
rors earlier in a test run.

One way to factor a test is to introducemock objects. If a
test exercises a component A, which is designed to issue queries
against or mutate another component B, the implementation of B
can be replaced by amock. The mock has two purposes: it checks
that A’s calls to B are as expected, and it simulates B’s behavior
in response. Given a system test for A and B, and a record of A’s
and B’s behavior when the system test is run, we would like to
automatically generate unit tests for A in which B is mocked. The
factored tests can isolate bugs in A from bugs in B and, if B is slow
or expensive, improve test performance or cost.

This paper motivates test factoring with an illustrative example,
proposes a simple procedure for automatically generating mock
objects for factored tests, and gives examples of how the procedure
can be extended to larger change languages.

Categories and Subject Descriptors:D.2.5 (Testing and Debug-
ging): Testing tools

General Terms: Algorithms, Design, Performance, Verification

Keywords: test factoring, mock objects, unit testing

1. Introduction
Frequent execution of a test suite during software maintenance

can catch regression errors early and bolster the developer’s confi-
dence that steady progress is being made. However, if the test suite
takes a long time to produce feedback, the developer is slowed
down, and the benefit of frequent testing is reduced, whether the
testing is manual (as in agile methodologies such as Extreme Pro-
gramming [1]) or automated (as in continuous testing [4]).

Test selection and prioritization can reduce the cost of frequent
testing for large test suites containing many small tests. Test selec-
tion [3] runs only those tests that are possibly affected by the most
recent change, and test prioritization [7] runs first the tests that are
most likely to reveal a recently-introduced error.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’04,June 7–8, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-910-1/04/0006 ...$5.00.

For test suites with long-running tests (or expensive tests that
require human attention or the use of a limited resource), selection
and prioritization are insufficient. We propose augmenting them
with test factoring, which from each large test generates multiple
unit tests that can be run individually. Dynamic test factoring takes
as input an original test and a trace collected from running an in-
strumented version of the original test, and produces one or more
new tests, each of which should run more quickly than the orig-
inal, while testing less functionality than the original — perhaps
exercising only a single component of the code. Static test fac-
toring uses sound static analysis on just the source of the original
test; it introduces a different set of tradeoffs than dynamic test fac-
toring, and is not considered here. Test factoring occurs ahead of
time, not at test time.

This paper proposes an automated system for applying the In-
troduce Mock test factoring to a test suite. The paper defines the
goals of this test factoring (Section 2) and describes an example
test suite that we are using for inspiration and benchmarking (Sec-
tion 3). It then describes a procedure for generating the factored
tests (Section 4) and an experimental strategy for evaluating the
procedure (Section 5).

2. Introduce Mock
A test is factored by applying one or moretest factorings. We

believe that test factorings can be cataloged, shared, and auto-
mated, just as code refactorings [2] are. Three of the test factor-
ings we have defined are Separate Sequential Test (which separates
functionality exercised at different times), Unroll Loop (which
separates control structures and their contents), and Introduce Mock
(which separates functionality defined in different classes). This
paper focuses on Introduce Mock.

Introduce Mock operates on a codebase that is divided into two
different realms. Thetested realmis code that is being changed,
into which the developer is concerned regression errors may be
introduced. Themocked realmis code that should be simulated
for the purposes of testing. Either the mocked realm is not chang-
ing, and may therefore be skipped to improve test performance,
or it is likely to change independently of the tested realm, and the
developer would like to isolate errors between the realms.

3. Example
To focus our efforts, we have chosen an example application

from our own experience. We previously developed a plug-in for
the Eclipse IDE that implements continuous testing [5]. Contin-
uous testing utilizes excess cycles on a developer’s workstation
to run tests in the background, providing faster notification of er-
rors [4, 6].

The plug-in has an automated test suite that uses JUnit and
Eclipse’s Plug-in Development Environment (PDE). Using the PDE

49

to test a plug-in requires loading and initializing all of Eclipse be-
fore tests can be run against the specific plug-in. The test suite is
excellent for integration testing, but has become increasingly un-
wieldy for frequent manual invocation or continuous testing. The
suite contains 49 programmatic tests that exercise the GUI, back-
end, and utility classes. The tests themselves average less than a
second each, and are executed according to an effective test pri-
oritization algorithm; errors, if they exist, are usually found very
early in the suite execution. However, initializing the Eclipse run-
time requires 20-30 seconds before the first test can run. If this
overhead could be eliminated, the developer could be notified of
failures an order of magnitude faster than they are now. This may
improve development productivity [4, 6].

We would like to generate a factored version of the test suite
that mocks all packages underorg.eclipse . This should allow
us to run the tests much more quickly. Our tested realm is all of
the plug-in and our mocked realm is the Eclipse runtime.

This example is sufficiently complex to require automation, but
simple enough to permit some manual analysis. We used a de-
bugger to step through the execution of a single test case for the
important basic functionality of the plug-in, and noted every exe-
cuted line of code that contained a method call across the boundary
between the tested and mocked realms. The tested code called the
mocked code in 147 places, and the mocked code called back to
the tested code in 8 places. The majority of these static calls were
executed only once, but a few were executed dozens of times with
different parameters. The methods called on the mocked realm
were defined on 49 different classes.

4. Procedure
The Introduce Mock procedure can be generally outlined as

follows:

1. Transformation: The code undergoes a semantics-preserving
transformation that replaces constructor calls, array writes,
and field accesses across the realm boundary with method
calls. The reason for this transformation is that method calls
are easier to instrument.

2. Trace capture: The original test is executed (we assume
it passes), and traces are collected of calls from the tested
realm into the mocked realm and vice versa.

3. Mock code generation: The traces are analyzed and code
generated for the mock objects; thismock realmreplaces the
mocked realm in the final factored test.

Section 4.1 gives more details on a basic implementation of
Introduce Mock. Section 4.2 discusses limitations in the basic im-
plementation, and Section 4.3 discusses how to eliminate some of
those limitations.

4.1 Basic Procedure

4.1.1 Trace capture
The original test is instrumented and run. The instrumentation

captures all method calls from the tested realm into the mocked
realm, and vice versa. The actual parameters are captured, along
with the method’sbehavior, which consists of the return value, if
any, and any callbacks across the boundary. For example, if a list
object in the tested realm is passed as a parameter to a method in

the mocked realm, any methods on the list called from the mocked
realm are captured.

The trace is analyzed to produce aMockExpectations table
for use in the next step. This table encodes a transition function
that specifies for each state of the mocked realm, the expected next
call (including the receiver and parameters), the behavior to be
exhibited in response to that call, and the next state to enter. The
states are modeled as simple integers starting at 0 and counting
upward, without any branches or loops.

4.1.2 Mock code generation
In the factored test, each object in the mocked realm that is

visible to the tested realm is replaced by a mock object that sat-
isfies the same interface. In addition, a singleton mock object
for handling constructors and static methods is created for each
class in the mock realm that is visible to the tested realm. Two
global objects are shared by all mock objects: the staticMock-
Expectations table generated by the table creation step of Sec-
tion 4.1.1, and a dynamicMockState that points to the current
state of the mock realm.

For each call received by a mock object, theMockExpectations
is consulted to determine whether the received call matches the ex-
pected next call for the currentMockState . If so, the behavior for
that call is played back, and theMockState is updated. If not,
the test fails. At the end of the test, the test fails if the current
MockState does not match the expected final state in theMock-
Expectations .

4.2 Limitations of the Basic Procedure
A factored test introduces assumptions about the implementa-

tion details of the functionality being tested; if those assumptions
are violated during program evolution, the factored test becomes
useless. For example, consider a test for a method that inserts
records into a database. If making calls against the database is
slow, the test may be factored to use a mock object that simulates
the behavior of the database and ensures that the expected calls are
made to the database API. If the code under test is modified to use
a database API call that inserts them all at once rather than one at a
time, then the original test will still pass, but the factored test will
likely fail, because the mock object receives unexpected calls.

A test factoring procedure can always be extended to eliminate
an erroneous assumption. For example, with knowledge of the
semantics of the database API, the database mock object could be
extended to accept all valid data input call sequences. However,
the only way to eliminateall assumptions is to turn the factored
tests into exact replicas of the original test, eliminating the speed
and bug-isolation advantages of test factoring.

We believe that a developer facing a maintenance task con-
sciously or unconsciously uses achange language, a kind of pat-
tern language that breaks down complex maintenance goals into
a plan for making a series of simple code changes. If this is the
case, then understanding a developer’s change language would al-
low prediction of which changes they are likely to make. This in
turn would help to maximize the “lifespan” of factored tests be-
fore their assumptions are violated and they become useless. This
paper describes a change language as a set of program transfor-
mations and refactorings [2]. The basic procedure defined in Sec-
tion 4.1 assumes that the order of calls across the boundary will
not change; this assumption is compatible with a change language
including refactorings like Inline Method and Extract Method [2],
but in general it is too strict.

50

4.3 Expanding the Basic Procedure
This section discusses three functionality-preserving changes

that are common in the authors’ practice but violate the assump-
tions of the basic procedure, leading to false failures. In each case,
sound static analysis could be used to identify exactly when those
assumptions can be correctly relaxed. However, there are good
reasons to look for simple unsound heuristics that may err on the
side of relaxing assumptions too much. First, keeping the analyses
simple allows quicker (and therefore more frequent) test factor-
ing, and quicker implementation of new test factoring procedures.
Second, overly lax assumptions carry a smaller penalty than overly
strict assumptions. If assumptions are too lax, a factored test may
pass when its corresponding system test would have failed (afalse
success). This failure will eventually be caught when running the
original system test, so only the opportunity for early notification
is lost. If assumptions are too strict, a factored test may fail when
the system test would have passed (afalse failure). The devel-
oper may lose time and attention investigating the failure before
discovering that it is false.

4.3.1 Reordering calls to independent objects
The basic procedure of Section 4.1 assumes that the expecta-

tions and behavior of the entire mocked realm depend on the order
of all calls to mocked objects. However, this is an oversimplifica-
tion; sometimes, two objects are independent of each other’s state,
and calls to these objects can be intermixed in any order without
affecting overall behavior. The developer may choose to reorder
such calls to improve the clarity or structure of the code; or, the
order of calls may be nondeterministic.

This problem could be solved by introducing separateMock-
Expectations for each and every mock object, but this would
oversimplify in the other direction, treating every mocked object
as independent. Instead, the mocked objects are grouped intostate
sets, each with a singleMockExpectations andMockState . Our
heuristic for determining state sets is that if one object is passed to
the constructor for another, both belong to the same state set. We
believe that this heuristic may be idiosyncratic of Eclipse coding
practices, and further research will help to fine-tune it.

4.3.2 Adding or removing calls to accessors
The basic procedure assumes that all calls to mocked objects

are significant state-changing operations, and therefore cannot be
added or deleted. However, accessor methods, which do not change
the receiver’s state, are often added, deleted, and reordered during
maintenance. For example, multiple calls to an accessor might be
replaced with a single call to improve efficiency.

To accommodate such changes, each method in the mocked
realm that is called from the tested realm can be labeledread-only,
write-only, or read-writewith respect to each state set, by extend-
ing the trace to record reads and writes to the state of mocked
objects.MockExpectations can then be modified to neither fail
nor advance the state when a read-only method is called.

This introduces a new complication, however. It is now pos-
sible for a change to introduce a call to a read-only method in a
state for which the mocked object’s behavior was not recorded in
the trace. There are several possibilities for handling this situation:
the test could fail, the method could return value unlikely to occur
in real execution, or the mock object could examine the trace to
return a value that is likely to occur in real execution, in hopes
of minimizing false failures. Further research is needed to know
when each should be used.

4.3.3 Changing the order of simple mutators
Some classes have multiple options that must be set through

individual setter methods before an action method can be called.
For example, before aButton object in theSWTframework is dis-
played, methodssetText , setFont , addSelectionListener ,
andsetSelection may be called in any order. Reordering calls
to these methods should not cause a factored test to fail.

To address this problem, theMockExpectations object can
be further modified to allow an unordered set, orclump, of method
calls to be the trigger to advance to a new state, rather than chang-
ing state on every method call that is not read-only. Choosing
the right method calls for advancing the state is important. In
our example, methods that read-write tend to be important state-
changing operations likeopen , close , or addListener . This
suggests the heuristic of allowing write-only method calls to clump,
but advancing the state on read-write method calls.

5. Evaluation
The success of test factoring depends on how much less time

the factored tests take to run than the originals, how much faster
failures are indicated to the user, and how many false failures are
generated as the program changes. We intend to perform an evalu-
ation using high-resolution change data captured from third-party
development projects [4], followed by case studies of developers
using test factoring. These evaluations should allow us to measure
the cost and benefit of test factoring, and to improve our change
language catalog and test refactoring procedures.

6. Conclusion
In this paper, we have introduced the idea of test factoring, and

described how it might be useful for enabling more frequent, and
more useful, regression testing during development. We consid-
ered one test factoring, Introduce Mock Object, in detail, in the
context of a real test suite to be factored. Our research on this
topic is still in its early stages, but we believe that the problems
are of interest not only for their practical impact, but also for their
potential to open new research questions in testing, software engi-
neering, and program analysis.

7. REFERENCES
[1] K. Beck.Extreme Programming Explained: Embrace

Change. Addison-Wesley, 1999.
[2] M. Fowler.Refactoring: Improving the Design of Existing

Code. Addison-Wesley, 2000.
[3] H. K. N. Leung and L. White. Insights into regression testing.

In ICSM, pages 60–69, Oct. 1989.
[4] D. Saff and M. D. Ernst. Reducing wasted development time

via continuous testing. InISSRE, pages 281–292, Nov. 2003.
[5] D. Saff and M. D. Ernst. Continuous testing in Eclipse. In

2nd Eclipse Technology Exchange Workshop (eTX),
Barcelona, Spain, Mar. 2004.

[6] D. Saff and M. D. Ernst. An experimental evaluation of
continuous testing during development. InISSTA, pages
76–85, July 2004.

[7] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. InISSRE,
pages 264–274, Nov. 1997.

51

