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Abstract Knowing which method parameters may be mutated during a method’s
execution is useful for many software engineering tasks. A parameter reference is
immutable if it cannot be used to modify the state of its referent object during the
method’s execution. We formally define this notion, in a core object-oriented lan-
guage. Having the formal definition enables determining correctness and accuracy of
tools approximating this definition and unbiased comparison of analyses and tools
that approximate similar definitions.

We present Pidasa, a tool for classifying parameter reference immutability. Pidasa
combines several lightweight, scalable analyses in stages, with each stage refining
the overall result. The resulting analysis is scalable and combines the strengths of its
component analyses. As one of the component analyses, we present a novel dynamic
mutability analysis and show how its results can be improved by random input gen-
eration. Experimental results on programs of up to 185 kLOC show that, compared
to previous approaches, Pidasa increases both run-time performance and overall ac-
curacy of immutability inference.
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1 Introduction

Knowing which method parameters are accessed in a read-only way, and which
ones may be mutated, is useful in many software engineering tasks, such as mod-
eling (Burdy et al. 2005), verification (Cataño and Huisman 2003; Tkachuk and
Dwyer 2003), compiler optimizations (Clausen 1997; Sălcianu 2006), program trans-
formations such as refactoring (Fowler 2000), test input generation (Artzi et al.
2006), regression oracle creation (Mariani and Pezzè 2005; Xie 2006), invariant
detection (Ernst et al. 2001), specification mining (Dallmeier et al. 2006), pro-
gram slicing (Weiser 1984), and program comprehension (Demsky and Rinard 2002;
Dolado et al. 2003).

Unintended mutation is a common source of errors in programs. Such errors can
be difficult to discover and debug, because their symptoms often appear far from
the location of the error, in time or in space. The problem of unintended mutation
is exacerbated by the difficulty of expressing the programmer’s design intent. A type
system or a program annotation system offers an approximation to the truth regarding
whether particular mutations can occur. The advantage of such approximations is that
they are checkable. However, every statically checkable approximation prevents cer-
tain references, that are never used for mutation, from being so annotated because the
proof of that fact is beyond the capability of the program analysis. A trivial example is
that whether a given mutating statement can be executed is undecidable, but the prob-
lem is not a theoretical one and arises frequently in practice (Birka and Ernst 2004;
Tschantz and Ernst 2005; Zibin et al. 2007; Papi et al. 2008).

Informally, reference immutability guarantees that a given reference is not used
to modify its referent. (An immutable reference is sometimes known as a “read-
only reference”.) This definition has been the basis of much previous research
(Birka and Ernst 2004; Boyland et al. 2001; Dietl and Müller 2005; Hogg 1991;
Kniesel and Theisen 2001; Sălcianu and Rinard 2005; Skoglund and Wrigstad 2001;
Tschantz 2006; Zibin et al. 2007). The informal description is intuitively understand-
able, but because it is vague, different people have different intuitions. For exam-
ple, “used” might refer to the time the reference is in scope (Artzi et al. 2007;
Sălcianu and Rinard 2005) or the entire execution (Boyland et al. 2001; Tschantz
2006). The referent might be considered to be only a single object (Stroustrup
2000; Boyland et al. 2001), or also all objects (transitively) referred to by sub-
fields (Tschantz and Ernst 2005; Zibin et al. 2007; Kniesel and Theisen 2001).
Modification might refer to the referent’s concrete state (Boyland et al. 2001;
Sălcianu and Rinard 2005; Artzi et al. 2007) or to its abstract state (Tschantz 2006;
Zibin et al. 2007). Modifications via aliases may be ignored (Sălcianu and Rinard
2005) or counted as a mutation (Zibin et al. 2007). (See Sect. 8.2 for further discus-
sion of related work.)

A precise definition of parameter reference mutability is a prerequisite to under-
standing, evaluating, or verifying an algorithm or tool. Some research (Kniesel and
Theisen 2001; Noble et al. 1998; Skoglund and Wrigstad 2001; Dietl and Müller
2005) informally describes reference mutability but does not define the concept pre-
cisely. Capabilities (Boyland et al. 2001), Javari (Tschantz 2006), and IGJ (Zibin et al.
2007) use type/annotation systems to formally define different variants of reference
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immutability. Such formal definitions (e.g., type rules) approximate what mutations
can actually occur: some references, that cannot be used to perform mutation, are
mutable according to the definition. By contrast, our definition is precise: it does
not depend on any particular implementation or approximation. Another difference
is that the previous definitions considered mutations in the entire program execution
when determining method parameter mutability. In our definition, which is inspired
by (Sălcianu and Rinard 2005; Artzi et al. 2007), only mutations during the execution
of the containing method are counted when determining parameter mutability. How-
ever, our definition easily extends to the definitions used by Javari, Capabilities, and
IGJ (Sect. 2.3 discusses the extension).

The lack of a precise, formal definition of reference (im)mutability has made it
difficult to determine both whether a program analysis tool correctly approximates
the ideal, and how closely it does so. In addition, previous approaches for computing
mutability suffered from scalability problems (static systems) and accuracy problems
(dynamic systems). Our research addresses these issues. We formally define para-
meter (im)mutability; we present Pidasa, an approach to detecting mutability that
combines the strengths of both static and dynamic analysis resulting in a system with
better run-time performance and accuracy. Finally, we qualitatively and quantitatively
compare both our definition and our implementation to existing immutability infer-
ence systems.

The Pidasa approach to mutability detection combines the strengths of static and
dynamic analyses. Previous work has employed static analysis techniques to detect
immutable parameters. Computing accurate static analysis approximations threatens
scalability, and imprecise approximations can lead to weak results. Dynamic analyses
offer an attractive complement to static approaches, both in not using approximations
and in detecting mutable parameters. In our approach, different analyses are com-
bined in stages, forming a “pipeline”, with each stage refining the overall result.

This paper focuses on reference immutability of parameters. Parameter immutabil-
ity is an important and useful special case of reference immutability, and it is sup-
ported by tools against which we can compare our definition. Our definition extends
in a straightforward way to general reference immutability.

Parameter reference immutability can be computed per method implementation.
A type system for reference immutability may enforce that method overriding pre-
serve mutability of parameters, and type annotations can be easily computed from the
per-implementation reference immutability information.

Contributions. This paper makes the following contributions:

• A formalization of a widely-used definition of parameter reference immutability
that does not depend on a type or annotation system.

• The first staged analysis approach for discovering parameter mutability. Our staged
approach is unusual in that it combines static and dynamic stages and it explic-
itly represents analysis incompleteness. The framework is sound, but an unsound
analysis may be used as a component, and we examine the tradeoffs involved in
such a choice.

• Mutability analyses. Our novel dynamic analysis scales well, yields accurate re-
sults (it has a sound mode as well as optional heuristics), and complements other
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immutability analyses. We extend the dynamic analysis with random input gener-
ation, which improves the analysis results by increasing code coverage. We also
explore a new point in the space of static techniques with a simple but effective
static analysis.

• Evaluation. We have implemented our framework and analyses for Java, in a tool
Pidasa. We performed two kinds of experiments.

The first kind of experiments, investigates the costs and benefits of various
sound and unsound techniques, including both Pidasa and that of Sălcianu and
Rinard (2005). Our results show that a well-designed collection of fast, simple
analyses can outperform a sophisticated analysis in both run-time performance and
accuracy.

The second kind of experiments demonstrates that the our formal definition is
useful in exposing similarities and differences between approaches to immutabil-
ity. We find that the evaluated analyses (Pidasa, JPPA (Sălcianu and Rinard 2005),
Javari (Birka and Ernst 2004; Tschantz and Ernst 2005), and JQual (Greenfield-
boyce and Foster 2007)) produce results that are very close to our formal definition,
which confirms the need for a common formal base.

Outline. The remainder of this paper is organized as follows. Section 2 formally
defines parameter reference immutability and illustrates it on an example (Appendix
contains a longer example). Section 3 presents our staged mutability analysis frame-
work. Sections 4 and 5 describe the new dynamic and static mutability analyses that
we developed as components in the staged analysis. Section 6 experimentally evalu-
ates various instantiations of the staged analysis framework. Section 7 experimentally
compares results computed by the Pidasa inference tool and other existing tools to the
formal definition. Section 8 surveys related work, and Sect. 9 concludes.

2 Parameter mutability definition

Informally, an object pointed by an immutable parameter reference cannot be
changed. However, different interpretations of what is considered a change exist. For
instance, the change might be to the set of reachable references from the parameter
(deep), or to the references immediately reachable from the parameter (shallow). The
change might happen during the method call, or after the method call. A change might
happen through an aliasing reference, without even referring to the parameter in the
method (reference vs. object immutability). Thus, a formal definition of parameter
reference mutability is non-trivial.

Reference immutability differs from object immutability, which states that a given
object cannot be mutated through any reference whatsoever. Both immutability vari-
ants have their own benefits. Reference immutability is more useful for specifying
that a procedure may not modify its arguments, even if the caller reserves the right to
do so before or after the procedure call. Object immutability is more useful, for exam-
ple, when optimizing a program to store constant data in a shared section or read-only
memory. Reference immutability is more fine-grained—reference immutability may
be combined with an alias and escape analysis to infer object immutability (Birka and
Ernst 2004; Sălcianu and Rinard 2005), but not vice-versa.
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Section 2.1 informally defines parameter mutability. Section 2.2 demonstrates the
intuition on an example. Section 2.3 formalizes parameter mutability. Section 2.4 and
Appendix give examples of the formal definition.

2.1 Informal definition

Parameter p of method m is reference-mutable if there exists any execution of m

during which p is used to mutate the state of the object pointed to by p. Parameter
p is said to be used in a mutation, if the left hand side of the mutating assignment
was p or was obtained from p via a series of field accesses and copy operations
during the given execution. (Array accesses are analogous. The index expression is
not considered to be used; that is, a[b.f].f= 0 is not a mutation of b.) The mutation
may occur in m itself or in any method that m transitively calls. The state of an
object o is the part of the heap that is reachable from o by following references,
and includes the values of reachable primitive fields. Thus, reference immutability
is deep—it covers the entire abstract state of an object, which includes the fields of
objects reachable from the object.

If no such execution (in all possible well-typed invocations of the method) exists,
the parameter p is reference-immutable.

For example, in the following method:

void f(C c) {
D d = c.d;
E e = d.e;
e.f = null;
}

parameter c is used in the mutation in the last statement since the statement is equiv-
alent to c.d.e.f= null.

The definition presented in this section, as well as its formalism in Sect. 2.3, is
perfectly precise, but it is not computable, due to the quantification over all possible
executions. Any tool can only infer an approximation of this definition of reference-
mutability. (By contrast, some other attempts at defining mutability are based on
a computable algorithm, but that does not capture the actual behavior of the pro-
gram.) Section 7 compares several mutability inference tools, including our Pidasa
tool (Sect. 3), to the definition.

2.2 Immutability classification example

In the code in Fig. 1, parameters p1-p5 are reference-mutable, since there exists
an execution of their declaring method such that the object pointed to by the para-
meter reference is modified via the reference. Parameters p6 and p7 are reference-
immutable.

Mutable parameters:

• p1 may be directly modified in modifyParam1 (line 8).
• p2 is passed to modifyParam1, in which it may be mutated.
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Fig. 1 Example code that is used to illustrates parameter immutability. All non-primitive parameters other
than p6 and p7 are mutable

• p3 is mutable because line 19 modifies p3.next.next.
• p4 is directly modified in modifyAll (line 18), because the mutation occurs via

reference p4.
• p5 is mutable because the state of the object passed to p5 can get modified on

line 19 via p5. This can happen because p4 and p3 might be aliased: for example,
in the call modifyAll(x2,x2,x1,false). In this case, the reference to p5 is
copied into c and then used to perform a modification on line 19. Neither p3 nor
p5 is considered reference mutable as a result of line 18 even though they might
be aliased to p4 at run time.

Immutable parameters:

• p6 and p7 are reference-immutable. No execution of either method doNot-
ModifyAnyParam or doNotModifyAnyParam2 can modify an object
passed to p6 or p7.

2.3 Formal definition

We present our formal parameter mutability definition in three steps. The first step
defines a core object-oriented language (Sect. 2.3.1). The second step defines the
evaluation rules (Sect. 2.3.1) (i.e., the operational semantics) that compute whether a
parameter reference is used in a mutation. The third step (Sect. 2.3.3) formally defines
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parameter reference-mutability (Definition 1) by adding universal quantification over
all possible well-typed invocations.

Our definition, described in this section, is quantified over all well-typed expres-
sions. As a consequence, our definition does not depend on any specific execution,
although it is defined using operational semantics in Sect. 2.3.1.

2.3.1 Core language

We define reference-mutability in the context of Mut Lightweight Java (MLJ), an
augmented version of Lightweight Java (LJ) (Tschantz 2006), a core calculus for Java
with mutation. LJ extends Featherweight Java (FJ) (Igarashi et al. 2001) to include
field assignment with the set construct. To support the field assignment, LJ adds the
store (S) that records a mapping from each object to its class and field record. LJ uses
the field record (F ) to record a mapping from each field to the values they contain.

The syntax of MLJ is presented in Fig. 2. The syntax of MLJ is identical to the
syntax of LJ without the parts of LJ that are related to generics and wild-cards. Those
parts are irrelevant to reference immutability. Control flow constructs such as if
only propagate, never introduce, mutation, so adding them to MLJ would only clutter
the presentation. Similarly, arrays offer no more insight than field accesses. Other
features, such as local variables, can be emulated in MLJ. The definition ignores
reflection, but some tools handle it, including the dynamic analyses of our Pidasa
tool (Sect. 3).

Mut Lightweight Java allows us to define mutability in the context of the under-
lying structure of Java, without being overwhelmed by the complexity of the full
language. Since the definition is quantified over all possible executions, it does not
depend on any specific execution, even though it uses operational semantics mecha-
nism.

To avoid clutter, in the description below we present the operational semantics
(evaluation) rules, but omit the typing rules, which are irrelevant to reference im-
mutability.

Figure 3 shows the notations of MLJ that are used in the operational semantics,
with the changes from LJ shown shaded. A value v = (|o, M|) in MLJ is a pair con-
taining the corresponding value o from LJ, and a mutability set M. If the value v can
be modified, then the formal parameters in (|o, M|) are parameter reference-mutable.
The ret expression provides a hook for removing formal parameters from mutability

Fig. 2 Syntax of Mut
Lightweight Java: same as
Lightweight Java (Tschantz
2006) without generics and wild
cards. X is a vector of X
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Fig. 3 Mut Lightweight Java
notations used in the operational
semantics (Fig. 4). Changes
from Lightweight Java
(Tschantz 2006) are shaded

sets when a method exits. A ret expression cannot be written by a user, but is cre-
ated during the evaluation of a program. The mutability store (Ω) contains the set of
parameters that have been discovered to be reference-mutable.

2.3.2 Evaluation rules

In MLJ, evaluation maintains a mutability set Ω for each value v. A formal parameter
C.m.x is added to set M for a given value v if either v was the value bound to
parameter C.m.x or if v was a result of a dereference operation from a value that had
C.m.x in its mutability set. On exit from the ith invocation of m, evaluation removes
from all mutability sets, any parameters added on the corresponding method entry.
A modification to a value causes the parameters in the value’s mutability set to be
classified as mutable.

Figure 4 shows the operational semantics rules for MLJ. Each reduction rule is a
relationship, 〈e, S,Ω〉 −→ 〈e′, S′,Ω ′〉, where expression e with store S and muta-
bility store Ω reduces to expression e′ with store S′ and mutability store Ω ′. The
changes from LJ, in computation and congruence rules, are shaded in Fig. 4. The
congruence rules remain essentially unchanged between LJ and MLJ. We describe
each computation rule, and the additional computation in MLJ.

[R-FIELD] This rule evaluates field accesses.
LJ: locates the value v2 stored in the field and returns it.
MLJ: adds the mutability set Mv1 , of the dereferenced value v1, to the mutability
set of v2. The field access causes v2 to be accessed from the parameters in Mv1 , as
well as the parameters that were previously used to obtain v2 (i.e., the mutability set
of v2).

[R-INVK] This rule evaluates method invocations.
LJ: works in two stages. First, it finds the correct method m (using auxiliary function
mbody which returns a pair x.e where x are m’s formal parameters and e is m’s
body). Second, it replaces the call with the body of m and replaces each formal
parameter with the actual parameter.
MLJ: updates the mutability set of each formal parameter with the corresponding
superscripted (with number of invocations) formal parameter, e.g., mi.x. This rule
also adds a ret expression call. The ret expression enables the [R-RET] rule to re-
move the same superscripted (with number of invocations) formal parameters from
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Fig. 4 Operational semantics (evaluation rules) for Mut Lightweight Java. Changes from Lightweight
Java (Tschantz 2006) are shaded

all the relevant mutability sets when the method exits. This rule uses the auxiliary
method invocations which returns the number of times the method m was invoked
(also ensures that i is fresh).

[R-RET] This rule evaluates ret expressions and it does not exist in LJ.
MLJ: removes superscripted (see rule [R-INVK]) method formal parameters from
all mutability sets. The function remove removes the parameters of mi from the
mutability set of the returned value v. The function removeAll does the same for all
other values in the store.

[R-NEW] This rule evaluates object allocations.
LJ: creates a newly-allocated object.
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MLJ: sets the mutability set of the newly-allocated object o to the empty mutability
set.

[R-SET] This rule evaluates set expressions, i.e., field writes.
LJ: updates the value stored in a field for a given object.
MLJ: adds all the un-superscripted parameters (auxiliary method removeSuper-
script) from the mutability set of the modified object to the mutability store Ω .

2.3.3 Reference-immutability definition

We define reference-immutable and reference-mutable parameters:

Definition 1 (Parameter reference mutability) Parameter x of method m of class C is
reference-mutable if there exists an expression e such that C.m.x ∈ Ω at the end of
the evaluation of e. Otherwise, p is reference-immutable.

To simplify the presentation in the rest of this section, we will refer to C.m.x as
x and to C.m as m. Theorem 1 demonstrates the properties of Definition 1 and its
equivalence to the intuitive informal definition. An auxiliary Definition 2 formalizes
the notion of a series of dereferences needed for Theorem 1.

Let φ(i,m, e) be the evaluation of the ith invocation (dynamically) of m in e. We
write it as φ when the parameters can be inferred from context.

Let v
φ
x = (|o, Mv ∪ mi .x|) be the value passed to x at the start of φ (Rule

[R-INVK]).

Definition 2 We inductively define δ
φ
j (x), the executed dereference set of x during

the first j evaluation steps of φ.

δ
φ
1 (x) = {vφ

x },
δ
φ
j (x) = δ

φ
j−1(x) ∪ (|o2, Mv1 ∪ Mv2 |) if the j th step is [R-FIELD]

and v1 ∈ δ
φ
j−1(x),

δ
φ
j (x) = δ

φ
j−1(x) otherwise.

Let δφ(x) be the set of executed dereferences at the end of φ.

Theorem 1 A parameter x is reference-mutable iff there exist v, i, m, e, j such that
v ∈ δ

φ
j (x) and [R-SET] is evaluated on v.f during φ.

Before proving Theorem 1 we present two auxiliary lemmas. Lemma 1 states that
mi.x can exist in a mutability set only during φ. Lemma 2 states that if a value v is
in the executed dereferences of a parameter x, then v’s mutability set contains x.

Lemma 1 Suppose that v = (|o, Mv|) and mi.x ∈ Mv . Such a value v can exist only
during φ.
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Proof mi.x is created and added to a mutability set in rule [R-INVK] when starting
the evaluation φ. [R-RET], which evaluates at the end of φ, removes all parameters
of the form mi.x from all mutability sets. �

Lemma 2 presents the equality of the mutability set and the set of “used” refer-
ences.

Lemma 2 Let v = (|o, Mv|). Then mi.x ∈ Mv iff v ∈ δφ(x).

Proof ←− Proof by induction on j where v = vj such that vj ∈ δ
φ
j (x) ∧ vj 
∈

δ
φ
j−1(x).

If j = 1 then v = v
φ
x and mi .x ∈ v

φ
x by definition.

Otherwise, from Definition 2

vj = (|o2, Mv1 ∪ Mv2 |) ∧ v1 ∈ δ
φ
j−1(x).

By the induction assumption mi .x ∈ Mv1 . Thus mi .x ∈ Mvj .
−→ From mi.x ∈ Mv it follows that mi .x was added to Mv in either rule

[R-INVK] or rule [R-FIELD] (the only two rules that augment a mutability set).
If mi .x was added to Mv in rule [R-INVK] then v ∈ δ

φ
1 (x).

If mi .x was added to Mv in rule [R-FIELD] then

v = (|o2, Mv1 ∪ Mv2 |) and mi .x ∈ Mv1 or mi .x ∈ Mv2 .

The rest of the proof follows by induction on the length of the executed [R-FIELD]
from a value that contains mi .x in its mutability set. �

The proof of Theorem 1 follows directly from Lemmas 2 and 1.

Proof −→ By Definition 1,

∃e such that m.x ∈ Ω during the evaluation of e.

Since rule [R-SET] is the only rule creating a larger Ω it follows that

∃v = (|o, Mv|) such that mi .x ∈ Mv and [R-SET] is evaluated on v.f.

By Lemma 1, v can only exist during φ. The proof now follows directly from
Lemma 2.

←− By v ∈ δ
φ
j (x) and Lemma 2,

mi.x ∈ Mv.

Since [R-SET] is evaluated on v.f during φ, we get mi .x ∈ Ω . By Definition 1, x is
mutable. �
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Our definition accounts for mutations that occur during the dynamic extent of
a method invocation. In some other mutability definitions (Boyland et al. 2001;
Tschantz 2006; Zibin et al. 2007), if a parameter’s value escapes to another con-
text in which the value is later mutated, then the parameter is mutable in the original
method (e.g., a getter method). Our framework accommodates both varieties of de-
finition: removing rule [R-RET] converts Definition 1 into the other variant. In the
revised definition, a reference is not removed from the mutability set when its method
exits.

The rest of this paper uses mutable and immutable to refer to parameter reference
mutable and parameter reference immutable, respectively.

2.4 Examples

We illustrate Definition 1 on two example functions in Figs. 5 and 6. Each example
contains a program in MLJ and a table with the evaluation of MLJ operational seman-
tics on the program. Each line in the table presents an expression to be evaluated, the
state of the stores corresponding to the expression, and the next rule to apply. Simi-
larly to Featherweight Java (Pierce 2002), we treat Obj as a distinguished class name
whose definition does not appear in the class table. Obj has an empty constructor, no
methods, and no fields. In addition, irrelevant (to mutability) details such as calls to
super in constructors and the extends keyword are omitted.

Example (Classifying a modified receiver as mutable, Fig. 5) The parameter this
of the function m in Fig. 5 is mutable because line 4 modifies this. The first two
lines in the MLJ evaluation show the evaluation of the [R-NEW] rules. These rules
creates the initial state of the store, and all the values created in them have empty
mutability sets. The rule [R-INVK] is applied to the expression in step 3. Since it
is the first invocation of the method m, parameters m1 and m1.this are added to

Fig. 5 Classifying a mutable parameter. The Mut Lightweight Java program calls a method that updates
a field in an object. The figure shows the evaluation of the program using the rules of Fig. 4. After the rule
[R-SET] is applied (step 4), the parameter m.this is classified as mutable. Symbol . . . means that a store
does not change between evaluation steps
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Fig. 6 Classifying a mutable parameter while leaving another parameter, that points to a modified object,
non mutable. Symbol . . . means that a store does not change between evaluation steps. For the lack of
local variables in the language, the utility method n sends the same object (this) as both parameters of the
method m. The figure demonstrate how 2 parameters are classified as mutable, using the rules of Fig. 4.
After the rule [R-SET] is applied to the expression in line 5, the parameters n.this and m.p1 are classified
as mutable. Parameter m.p2 can not be in the modified set of any parameter in the body of method m and
thus there is no execution that will modify m.p2, and so m.p2 is defined as immutable

the mutability sets of the newly created values. The rule [R-SET] is applied to the
expression in step 4. Since the object o3 is modified, the parameters in its mutability
set {m1.this} are added to the store of mutable parameters. Finally, the evaluation of
the rule [R-RET] signals the exit from method m1 and thus it removes all parameters
superscripted by 1 from the mutability sets.

Example (Classifying aliased parameters, Fig. 6) In function m (Fig. 6), reference
p1 is mutable due to the modification in line 5. However, reference p2 is reference-
immutable—it is never used to make any modification to an object during the execu-
tion of m. The evaluation table in Fig. 6 demonstrates that parameter p2 of function m
is not reference-mutable in the call m(o,o) (i.e., even when parameters are aliased).
When the execution finishes, m.p2 
∈ Ω and thus it is not classified as mutable during
the evaluation of the call new B().n() or any other call for that matter.

Our definition is concerned with reference mutability, which, together with alias-
ing information, may be used to compute object mutability. In the example of func-
tion m in Fig. 6, the information that parameter p2 is reference-immutable can be
combined with information about p1 and p2 being aliased in the call m(o,o) to
determine that, in that call, both objects may be modified.

Appendix contains an additional, more involved, example of an evaluation of MLJ.
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3 Staged mutability analysis

The goal of any parameter-reference-mutability analysis is the classification of each
method parameter (including the receiver) as either reference-mutable or reference-
immutable.

In Pidasa approach, mutability analyses are combined in stages, forming a
“pipeline”. The input to the first stage is the initial classification of all parameters
(typically, all unknown, though parameters declared in the standard libraries may be
pre-classified). Each stage of the pipeline refines the results computed by the previous
stage by classifying some unknown parameters. Once a parameter is classified as mu-
table or immutable, further stages do not change the classification. The output of the
last stage is the final classification, in which some parameters may remain unknown.

Throughout this paper, two objects are aliased if the intersection of their states
contains at least one non-primitive object (the same object is reachable from both of
them).

Our dynamic and static analyses complement each other to classify parameters in
Fig. 1 into mutable and immutable, in the following steps:

1. Initially, all parameters are unknown.
2. A flow-insensitive, intra-procedural static analysis classifies p1, p4, and p5 as

mutable. The analysis classifies p6 as immutable—there is no direct mutation in
the method and the parameter does not escape.

3. An inter-procedural static analysis propagates the current classification along the
call-graph. It classifies p2 as mutable since it is passed to an already known mu-
table parameter, p1. It also classifies parameter p7 as immutable since it can only
be passed to immutable parameters.

4. A dynamic analysis classification of p3 depends on the given example execution.
The dynamic analysis classifies p3 as mutable if a method (similar to the main
method below)

void main() {
modifyAll(x1, x2, x2, false);
}

is supplied or generated (see Sect. 4.4). Otherwise, the dynamic analysis classifies
p3 as unknown.

Our staged analysis correctly classifies all parameters in Fig. 1. However, this
example poses difficulties for purely static or purely dynamic techniques. On the one
hand, static techniques have difficulties correctly classifying p3. This is because, to
avoid over-conservatism, static analyses often assume that on entry to a method all
parameters are fully un-aliased, i.e., point to disjoint parts of the heap. In our example,
this assumption may lead such analyses to incorrectly classify p3 as immutable (in
fact, Sălcianu uses a similar example to illustrate the unsoundness of his analysis,
Sălcianu 2006, p. 78). On the other hand, dynamic analyses are limited to a specific
execution and only consider modifications that happen during that execution. In our
example, a purely dynamic technique may incorrectly classify p2 as immutable if
during the execution, p2 is not modified.
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Fig. 7 The static and dynamic
component analyses used in our
experiments. “�*” means the
algorithm is trivially sound, by
never outputting the given
classification. “�†” means the
algorithm is sound but our
implementation is not

Combining mutability analyses can yield an analysis that has better accuracy than
any of the components. For example, a static analysis can analyze an entire program
and can prove the absence of a mutation, while a dynamic analysis can avoid analysis
approximations and can prove the presence of a mutation.

Combining analyses in a pipeline also has performance benefits—a component
analysis in a pipeline may ignore previously classified parameters. This can permit
the use of techniques that would be too computationally expensive if applied to an
entire program.

The problem of mutability inference is undecidable, so no analysis can be both
sound and complete. An analysis is i-sound if it never classifies a mutable parameter
as immutable. An analysis is m-sound if it never classifies an immutable parameter as
mutable. An analysis is complete if it classifies every parameter as either mutable or
immutable.

In our staged approach, analyses may explicitly represent their incompleteness
using the unknown classification. Thus, an analysis result classifies parameters into
three groups: mutable, immutable, and unknown. Previous work that used only two
output classifications (Rountev and Ryder 2001; Rountev 2004) loses information
by conflating parameters/methods that are known to be mutable with those where
analysis approximations prevent definitive classification.

Some tasks, such as many compiler optimizations (Clausen 1997; Sălcianu 2006)
require i-sound results (unless the results are treated as hints or are used online for
only the current execution, Xu et al. 2007). Therefore, we have i-sound versions of
our static and our dynamic analyses. However, other tasks, such as test input gener-
ation (Artzi et al. 2006), can benefit from more complete immutability classification
while tolerating i-unsoundness. For this reason, we have devised several unsound
approximations to increase the completeness (recall) of the analyses. Clients of the
analysis can create an i-sound analysis by combining only i-sound components. Other
clients, desiring more complete information, can use i-unsound components as well.
Figure 7 summarizes the soundness characteristics of the analyses presented in this
paper.

4 Dynamic mutability analysis

Our dynamic mutability analysis observes the program’s execution and classifies as
mutable those method parameters that are used to mutate objects. Our analysis does
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not implement the formal rules of Definition 1. It implements a simpler version of the
formal rules that is designed for optimization.

The algorithm is m-sound: it classifies a parameter as mutable only when the para-
meter is mutated. The algorithm is also i-sound: it classifies all remaining parameters
as unknown. Section 4.1 gives the idea behind the algorithm, and Sect. 4.2 describes
an optimized implementation.

To improve the analysis results, we developed several heuristics (Sect. 4.3). Each
heuristic carries a different risk of unsoundness. However, most are shown to be ac-
curate in our experiments. The analysis has an iterative variation with random input
generation (Sect. 4.4) that improves analysis precision and run-time.

4.1 Conceptual algorithm

The conceptual algorithm is based on Definition 1. The algorithm maintains the mu-
tability set for each reference during the program execution. The mutability set is the
set of all formal parameters (from any method invocation on the call stack) whose
fields were directly or indirectly accessed to obtain the reference. When a reference
x is side-effected (i.e., used in x.f= y), all formal parameters in x’s mutability set
are classified as mutable. The algorithm implements the following set of data-flow
rules based on the evaluation rules in Sect. 2.3.2.

1. On method entry, the algorithm adds each formal parameter (that is classified as
unknown) to the parameter set of the corresponding actual parameter reference.

2. On method exit, the algorithm removes all parameters for the current invocation
from the parameter sets of all references in the program.

3. Assignments, including pseudo-assignments for parameter passing and return val-
ues, propagate the parameter sets unchanged.

4. Field accesses also propagate the sets unchanged: the set of parameters for x.f is
the same as that of x.

5. For a field write x.f= v, the algorithm classifies as mutable all parameters in the
parameter set of x.

The next section presents an alternative algorithm that we implemented.

4.2 Optimized dynamic analysis algorithm

Maintaining mutability sets for all references, as required by the algorithm of
Sect. 4.1, is computationally expensive. To improve performance, we developed an
alternative algorithm that does not maintain mutability sets. The alternative algorithm
is i-sound and m-sound, but is less complete—it classifies fewer parameters. In the
alternative algorithm, parameter p of method m is classified as mutable if: (i) the tran-
sitive state of the object that p points to changes during the execution of m, and (ii) p

is not aliased to any other parameter of m. Without part (ii), the algorithm would not
be m-sound—immutable parameters that are aliased to a mutable parameter during
the execution might be wrongly classified as mutable.

The example code in Fig. 8 illustrates the difference between the conceptual al-
gorithm presented in Sect. 4.1 and the alternative algorithm presented in this section.
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Fig. 8 Example code that is
used to illustrates the limitation
of the alternative algorithm in
Sect. 4.2

By definition 1 parameters p1,p3,p4 are mutable. The conceptual algorithm will
classify them correctly when observing the execution of the method main. However,
the alternative algorithm leaves all parameters as unknown since these parameters are
aliased (in fact in this example they refer to the same object)—when the modification
occurs. Note that the intra-procedural static analysis (Sect. 5.1) compensates for the
incompleteness of the dynamic analysis in this case and correctly classifies p1, p3,
p4 as mutable.

The algorithm permits an efficient implementation: when method m is called dur-
ing the program’s execution, the analysis computes the set reach(m,p) of objects that
are transitively reachable from each parameter p via field references. When the pro-
gram writes to a field in object o, the analysis finds all parameters p of methods that
are currently on the call stack. For each such parameter p, if o ∈ reach(m,p) and p is
not aliased to other parameters of m, then the analysis classifies p as mutable. The al-
gorithm checks aliasing by verifying emptiness of intersection of reachable sub-heaps
(ignoring immutable objects, such as boxed primitives, which may be shared).

The implementation instruments the analyzed code at load time. The analysis
works online, i.e., in tandem with the target program, without creating a trace file.
Our implementation includes the following three optimizations, which together im-
prove the run time by over 30×: (a) the analysis determines object reachability by
maintaining and traversing its own data structure that mirrors the heap, which is
faster than using reflection; (b) the analysis computes the set of reachable objects
lazily, when a modification occurs; and (c) the analysis caches the set of objects tran-
sitively reachable from every object, invalidating it when one of the objects in the set
is modified.

4.3 Dynamic analysis heuristics

The dynamic analysis algorithm described in Sects. 4.1 and 4.2 is m-sound—a para-
meter is classified as mutable only if it is modified during execution. Heuristics can
improve the completeness, or recall (see Sect. 6), of the algorithm. The heuristics
take advantage of the absence of parameter modifications and of the classification re-
sults computed by previous stages in the analysis pipeline. Using the heuristics may
potentially introduce i-unsoundness or m-unsoundness to the analysis results, but in
practice, they cause few misclassifications (see Sect. 6.3.5).
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(A) Classifying parameters as immutable at the end of the analysis. This heuristic
classifies as immutable all (unknown) parameters that satisfy conditions that are set
by the client of the analysis. In our framework, the heuristic classifies as immutable
a parameter p declared in method m if p was not modified, m was executed at least
N times, and the executions achieved block coverage of at least t%. Higher values of
the threshold N or t increase i-soundness but decrease completeness.

The intuition behind this heuristic is that, if a method executed multiple times,
and the executions covered most of the method, and the parameter was not modified
during any of those executions, then the parameter may be immutable. This heuristic
is m-sound but i-unsound. In our experiments, this heuristic greatly improved recall
and was not a significant source of mistakes (Sect. 6.3.5).

(B) Using current mutability classification. This heuristic classifies a parameter as
mutable if the object to which the parameter points is passed in a method invocation
to a formal parameter that is already classified as mutable (by a previous or the current
analysis). That is, the heuristic does not wait for the actual modification of the object
but assumes that the object will be modified if it is passed to a mutable position. The
heuristic improves analysis performance by not tracking the object in the new method
invocation.

The intuition behind this heuristic is that if an object is passed as an argument to a
parameter that is known to be mutable, then it is likely that the object will be modi-
fied during the call. The heuristic is i-sound but m-unsound. In our experiments, this
heuristic improved recall and run time of the analysis and caused few misclassifica-
tions (see Sect. 6.3.5).

(C) Classifying aliased mutated parameters. This heuristic classifies a parameter
p as mutable if the object that p points to is modified, regardless of whether the
modification happened through an alias to p or through the reference p itself. For ex-
ample, if parameters a and b happen to point to the same object o, and o is modified,
then this heuristic will classify both a and b as mutable, even if it the modification is
only done using the formal parameter’s reference to a.

The heuristic is i-sound but m-unsound. In our experiments, using this heuristic
improved the results in terms of recall, without causing any misclassifications.

4.4 Using randomly generated inputs

In this section we consider the use of randomly generated sequences of method calls
as the required input for the dynamic analysis. Random generation can complement
(or even replace) executions provided by a user. For instance, Pacheco et al. (2007)
uses feedback-directed random generation to detect previously-unknown errors in
widely used (and tested) libraries.

Using randomly-generated execution has benefits for a dynamic analysis. First, the
user need not provide a sample execution. Second, random executions may explore
parts of the program that the user-supplied executions do not reach. Third, each of
the generated random inputs may be executed immediately—this allows the client of
the analysis to stop generating inputs when the client is satisfied with the results of
the analysis computed so far. Fourth, the client of the analysis may focus the input
generator on methods with unclassified parameters.
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Our generator gives a higher selection probability to methods with unknown pa-
rameters and methods that have not yet been executed by other dynamic analyses
in the pipeline. Generation of random inputs is iterative. After the dynamic analy-
sis has classified some parameters, it makes sense to propagate that information (see
Sect. 5.3) and to re-focus random input generation on the remaining unknown pa-
rameters. Such re-focusing iterations continue as long as each iteration classifies at
least 1% of the remaining unknown parameters (the threshold is user-settable).

By default, the number of generated method calls per iteration is
max(5000,#methodsInProgram). The randomly generated inputs are executed in a
safe way (Pacheco et al. 2007), using a Java security manager.

5 Static mutability analysis

This section describes a simple, scalable static mutability analysis. It consists of
two phases: S, an intraprocedural analysis that classifies as (im)mutable parameters
(never) affected by field writes within the procedure itself (Sect. 5.2), and P, an in-
terprocedural analysis that propagates mutability information between method para-
meters (Sect. 5.3). P may be executed at any point in an analysis pipeline after S has
been run, and may be run multiple times, interleaving with other analyses. S and P
both rely on an intraprocedural pointer analysis that calculates the parameters pointed
to by each local variable (Sect. 5.1).

5.1 Intraprocedural points-to analysis

To determine which parameters can be pointed to by each expression, we use an in-
traprocedural, context-insensitive, flow-insensitive, 1-level field-sensitive, points-to
analysis. As a special case, the analysis is flow-sensitive on the code from the begin-
ning of a method through the first backwards jump target, which includes the entire
body of methods without loops. We are not aware of previous work that has explored
this point in the design space, which we found to be both scalable and sufficiently
precise.

The points-to analysis calculates, for each local variable l, a set P0(l) of parame-
ters whose state l can point to directly and a set P(l) of parameters whose state l can
point to directly or transitively. (Without loss of generality, we assume three-address
SSA form and consider only local variables.) The points-to analysis has “overesti-
mate” and “underestimate” varieties; they differ in how method calls are treated (see
below).

For each local variable l and parameter p, the analysis calculates a distance map
D(l,p) from the fields of object l to a non-negative integer or ∞. D(l,p)(f ) repre-
sents the number of dereferences that can be applied to l starting with a dereference
of the field f to find an object pointed to (possibly indirectly) by p. Each map D(l,p)

is either strictly positive everywhere or is zero everywhere. As an example, suppose l

directly references p or some object transitively pointed to by p; then D(l,p)(f ) = 0
for all f . As another example, suppose l.f.g.h = p.x; then D(l,p)(f ) = 3. The dis-
tance map D makes the analysis field-sensitive, but only at the first layer of derefer-
encing; we found this to be important in practice to provide satisfactory results.
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The points-to analysis computes D(l,p) via a fixpoint computation on each
method. At the beginning of the computation, D(p,p)(f ) = 0, and D(l,p)(f ) = ∞
for all l 
= p. The dataflow rules are straightforward, so we give their flavor with a
few examples:

• A field dereference l1 = l2.f updates

∀g : D(l1,p)(g) ← min(D(l1,p)(g),D(l2,p)(f ) − 1),

D(l2,p)(f ) ← min(D(l2,p)(f ),min
g

D(l1,p)(g) + 1).

• A field assignment l1.f = l2 updates

D(l1,p)(f ) ← min(D(l1,p)(f ),min
g

D(l2,p)(g) + 1),

∀g : D(l2,p)(g) ← min(D(l2,p)(g),D(l1,p)(f ) − 1).

• Method calls are handled either by assuming they create no aliasing (creating an
underestimate of the true points-to sets) or by assuming they might alias all of their
parameters together (creating an overestimate). If an underestimate is desired, no
values of D(l,p)(f ) are updated. For an overestimate, let S be the set of all locals
used in the statement (including receiver and return value); for each l ∈ S and each
parameter p, set D(l,p)(f ) ← minl′∈S minf ′ D(l′,p)(f ′).

After the computation reaches a fixpoint, it sets

P(l) = {p | ∃f : D(l,p)(f ) 
= ∞},
P0(l) = {p | ∀f : D(l,p)(f ) = 0}.

5.2 Intraprocedural phase: S

The static analysis S works in four steps. First, S performs the “overestimate”
points-to analysis (Sect. 5.1). Second, the analysis marks as mutable some para-
meters that are currently marked as unknown: for each mutation l1.f = l2, the
analysis marks all elements of P0(l1) as mutable. Third, the analysis computes a
“leaked set” L of locals, consisting of all arguments (including receivers) in all
method invocations and all locals assigned to a static field (in a statement of the
form Global.field= local). Fourth, if all the parameters of a method that are
not already classified as immutable are unknown parameters that are not in the set⋃

l∈L P (l) the analysis marks them as immutable.
S is i-sound and m-unsound. To avoid over-conservatism, S assumes that on the

entry to the analyzed method all parameters are fully un-aliased, i.e., point to dis-
joint parts of the heap. This assumption may cause S to miss possible mutations due
to aliased parameters; to maintain i-soundness, S never classifies a parameter as im-
mutable unless all other parameters to the method can be classified as immutable.

For example, S does not detect any mutation to parameter p5 of the method
modifyAll in Fig. 1. Since other parameters of modifyAll (i.e., p3 and p4)
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are classified as mutable, S conservatively leaves p5 as unknown. In contrast, Săl-
cianu’s static analysis JPPA (Sălcianu and Rinard 2005) incorrectly classifies p5 as
immutable.

The m-unsoundness of S is due to infeasible paths (e.g., unreachable code), flow-
insensitivity, and the overestimation of the points-to analysis.

5.2.1 Intraprocedural analysis heuristic

We have also implemented a i-unsound heuristic SH that is like S, but it can classify
parameters as immutable even when other parameters of the same method are not
classified as immutable. In our experiments, this never caused a misclassification.

5.3 Interprocedural propagation phase: P

The interprocedural propagation phase P refines the current parameter classifica-
tion by propagating both mutability and immutability information through the call
graph. Given an i-sound input classification, the propagation algorithm is i-sound
and m-sound. However, our implementation is i-sound and m-unsound.

Because propagation ignores the bodies of methods, the P phase is i-sound only
if the method bodies have already been analyzed. It is intended to be run only after
the S phase of Sect. 5.1 has already been run. However, it can be run multiple times
(with other analyses in between).

Section 5.3.1 describes the binding multi-graph (BMG), and then Sect. 5.3.2 gives
the propagation algorithm itself.

5.3.1 Binding multi-graph

The propagation uses a variant of the binding multi-graph (BMG) (Cooper and
Kennedy 1988); our extension accounts for pointer data structures. Each node is a
method parameter m.p. An edge from m1.p1 to m2.p2 exists iff m1 calls m2, pass-
ing as parameter p2 part of p1’s state (either p1 or an object that may be transitively
pointed-to by p1).

A BMG is created by generating a call-graph and translating each method call edge
into a set of parameter dependency edges, using the sets P(l) described in Sect. 5.1
to tell which parameters correspond to which locals.

The BMG creation algorithm is parameterized by a call-graph construction algo-
rithm. Our experiments used CHA (Dean et al. 1995)—the simplest and least pre-
cise call-graph construction algorithm offered by Soot. In the future, we want to in-
vestigate using more precise but still scalable algorithms, such as RTA (Bacon and
Sweeney 1996) (available in Soot, but containing bugs that prevented us from using
it), or those proposed by Tip and Palsberg (2000) (not implemented in Soot).

The true BMG is not computable, because determining perfect aliasing and call
information is undecidable. Our analysis uses an under-approximation (i.e., it con-
tains a subset of edges of the ideal graph) and an over-approximation (i.e., it con-
tains a superset of edges of the ideal graph) to the BMG as safe approximations
for determining mutable and immutable parameters, respectively. One choice for the
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over-approximated BMG is the fully-aliased BMG, which is created with an overes-
timating points-to analysis which assumes that method calls introduce aliasings be-
tween all parameters. One choice for the under-approximated BMG is the un-aliased
BMG, which is created with an underestimating points-to analysis which assumes
that method calls introduce no aliasings between parameters. More precise approxi-
mations could be computed by a more complex points-to analysis.

To construct the under-approximation of the true BMG, propagation needs a call-
graph that is an under-approximation of the real call-graph. However, most exist-
ing call-graph construction algorithms (Dean et al. 1995; Diwan et al. 1996; Bacon
and Sweeney 1996; Tip and Palsberg 2000) create an over-approximation. Therefore,
our implementation uses the same call-graph for building the un- and fully-aliased
BMGs. Due to this approximation, our implementation of P is m-unsound. Actually,
P is m-unsound even on the under-approximation of the BMG. For example, assume
that m1.p1 is unknown, m2.p2 is mutable, and there is an edge between m1.p1 and
m2.p2. It is possible that there is an execution of m2.p2 in which p2 is mutated,
but for every execution that goes through m1, m2.p2 is immutable. In this case, the
algorithm would incorrectly classify m1.p1 as mutable. In our experiments, this ap-
proximation caused several misclassifications of immutable parameters as mutable
(see Sect. 6.3.1).

5.3.2 Propagation algorithm

Propagation refines the parameter classification in 2 phases.
The mutability propagation classifies as mutable all the unknown parameters that

can reach in the under-approximated BMG (that is, can flow to in the program) a pa-
rameter that is classified as mutable. Using an over-approximation to the BMG would
be unsound because spurious edges may lead propagation to incorrectly classify pa-
rameters as mutable.

The immutability propagation phase classifies additional parameters as im-
mutable. This phase uses a fix-point computation: in each step, the analysis classifies
as immutable all unknown parameters that have no mutable or unknown successors
(callees) in the over-approximated BMG. Using an under-approximation to the BMG
would be unsound because if an edge is missing in the BMG, the analysis may clas-
sify a parameter as immutable even though the parameter is really mutable. This is
because the parameter may be missing, in the BMG, a mutable successor.

6 Evaluation

We implemented the combined static and dynamic analysis framework in a tool, Pi-
dasa, and experimentally evaluated all sensible combinations (192 in all) of the mu-
tability analyses described above, we compared the results with each other and with
the correct classification of parameters as determined by Definition 1. Our results
indicate that staged mutability analysis can be accurate, achieve better run-time per-
formance, and are useful.
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6.1 Methodology and measurements

We computed mutability for 6 open-source subject programs (see Fig. 9). When an
example input was needed (e.g., for a dynamic analysis), we ran each subject program
on a single input.

• jolden1 is a benchmark suite of 10 small programs. As the example input, we used
the main method and arguments that were included with the benchmarks. We
included these programs primarily to permit comparison with Sălcianu’s evaluation
(Sălcianu and Rinard 2005).

• sat4j2 is a SAT solver. We used a file with an unsatisfiable formula as the example
input.

• tinysql3 is a minimal SQL engine. We used the program’s test suite as the example
input.

• htmlparser4 is a real-time parser for HTML. We used our research group’s web-
page as the example input.

• ejc5 is the Eclipse Java compiler. We used one Java file as the example input.
• daikon6 is an invariant detector. We used the StackAr test case from its distribution

as the example input.

As the input to the first analysis in the pipeline, we used a pre-computed classi-
fication for all parameters in the Java standard libraries. Callbacks from the library
code to the client code (e.g., toString(), hashCode()) were analyzed under
the closed world assumption in which all of the subject programs were included. The
pre-computed classification was created once, and reused many times in all the exper-
iments. A benefit of using this classification is that it covers otherwise un-analyzable
code, such as native calls.

We measured the results only for non-trivial parameters declared in the appli-
cation. That is, we did not count parameters with a primitive, boxed primitive, or
String type, nor parameters declared in external or JDK libraries.

To measure the accuracy of each mutability analysis, we determined the correct
classification (mutable or immutable) for 8,885 parameters: all of jolden and ejc, and
4 randomly-selected classes from each of the other programs. To find the correct
classification, we first ran every tool available to us (including our analysis pipelines,
Sălcianu’s tool, and the Javarifier (Tschantz 2006; Quinonez et al. 2008) type infer-
ence tool for Javari). Then, we manually verified the correct classification for every
parameter where any two tool results differed, or where only one tool completed suc-
cessfully. In addition, we verified an additional 200 parameters, chosen at random,
where all tools agreed. We found no instances where the tools agreed on the mutabil-
ity result, but the result was incorrect.

1http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
2http://www.sat4j.org/
3http://sourceforge.net/projects/tinysql
4http://htmlparser.sourceforge.net/
5http://www.eclipse.org/
6http://pag.csail.mit.edu/daikon/

http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
http://www.sat4j.org/
http://sourceforge.net/projects/tinysql
http://htmlparser.sourceforge.net/
http://www.eclipse.org/
http://pag.csail.mit.edu/daikon/
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Fig. 9 Subject programs

Figure 10 and the tables in Sect. 6.3 present precision and recall results, computed
as follows:

i-precision = ii

ii + im
,

i-recall = ii

ii + ui + mi
,

m-precision = mm

mm + mi
,

m-recall = mm

mm + um + im
,

where ii is the number of immutable parameters that are correctly classified, and
mi is the number of immutable parameters incorrectly classified as mutable (simi-
larly, ui). Similarly, for mutable parameters, we have mm, im and um. i-precision is
measure of soundness: it counts how often the analysis is correct when it classifies a
parameter as immutable. i-recall is measure of completeness: it counts how many im-
mutable parameters are marked as such by the analysis. m-precision and m-recall are
similarly defined. An i-sound analysis has i-precision of 1.0, and an m-sound analysis
has m-precision of 1.0. Ideally, both precision and recall should be 1.0, but this is not
feasible: there is always a trade-off between analysis precision and recall.

6.2 Evaluated analyses

Our experiments evaluate pipelines composed of analyses described in Sect. 3. X-Y-Z
denotes a staged analysis in which component analysis X is followed by component
analysis Y and then by component analysis Z.

Our experiments use the following component analyses:

• S is the sound intraprocedural static analysis (Sect. 5.2).
• SH is the intraprocedural static analysis heuristic (Sect. 5.2.1).
• P is the interprocedural static propagation (Sect. 5.3).
• D is the dynamic analysis (Sect. 4), using the inputs of Sect. 6.1.
• DH is D, augmented with all the heuristics described in Sect. 4.3. DA, DB, and DC

are D, augmented with just one of the heuristics.
• DRH is DH enhanced with random input generation (Sect. 4.4); likewise for DRA,

etc.
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Fig. 10 Mutability analyses on
subject programs. Empty cells
mean that the analysis aborted
with an error. The abbreviations
for the component analysis are
described in Sect. 6.2

Additionally, we used JPPA (Sălcianu and Rinard 2005). Its informal mutability
definition matches Definition 1, so JPPA is a natural comparison for the above analy-
ses. We included the following additional analyses:

• J is Sălcianu and Rinard’s state-of-the-art static analysis JPPA that never classifies
parameters as mutable—only immutable and unknown.

• JM is J, augmented to use a main method that contains calls to all the public
methods in the subject program (Rountev 2004); J only analyzes methods that are
reachable from main.

• JMH is JM plus an m-unsound heuristic to classify as mutable any parameter for
which J provides an explanation of a potential modification.
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6.3 Results

We experimented with six programs and 192 different analysis pipelines. Figure 10
compares the accuracy of a selected set of mutability analyses among those with
which we experimented. S-P-DRBC-P is the best-performing i-sound staged analy-
sis. For clients that do not require i-soundness, the pipeline with the highest sum
of precision and recall was SH-P-DRH-P. Compared to Sălcianu’s (Sălcianu and Ri-
nard 2005) state-of-the-art analysis J, the staged mutability analysis achieves equal or
slightly worse i-precision, better i-recall, and much better m-recall and m-precision.
SH-P-DRH-P also achieves better run-time performance (see Sect. 6.4). Sălcianu’s
analysis augmented with a heuristic for classifying mutable references, followed by
our best stage analysis, JMH-SH-P-DRH-P, achieves the highest i-recall.

This section discusses the important observations that stem from the results of our
experiments. Each sub-section discusses one observation that is supported by a table
listing representative pipelines illustrating the observation. The tables in this section
present results for ejc. Results for other programs were similar. However, for smaller
programs all analyses did better and the differences in results were not as pronounced.

6.3.1 Interprocedural propagation

Running interprocedural propagation (P in the tables) is always beneficial, as the
following table shows on representative pipelines.

Analysis i-recall i-precision m-recall m-precision

SH 0.563 1.000 0.299 0.998
SH-P 0.777 1.000 0.904 0.971
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-P 0.940 0.776 0.663 0.988

Propagation may decrease m-precision but, in our experiments, the decrease was
never larger than 0.03 (not shown in the above table). In the experiments, propagation
always increased all other statistics (sometimes significantly). For example, the table
shows that propagation increased i-recall from 0.563 in SH to 0.777 in SH-P and it
increased m-recall from 0.299 in SH to 0.904 in SH-P. Moreover, since almost all of
the run-time cost of propagation lies in the call-graph construction, only the first exe-
cution incurs notable run-time cost on the analysis pipeline; subsequent executions of
propagation are fast. Therefore, most pipelines presented in the sequel have P stages
executed after each other analysis stage.

6.3.2 Combining static and dynamic analysis

Combining static and dynamic analysis in either order is helpful—the two types of
analysis are complementary.
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Analysis i-recall i-precision m-recall m-precision

SH-P 0.777 1.000 0.904 0.971
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-SH-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-SH-P 0.939 0.812 0.722 0.981
DRH-SH-P-DRH 0.943 0.813 0.722 0.981

For best results, the static stage should precede the dynamic stage. Pipeline SH-P-
DRH, in which the static stage precedes the dynamic stage, achieved better i-precision
and m-recall than DRH-SH-P, with marginally lower (by 0.01–0.02) i-recall and
m-precision.

Repeating executions of static or dynamic analyses bring no substantial further
improvement. For example, SH-P-DRH-SH-P (i.e., static-dynamic-static) achieves
essentially the same results as SH-P-DRH (i.e., static-dynamic). Similarly, DRH-SH-
P-DRH (i.e., dynamic-static-dynamic) only marginally improves i-recall over DRH-
SH-P (i.e., dynamic-static).

6.3.3 Comparing static stages

In a staged mutability analysis, using a more complex static analysis brings little ben-
efit. We experimented with replacing our lightweight interprocedural static analysis
with J, Sălcianu’s heavyweight static analysis.

Analysis i-recall i-precision m-recall m-precision

SH-P-DRH-P 0.928 0.996 0.907 0.971
J-DRH-P 0.973 0.787 0.664 0.998
JMH-DRH-P 0.939 0.922 0.878 0.949
JMH-SH-P-DRH-P 0.939 0.997 0.944 0.951

SH-P-DRH-P outperforms JMH-DRH-P with respect to 3 of 4 statistics, including
i-precision (see Sect. 6.3.6). Combining the two static analyses improves recall—
JMH-SH-P-DRH-P has better i-recall than SH-P-DRH-P and better m-recall than
JMH-DRH-P. This shows that the two kinds of static analysis are complementary.

6.3.4 Randomly generated inputs in dynamic analysis

Using randomly generated inputs to the dynamic analysis ( DRH) achieves better
results than using a user-supplied execution (DH), at least for the relatively small
user-supplied inputs (described in Sect. 6.1) with which we experimented. Although
random generation can outperform or improve the results of a single user supplied
input, Future work should evaluated whether random input generation can outperform
and or augment the use of an exhaustive test suite.
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Analysis i-recall i-precision m-recall m-precision

SH-P-DH 0.827 0.984 0.911 0.961
SH-P-DH-P-DRH 0.917 0.984 0.915 0.958
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-P-DH 0.932 0.983 0.912 0.970

Pipeline SH-P-DRH achieves better results than SH-P-DH with respect to i-preci-
sion, i-recall and m-precision (with lower m-recall). Using both kinds of executions
can have different effects. For instance, SH-P-DH-P-DRH has better results than SH-
P-DH, but SH-P-DRH-P-DH has a lower i-precision (due to i-unsoundness of heuristic
A) with a small gain in i-recall and m-recall over SH-P-DRH.

The surprising finding that randomly generated code is as effective as using an
example execution suggests that other dynamic analyses (e.g., race detection (Savage
et al. 1997; O’Callahan and Choi 2003), invariant detection (Ernst et al. 2001), infer-
ence of abstract types (Guo 2006), and heap type inference (Polishchuk et al. 2007))
might also benefit from replacing example executions with random executions.

6.3.5 Dynamic analysis heuristics

By exhaustive evaluation, we determined that each of the heuristics is benefi-
cial. A pipeline with DRH achieves notably higher i-recall and only slightly lower
i-precision than a pipeline with DR (which uses no heuristics). This section indicates
the unique contribution of each heuristic, by removing it from the full set (because
some heuristics may have overlapping benefits). For consistency with other tables in
this section, we present the results for ejc; however, the effects of heuristics were
more pronounced on other benchmarks.

Heuristic A (evaluated by the DRBC line) has the greatest effect; removing this
heuristic lowers i-recall (as compared to SH-P-DRH-P, which includes all heuristics.)
However, because the heuristic is i-unsound, using it decreases i-precision, albeit only
by 0.004. Heuristic B (the DRAC line) increases both i-recall and i-precision, and im-
proves performance by 10%. Heuristic C (the DRAB line) is primarily a performance
optimization. Including this heuristic results in a 30% performance improvement and
a small increase in m-recall.

Analysis i-recall i-precision m-recall m-precision

SH-P-DR-P 0.777 1.000 0.905 0.971
SH-P-DRH-P 0.928 0.996 0.907 0.971
SH-P-DRBC-P 0.777 1.000 0.906 0.971
SH-P-DRAC-P 0.927 0.995 0.905 0.971
SH-P-DRAB-P 0.928 0.996 0.906 0.971

Heuristic A is parameterized by a coverage threshold t . Higher values of the
threshold classify fewer parameters as immutable, increasing i-precision but decreas-
ing i-recall. Figure 11 shows this relation. The heuristic is m-sound, so it has no effect
on m-precision. The threshold value may reduce m-recall (if the analysis incorrectly
classifies a mutable parameter), but, in our experiments, we have not observed this.
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Fig. 11 Relation between
i-precision, i-recall, and the
coverage threshold in dynamic
analysis heuristic A. The
presented results are for the
dynamic analysis DA on the ejc
subject program

6.3.6 i-sound analysis pipelines

An i-sound mutability analysis never incorrectly classifies a parameter as immutable.
All our component analyses have i-sound variations, and composing i-sound analyses
yields an i-sound staged analysis.

Analysis i-recall i-precision m-recall m-precision

S 0.454 1.000 0.299 0.998
S-P 0.777 1.000 0.904 0.971
S-P-DRBC-P 0.777 1.000 0.906 0.971
S-P-DBC-P 0.777 1.000 0.912 0.959

S is the i-sound intra-procedural static analysis. Not surprisingly, the i-sound
pipelines achieve lower i-recall than the i-unsound pipelines presented in Fig. 10;
(Fig. 10 also presents the i-sound results for S-P-DRBC-P for all subjects.) For clients
for whom i-soundness is critical, this may be an acceptable trade-off. In contrast to
our analyses, J is not i-sound (Sălcianu 2006), although it did achieve very high
i-precision (see Fig. 10).

6.4 Run-time performance

Figure 12 shows run times of analyses on daikon (185 kLOC, which is consider-
ably larger than subject programs used in previous evaluations of mutability analyses
Rountev and Ryder 2001; Rountev 2004; Sălcianu and Rinard 2005). The experi-
ments were run using a quad-core AMD Opteron 64-bit 4 × 1.8 GHz machine with
4 GB of RAM, running Debian Linux and Sun HotSpot 64-bit Server VM 1.5.0_09-
b01. Experiments were run on single thread and used one core. Staged mutability
analysis achieves better run-time performance on large code-bases and runs in about
a quarter the time of Sălcianu’s analysis (J in Fig. 12).

Figure 12 shows that S-P (Sect. 6.3.6) runs, on daikon, an order of magnitude
faster than J (or even better, if differences in call graph construction are discounted).
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Fig. 12 The cumulative run
time, and the time for the last
component analysis in the
pipeline, when analyzing the
daikon subject program. Time is
in seconds. Empty cells indicate
that the analysis aborted with an
error

Moreover, S-P is i-sound, while J is i-unsound. Finally, S-P has high m-recall and
m-precision, while J has 0 m-recall and m-precision.

An optimized implementation of the P and DRH stages could run even faster. First,
the major cost of propagation (P) is computing the call graph, which could be reused
later in the same pipeline. J’s RTA (Bacon and Sweeney 1996) call graph construction
algorithm takes seconds, but our tool uses Soot, which takes two orders of magnitude
longer to perform CHA (Dean et al. 1995) (a less precise algorithm). Use of a more
optimized implementation could greatly reduce the cost of propagation. Second, the
DRH step iterates many times, each time performing load-time instrumentation and
other tasks that could be cached; without this repeated work, DRH can be much faster
than DH. We estimate that these optimizations would save between 50% and 70% of
the total SH-P-DRH-P time.

There is a respect in which our implementation is more optimized than J. J is a
whole-program analysis that cannot take advantage of pre-computed mutability in-
formation for a library such as the JDK. By contrast, our analysis does so by default,
and Fig. 12’s numbers measure executions that use this pre-computed library muta-
bility information. The number of annotated library methods is less than 10% of the
number of methods in daikon.

6.5 Application: test input generation

Section 6.3 evaluated the accuracy of mutability analyses. This section evaluates their
utility by measuring how much the computed immutability information helps a client
analysis. The client analysis is Palulu (Artzi et al. 2006), a tool for generating regres-
sion tests. Palulu combines dynamic analysis with random testing to create legal test
inputs, where each input is a sequence of method calls. Palulu works even for pro-
grams in which most random sequences of method calls are illegal, and it does not
require a formal specification.

Palulu operates in two steps. First, Palulu infers a model that summarizes the se-
quences of method calls (and their input arguments) observed during the example
execution. Palulu generates a model for each class. The model is a directed graph
where each edge corresponds to a method call, and each node corresponds to an ab-
stract state of an observed instance. The model contains every sequence of method
calls that occurred in the example execution.

Second, Palulu uses the inferred models to guide a feedback-directed random input
generator (Pacheco et al. 2007) in creating legal and behaviorally-diverse method
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Fig. 13 Palulu (Artzi et al. 2006) model size and model generation time, when assisted by immutability
classifications. The numbers are sums over indicated subject programs. Models with fewer nodes and edges
are better. Also shown are improvement ratios over no immutability information (the “ratio” columns);
larger ratios are better. Empty cells indicate that the analysis aborted with an error

sequences. The test generator uses the model to decide which method should be called
and what constants can be used as parameters.

An intermediate method in the sequence of method calls (that is, not the final
method call about which some property is asserted) is useful only if it produces a
new abstract value that can be used later in the sequence. The new abstract value can
come from the method’s return value or from side-effecting some existing value. In
the absence of other information, Palulu assumes that every method can side-effect
every parameter. For example, it would generate both of these method sequences:

Date d = new Date(); Date d = new Date();
assert d.getTime() >= 0; boolean b = d.equals(null);

assert d.getTime() >= 0;

because the equals method might side-effect its receiver.
The model can be pruned (without changing the state space it describes) by re-

moving calls that do not mutate specific parameters, because non-mutating calls are
not useful in constructing behaviorally-diverse test inputs. A smaller model permits
a systematic test generator to explore the state space more quickly, or a random test
generator to explore more of the state space. Per-parameter mutability information
permits more model reduction than method-level purity information.

We ran Palulu on our subject programs using no immutability information, and
using immutability information computed by J and by SH-P-DRH-P. Since exhaus-
tive model exploration is generally infeasible, Palulu can use unsound immutability
information to improve its likelihood of finding errors within a given time bound.

Using the mutability information, Palulu’s first step generated smaller models.
Using the smaller models, Palulu’s second step generated tests that achieved better
line and block coverage of the subject programs. Figure 13 shows the number of
nodes and edges in the generated model graph, and the time Palulu took to generate
the model (not counting the immutability analysis). Our experiment used J rather
than JM, in part because JM runs on fewer programs, but primarily because JM’s
results would be no better than J. Palulu models include only methods called during
execution, and J starts from the same main method. JM adds more analysis contexts,
but doing so never changes a mutable parameter to immutable, which is the only way
to improve Palulu model size.
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Fig. 14 Subject program characteristics. The all column lists the total number of parameters in
the subject program. non-trivial parameters are not of primitive type or known immutable type
(java.lang.String and boxed primitive types from package java.lang). Trivial parameters are
always immutable. The inspected column lists the number of non-trivial parameters that we manually clas-
sified in each subject program (Sect. 6.1 describes how the parameters were selected for classification).
Finally, the immutable column lists the number of inspected parameters that we manually determined to
be immutable

7 Tool comparison

Definition 1 is useful for evaluating both annotation-based systems expressing refer-
ence immutability and inference-based systems inferring reference immutability. We
experimentally evaluated four tools that each infer an approximation to a different
mutability definition, by comparing the tool results to Definition 1. We used the Pi-
dasa and JMH tools described in Sect. 6, as well as Javari (Birka and Ernst 2004;
Tschantz and Ernst 2005) and JQual (Greenfieldboyce and Foster 2007), both of
which are static inference tools.

Our results indicate that the evaluated tools produce results that are similar to the
formal definition we propose. This finding supports the practical utility of a common
formal definition. Our results also highlight the differences between the expressive-
ness of the evaluated tools, i.e., which immutable references each tool identifies.

Section 7.1 summarizes the four tools we compared against Definition 1. Sec-
tion 7.2 quantitatively compares the formal definition of reference immutability to
each of the four evaluated tools. Section 7.3 presents qualitative comparisons that
illustrate the major conceptual differences between our definition and the definitions
implemented by the four tools.

7.1 Tools compared

We evaluated four tools:

• Pidasa is the tool that implements the static and dynamic analysis described in
Sect. 6. We used the two best combinations: S-P-DRBC-P and SH-P-DRH-P. The
tool for combination S-P-DRBC-P, denoted Pidasasnd , is i-sound. The tool for
combination SH-P-DRH-P, denoted Pidasauns, is i-unsound, but achieves better
recall. Pidasa may also leave parameters unclassified; in the evaluation, we con-
servatively treated such parameters as mutable.

• JMH is a static analysis tool for computing reference immutability (Sălcianu and
Rinard 2005), described in Sect. 6.2.

• Javari is a type-annotation-based Java extension for specifying and enforcing refer-
ence immutability (Birka and Ernst 2004; Tschantz and Ernst 2005). The Javarifier
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tool (Correa Jr. et al. 2007; Quinonez et al. 2008) inferred Javari annotations for the
subject programs. To match the assumptions of the other tools, we ran Javarifier
with the assumption that all fields should be considered part of the abstract state
of an object, even though Javari and Javarifier support excluding specific fields
from the abstract state of an object. Then, we conservatively changed all inferred
@Polyread annotations (parametric polymorphism over mutability) to mutable
(15 for jolden, 39 for htmlparser, 70 for tinysql, and 112 for eclipsec). We did not
change the Javarifier output in any other way. The resulting annotated programs
typecheck in accordance to the Javari definition.

• JQual is a static analysis tool for computing reference immutability (Greenfield-
boyce and Foster 2007). We used the version downloaded from http://www.cs.umd.
edu/projects/PL/jqual (10 December, 2007). We ran JQual in the context-insensiti-
ve, field-insensitive mode, because in any other mode it is unscalable (Greenfield-
boyce and Foster 2007) and could process none of the subject programs. Thus,
JQual did not infer its parametric polymorphism over mutability.

Regrettably, we did not find more programs on which all of the tools run to
completion—bugs in the tools make them terminate with errors.

7.2 Quantitative comparison

Figure 15 presents the results of the quantitative analysis. In this section, we take
precision and recall to mean i-precision and i-recall, respectively. Precision and re-
call of 1.0 would indicate perfect agreement with the definition. This evaluation uses
precision and recall not as a measure of analysis quality (i.e., how well an analysis
classifies parameters according to its own definition), but rather as a measure of how
the mutability results of existing tools match our formal definition.

Fig. 15 Mutability analyses on
subject programs. The # params
columns list the numbers of
parameters that we manually
inspected for mutability (see
Fig. 14). Precision and recall are
computed only for the set of
inspected parameters (Sect. 7.2
describes the details). Empty
cells mean that the analysis
aborted with an error

http://www.cs.umd.edu/projects/PL/jqual
http://www.cs.umd.edu/projects/PL/jqual
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All four evaluated analyses are flow-insensitive, so none has perfect recall.
Pidasauns achieves highest recall by sacrificing some precision. Javari and Pidasasnd

aim for perfect precision and accept low recall. JMH also has nearly perfect precision
(the imprecision is due to an implementation bug), but the conservative static analy-
sis may lead to low recall (e.g., in the largest subject program, ejc). JQual also has
nearly perfect precision, and its low recall is due to a difference in its definition of
field mutability, discussed in Sect. 7.3.4.

7.3 Qualitative comparison

This Section presents a qualitative analysis describing more closely how each tool’s
results compare to Definition 1.

7.3.1 Pidasa

We examined all parameters on which Pidasa disagreed with the classification ac-
cording to Definition 1. All differences can be attributed to imprecision in Pidasa’s
implementation. Thus, our examination showed that the definition of reference im-
mutability used in Pidasa’s technique, agrees with our formal definition.

Pidasauns misclassified 23 mutable parameters as immutable due to an unsound
heuristic in its dynamic component. The heuristic classifies a method parameter as
immutable if no mutation occurred during the dynamic analysis phase and the block
coverage of the method is above a certain threshold (Pidasauns uses a 85% threshold).

Pidasauns and Pidasasnd classified a parameter as mutable in several cases
where the formal definition classifies the parameter as immutable, because no mu-
tation can occur at run time. The discrepancies are due to the following analysis
imprecision:

• Flow-insensitivity of the static analysis component. Flow-insensitive analysis does
not consider the order of statements in the method. This contrasts with Definition 1,
which is flow-sensitive. Flow-insensitivity may lead Pidasa to classify some types
to be mutable even though no mutation will ever occur at run-time.

For example, in this code:

void foo(Date d) {
d = new Date();
d.setHour(12);
}

a flow-insensitive analysis would classify parameter d as mutable because the vari-
able d can be mutated, even though the value passed as the parameter cannot be
mutated.

• Dynamic component failing to generate inputs that exercise a method. This results
in the parameters being left unclassified, which, in this evaluation, we conserva-
tively treated as mutable.

• Call-graph approximations in the static component. Because the precise caller-
callee relationship cannot always be computed in an object-oriented language, the
static component of Pidasa uses a conservative approximation of the call-graph.
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• Heuristics in the dynamic component. For example, in the code

void m(Object p1, Object p2){
p1.field = ...;
}

if, at run-time, p1 and p2 happen to be aliased (i.e., there is an overlap between the
parts of the heap reachable from p1 and p2), then the dynamic analysis heuristic
incorrectly classifies p2 as mutable.

7.3.2 JMH

We examined all parameters on which the JMH results disagreed with the classifica-
tion according to the formal Definition 1. All differences are due to either bugs, or
imprecision in the inference tool. Thus, our examination showed that the (implicit)
definition used by JMH agrees with our proposed formal definition of reference im-
mutability.

In ejc, JMH misclassified 5 mutable parameters as immutable. More precisely, JMH
classified as immutable 5 parameters that are mutable according to the proposed for-
mal definition. This misclassification is due to what seems to be an incorrect treatment
of the native method System.arraycopy(). System.arraycopy() copies
objects from a source array to a destination array. JMH seems to treat the destination
array as immutable, which is incorrect.

JMH fails to correctly classify immutable parameters (i.e., the computed result
disagrees with the proposed formal definition, with JMH reporting mutable when the
parameter cannot be mutated at run time) due to:

• Failure to analyze package-private constructors that are called in static field initial-
izers.

• Failure to analyze non-abstract methods in abstract classes.
• Conservative pointer analysis. For example, the method CompilationResult.-
computePriority() in ejc calls the method HashMap.get() on a field.
This receiver is classified as mutable by JMH, since LinkedHashMap.get()
can mutate its receiver. However, the specific field can only be instantiated with
HashMap (super-class of LinkedHashMap) for which get() is a side-effect-
free method. Since JMH is a closed-world analysis, in theory it could compute the
correct results in this case.

• Call-graph approximations similar to Pidasa (Sect. 7.3.1).
• Flow-insensitivity of the analysis similar to Pidasa (Sect. 7.3.1).

7.3.3 Javari

The Javarifier type inference tool infers the reference mutability of every parameter
according to the Javari mutability definition. Figure 16 tabulates the differences be-
tween the formal Definition 1 and Javari. Javari is perfectly i-precise: the only kind
of difference is when Javarifier inferred a mutable type that Definition 1 classifies
as an immutable type. Javarifier disagreed with Definition 1 on the mutability of a
parameter for three reasons:
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Fig. 16 Discrepancies where Javarifier classified a parameter reference as mutable, when it’s classification
by Definition 1 is immutable. For jolden, we manually analyzed all classes. For tinysql, htmlparser and
ejc, we manually analyzed four classes selected at random. The columns Arrays, Flow insensitive, and
Dynamic indicate difference sources for the discrepancies as explained in Sect. 7.3.3

Fig. 17 The formal definition
considers parameter newData
to be immutable because
update() does not itself
mutate either data or
newData. Javari considers
newData to be mutable
because update() stores
newData for possible later
mutation

Arrays. In Javari immutability is not deep with respect to arrays (or generics)—
a client can control the mutability of each level explicitly. Therefore, Javari allows
different mutabilities for arrays and their elements, while our definition does not.
When Javarifier inferred an immutable array of mutable elements for a parameter,
for the purpose of comparison to Definition 1, we treat Javarifier’s classification as a
mutable parameter. Definition 1, however, classified the parameter as immutable.

Flow-insensitivity. Javari is a flow-insensitive type system (like most type sys-
tems, e.g., Java’s), and thus can misclassify immutable parameters as mutable, simi-
larly to Pidasa (Sect. 7.3.1).

Dynamic scope. The formal definition accounts for mutations that occur during
the execution of a method. By contrast, Javari marks a parameter as mutable if the
actual argument may later be mutated, even after the method has exited, as a result of
being passed into the method. For example, consider Fig. 17. As noted in Sect. 2.3.3,
the formal definition can be modified to account for mutations even after a method
has exited, simply by removing rule [R-RET] of Fig. 4. Future work could compare
this modified formal definition to Javari.

Similarly, certain uses of parametric polymorphism force the Javari classification
of some parameters to be mutable, while Definition 1 classifies them as immutable.
Javari uses the @PolyRead type qualifier to express parametric polymorphism over
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Fig. 18 A program in which the parameter of addDate is passed into method scanDate, which takes
a @Polyread parameter and receiver. Javari type rules require that parameter date of addDate be
declared as mutable

mutability type qualifiers.7 Definition 1 is unable to express this polymorphism. In
Javari, @PolyRead parameters cannot be mutated explicitly in a method, so Defin-
ition 1 classifies these parameters as immutable.

For example, in Fig. 18, the method addDate has a mutable receiver because it
adds to the list allDates. Javari type-correctness requires the receiver types to be
compatible when addDate calls scanDate. Since addDate’s receiver is muta-
ble, it uses the version of scanDate with a mutable receiver. But that version has a
mutable parameter, and so date is marked as mutable, even though addDate does
not mutate it (and no later mutation can occur when the Date is extracted from the
list, because its type is @Readonly Date).

7.3.4 JQual

In the jolden subject program, JQual inferred 7 parameters to be readonly that Defin-
ition 1 states are mutable because it cannot be mutated at run-time.

• In one case, JQual was more expressive when it inferred a parameter to be a read-
only array of mutable objects, which the proposed formal definition classifies as a
mutable array of mutable objects.

• In four cases, JQual incorrectly classified the receiver of a modifying method. Fig-
ure 19 demonstrates this problem when a mutating method is called on a reference
that is passed through another accessor method.

7A method with @PolyRead parameters can be viewed as having two signatures that are resolved via
overloading: in one version, all instances of @PolyRead are replaced by @Mutable, and in the other
version, they are replaced by @ReadOnly. Almost every accessor method has its receiver and return type
classified as @PolyRead. This means that when an accessor method is called on a @Mutable reference,
the returned reference is @Mutable; when an accessor method is called on a @ReadOnly reference, the
returned reference is @ReadOnly.
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• In 2 cases, JQual incorrectly classified the receiver of a method because the method
was a member of an inner class.

In 84 other cases, JQual inferred a parameter to be mutable that is immutable
according to Definition 1. We manually analyzed ten of these parameters, selected at
random. All the differences were due to a definitional difference with regard to field
mutability. In JQual, every method that reads a mutable field must have a mutable
receiver, even if the method only reads the field and does not mutate the program state.
This restriction makes JQual overly conservative in declaring mutable references, but
helps ensure soundness in its type system. Figure 20 illustrates the problem.

In order to resolve this issue, JQual would need to run in a field-sensitive and
context-sensitive mode. Running in a field-sensitive mode, JQual infers a separate
type for each instance of a field, rather than a single static type for the field. Running
in a context-sensitive mode, JQual can treat methods as polymorphic over mutability,
similar to Javari’s @Polyread. (Even though JQual cannot express this polymor-
phism over mutability in its final output, the method can be treated as polymorphic
over mutability during the inference step.) In a field-sensitive and context-sensitive
mode, JQual’s inference is similar to Javari’s inference. Specifically, in the class in
Fig. 20, the fact that the data field can be mutated in resetFirst() does not re-
quire reading the field in first() to be considered a mutation. As noted in Sect. 7.1,

Fig. 19 Example in which the
proposed formal definition
specifies that the receiver of
resetHead() is mutable,
while JQual classifies the
receiver as immutable

Fig. 20 Example in which the
proposed formal definition
specifies that the receiver of
first() is reference
immutable, while JQual
classifies the receiver as
mutable. Method first()
reads this.data, so JQual
requires that this have at least
the same mutability as data
(which is mutable)
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we were unable to run JQual in field-sensitive and context-sensitive mode, because
JQual does not scale in this mode.

8 Related work

Section 8.1 discusses previous work that discovers immutability (for example, deter-
mines when a parameter is never modified during execution). Section 8.2 discusses
previous work that checks or enforces mutability annotations written by the program-
mer (or inserted by a tool).

8.1 Discovering mutability

Early work (Banning 1979; Cooper and Kennedy 1988) on analyzing programs to
determine what mutations may occur considered only pointer-free languages, such as
Fortran. In such a language, aliases are induced only by reference parameter passing,
and aliases persist only until the procedure returns. Analyses that compute MOD
set (modified parameters) determine which of the reference parameters, and which
global variables, are assigned by the body of a procedure. Our static analysis extends
this work to handle pointers and object-oriented programs, and incorporates field-
sensitivity.

Subsequent research, often called side-effect analysis, addressed aliasing in lan-
guages containing pointers. An update r.f= v has the potential to modify any object
that might be referred to by r. An alias analysis can determine the possible referents
of pointers and thus the possible side effects. (An alias or class analysis also aids
in call graph construction for object-oriented programs, by indicating the type of
receivers and so disambiguating virtual calls.) This work indicates which aliased lo-
cations might also be mutated (Landi et al. 1992)—often reporting results in terms
of the number of locations (typically, an allocation site in the program) that may be
referenced—but less often indicates what other variables in the program might also
refer to that site. More relevantly, it does not answer reference immutability questions
regarding what references might be used to perform a mutation; ours is the first analy-
sis to do so. A follow-on alias or escape analysis can be used to strengthen reference
immutability into object immutability (Birka and Ernst 2004).

New alias/class analyses yield improved side-effect analyses (Ryder et al. 2001;
Rountev 2004). Landi et al. (1993) improve the precision of previous work by using
program-point-specific aliasing information. Ryder et al. (2001) compare the flow-
sensitive algorithm (Landi et al. 1993) with a flow-insensitive one that yields a single
alias result that is valid throughout the program. The flow-sensitive version is more
precise but slower and unscalable, and the flow-insensitive version provides adequate
precision for certain applications. Milanova et al. (2002) provide a yet more precise
algorithm via an object-sensitive, flow-insensitive points-to analysis that analyzes a
method separately for each of the objects on which the method is invoked. Object
sensitivity outperforms Andersen’s context-insensitive analysis (Rountev et al. 2001).
Rountev (2004) compares RTA to a context-sensitive points-to analysis for call graph
construction, with the goal of improving side-effect analysis. Rountev’s experimental
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results suggest that sophisticated pointer analysis may not be necessary to achieve
good results. (This mirrors other work questioning the usefulness of highly complex
pointer analysis, Ruf 1995, Hind 2001.) We, too, compared a sophisticated analysis
(Sălcianu’s) to a simpler one (ours) and found the simpler one competitive.

Side-effect analysis (Choi et al. 1993; Rountev and Ryder 2001; Milanova et al.
2002; Rountev 2004; Sălcianu and Rinard 2005; Sălcianu 2006) originated in the
compiler community and has focused on i-sound analyses. Our work investigates
other tradeoffs and other uses for the immutability information. Specifically, differ-
ently from previous research, our work (1) computes both mutable and immutable
classifications, (2) trades off soundness and precision to improve overall accuracy, (3)
combines dynamic and static stages, (4) includes a novel dynamic mutability analy-
sis, and (5) permits an analysis to explicitly represent its incompleteness.

Preliminary results of using side effect analysis for optimization—an application
that requires an i-sound analysis—show modest speedups. Le et al. (2005) report
speedups of 3–5% for a coarse CHA analysis, and only 1% more for a finer points-to
analysis. Clausen (1997) reports an average 4% speedup, using a CHA-like side effect
analysis in which each field is marked as side-effected or not. Razafimahefa (1999)
reports an average 6% speedup for loop invariant code motion in an inlining JIT, Xu
et al. (2007) report slowdowns in a memoization optimization. Le et al. (2005) sum-
marize their own and related work as follows: “Although precision of the underlying
analyses tends to have large effects on static counts of optimization opportunities, the
effects on dynamic behavior are much smaller; even simple analyses provide most of
the improvement.”

Rountev (2004) and Sălcianu (Sălcianu and Rinard 2005; Sălcianu 2006) devel-
oped static analyses for determining side-effect-free methods. Like our static analysis
component, they combine a pointer analysis, an intra-procedural analysis to deter-
mine “immediate” side effects, and inter-procedural propagation to determine tran-
sitive side effects. Sălcianu defines a side-effect-free method as one that does not
modify any heap cell that existed when the method was called. Rountev’s definition
is more restricted and prohibits a side-effect-free method from creating and return-
ing a new object, or creating and using a temporary object. Sălcianu’s analysis can
compute per-parameter mutability information in addition to per-method side effect
information. (A method is side-effect-free if it modifies neither its parameters nor the
global state, which is an implicit parameter.) Rountev’s coarser analysis results are
one reason that we cannot compare directly to his implementation. Rountev applies
his analysis to program fragments by creating an artificial main routine that calls all
methods of interest; we adopted this approach in augmenting J (see Sect. 6).

Sălcianu’s (Sălcianu and Rinard 2005; Sălcianu 2006) analysis uses a complex
pointer analysis. Its flow-insensitive method summary represents in a special way
objects allocated by the current method invocation, so a side-effect-free method may
perform side effects on a newly-allocated objects. Like ours, Sălcianu’s analysis han-
dles code that it does not have access to, such as native methods, by using man-
ually prepared annotations. Sălcianu describes an algorithm for computing object
immutability and proves it sound, but his implementation computes reference im-
mutability (not object immutability) and contains some minor unsoundness. We eval-
uated our analyses, which also compute reference immutability, against Sălcianu’s
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implementation (Sect. 5). In the experiments, our staged analyzed achieve compara-
ble or better accuracy and better run-time performance.

Javarifier (Correa Jr. et al. 2007; Quinonez et al. 2008; Quinonez 2008) infers the
reference immutability type qualifiers of the Javari extension of Java (Birka and Ernst
2004; Tschantz and Ernst 2005). Starting at field reassignments (the source of all ob-
ject side-effects), Javarifier flow- and context-sensitively propagates mutation infor-
mation to all references, including method receivers. Our case studies using Javarifier
(Sect. 7.3.3) show that Javari is sometimes more restrictive than our formal definition
due to the conservative nature of its type rules. JQual (Greenfieldboyce and Foster
2007) is a framework for inference of type qualifiers. JQual’s definition of reference
immutability and inference algorithm are similar to those of Javari.

Porat et al. (2000), Biberstein et al. (2001) infer class immutability for global
(static) variables in Java’s rt.jar, thus indicating the extent to which immutability
can be found in practice; the work also addresses sealing/encapsulation. Foster et al.
(1999) developed an inference algorithm for const annotations using Cqual, a tool
for adding type qualifiers to C programs. Their algorithm does not handle aliasing.
Foster et al. also present a polymorphic version of const inference, in which a single
reference may have zero or more annotations, depending on the context.

Other researchers have also explored the idea of dynamic side-effect analysis.
Dallmeier and Zeller developed the JDynPur tool (http://www.st.cs.uni-sb.de/models/
jdynpur) for offline dynamic side-effect analysis (not parameter mutability) but pro-
vide no description of the algorithm or experimental results. Xu et al. (2007) de-
veloped dynamic analyses for detecting side-effect-free methods. Their work differs
significantly from ours. Xu et al. consider only the method’s receiver, while our analy-
ses are more fine-grained and produce results for all formal parameters, including the
receiver. Xu et al. examine only one analysis at a time. In contrast, our framework
combines the strengths of static and dynamic analyses. Xu et al. do not present an
evaluation of the effectiveness of their analyses in terms of precision and recall, they
only report the percentage of methods identified as pure by their analyses. In contrast,
we established the immutability of more than 8800 method parameters by manual in-
spection and report the results of our 192 analysis combinations with respect to the
established ground truth. Finally, Xu et al.’s dynamic analysis is unsound. In con-
trast, our analysis framework is sound and we provide sound analyses, both static
and dynamic, to use in the framework.

8.2 Specifying and checking mutability

A verification approach enforces reference immutability annotations written in the
source code. Soundness requires that any cannot modify an object that was annotated
as immutable. Since the problem is uncomputable, any static, sound system for check-
ing annotations rejects some programs that cannot actually violate the immutability
specifications at run-time.

Annotation-based approaches include Islands (Hogg 1991), Flexible Alias Protec-
tion (Noble et al. 1998), C++ const (Stroustrup 2000), ModeJava (Skoglund and
Wrigstad 2001), JAC (Kniesel and Theisen 2001), Capabilities (Boyland et al. 2001),

http://www.st.cs.uni-sb.de/models/jdynpur
http://www.st.cs.uni-sb.de/models/jdynpur
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Javari (Birka and Ernst 2004; Tschantz and Ernst 2005), Universes (Dietl and Müller
2005), Relation types (Vaziri et al. 2007), and IGJ (Zibin et al. 2007). Many of these
systems provide features beyond mutability annotations; for example, problems of
ownership and aliasing can contribute to mutation errors, so a type system may also
address those issues.

All the above approaches, except for Capabilities and C++’s const (which pro-
vide only non-transitive reference immutability), state as their goal the reference
immutability described informally in the Introduction. Boyland (2005) also noticed
those similarities. In JAC (Kniesel and Theisen 2001), “the declarative definition of
read-only types is: for an expression of a read-only type that evaluates to an ob-
ject reference r, the full state of the referenced object is protected against changes
performed via r.” In ModeJava (Skoglund and Wrigstad 2001), “a read reference is
a reference that is never used for modification of its referenced object (including re-
trieval of write references that may in turn be used for modification).” In Javari (Birka
and Ernst 2004), “A read-only reference is a reference that cannot be used to modify
the object to which it refers.” In Universes (Dietl and Müller 2005), “references [. . . ]
must not be used to modify the referenced object since the reference is not guaranteed
to come from the owner or a peer object of the modified object. Hence, we call these
references readonly references.”

However, while some of these descriptions are formal by having type rules, none
specifies precisely what it means that a modification happens through the reference.
Without a formal definition of reference immutability, it is not possible to compare
different systems for inferring or checking it, nor is it possible to evaluate the sys-
tems’ trade-offs between expressiveness and checkability. Capabilities (Boyland et
al. 2001), and Javari (Birka and Ernst 2004), do provide a formal definition for their
systems, but do so using the programming language. In Javari (Capabilities are sim-
ilar), a reference is read-only if it is possible to annotate it with readonly (i.e., the
type system issues no error). In contrast, this paper provides a formal definition that
is independent of how it is calculated.

Object immutability is a stronger property than reference immutability: it guar-
antees that a particular value is never modified, even through aliased parameters.
Reference immutability, together with an alias or escape analysis, is enough to es-
tablish object immutability (Birka and Ernst 2004). Pechtchanski and Sarkar (2002)
allows the user to annotate his code with object immutability annotations and em-
ploys a combination of static and dynamic analysis to detect where those annotations
are violated. The IGJ language (Zibin et al. 2007) supports both reference and object
immutability via a type system based on Java generics.

Side-effect analysis is different from parameter reference immutability, which is
our focus. Side-effect analysis concerns methods and whether the heap can be mod-
ified during the method’s execution. Parameter reference immutability concerns ref-
erences to method parameters and whether they can be used to modify the state of
objects. Except for very strict definitions of purity (such as strong purity, Xu et al.
2007), method purity can often be computed from parameter reference immutability
information (combined with analysis of globals).
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9 Conclusion

We formally define parameter reference immutability. Previous work relied mostly
on informal descriptions and type systems, both for inferring immutable references,
and for checking annotations. The formal definition in this paper encompasses those
informal notions and enables unbiased comparisons between different inference and
type-annotation approaches.

We have described Pidasa, a staged mutability analysis framework for Java, along
with a set of component analyses that can be plugged into the analysis. The frame-
work permits combinations of mutability analyses, including static and dynamic tech-
niques. The framework explicitly represents analysis incompleteness and reports both
immutable and mutable parameters. Our component analyses take advantage of this
feature of the framework.

Our dynamic analysis is novel, to the best of our knowledge; at run time, it marks
parameters as mutable based on mutations of objects. We presented a series of heuris-
tics, optimizations, and enhancements that make it practical. For example, iterative
random test input generation appears competitive with user-supplied sample exe-
cutions. Our static analysis reports both immutable and mutable parameters, and it
demonstrates that a simple, scalable analysis can perform at a par with much more
heavyweight and sophisticated static analyses. Combining the lightweight static and
dynamic analyses yields a combined analysis with many of the positive features of
both, including both run-time performance and accuracy.

Our evaluation of Pidasa, includes many different combinations of staged analy-
sis, in both sound and unsound varieties. This evaluation sheds insight into both the
complexity of the problem and the sorts of analyses that can be effectively applied
to it. We also show how the results of the mutability analysis can improve a client
analysis.

We compared parameter immutability in four systems (a type system Javari, and
three analysis tools: JMH, Pidasa and JQual), on a large set of parameters in several
programs. We then compared the results to the classification based on the formal
definition, and analyzed the discrepancies. The results provide insight into the trade-
offs each system makes between expressibility and verifiability. We observed that
different systems vary in their approach to that trade-off. Javari is a type system and
its type rules are conservative with respect to immutability, which leads Javari to
mark some parameter references as mutable when in fact they cannot be used in a
mutation. JMH is able to infer more immutable parameters than Javari, but it also is
conservative and thus under-approximates the set of immutable references. Pidasa’s
inference combines static and dynamic analyses and offers both a conservative variant
and a non-conservative variant that achieves the highest recall, with a small loss in
precision.

Our case studies show that existing systems for expressing and inferring reference
immutability approximate the formal definition we present in this paper. We hope that
future research in this area finds the formal definition useful as a point of reference
for verifying correctness and assessing expressibility.

This paper extends our previous work (Artzi et al. 2007) in the following way:
Formal parameter mutability definition (Sect. 2) and a comparison of different tools
implementing similar mutability definitions (Sect. 7).
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Appendix: Additional example of reference immutability

This section presents an additional example of Definition 1. We apply Definition 1 to
the method modifyAll of Fig. 1 (which is problematic for JPPA).

The left hand side of Fig. 21 contains the partial Java code for a simplified version
of the method modifyAll of Fig. 1. The right hand side contains the same method
after in MLJ.

It is obvious that parameters p2 and p3 of method m are reference-mutable (line 2
modifies p2, and line 4 modifies p3.f). It is harder to see that parameter p1 is
also reference-mutable. p1 is mutated when, for example, parameters p2 and p3
are aliased (like in the call m(x,y,y)). In this case, the state of the object passed
to p1 is modified on line 4 using a series of dereferences from p1. Sălcianu (2006)
presents this method as an example for unsoundness in his static analysis. Sălcianu’s
tool, JMH, wrongly classifies parameter p1 as immutable.

Figure 22 presents the application of Definition 1 to method m by evaluating
m in MLJ. Step 2 contains the expression and the stores that are the results of
evaluating all the initial constructors. Step 3 is the result of invoking the method
n. Step 4 is the result of invoking the method m. Notably, p2 is replaced with
(|o6, {n1.p2,m

1.p2}|) and p3 is replaced with the same object (o6) but with a dif-
ferent value (|o6, {n1.p2,m

1.p3}|). After evaluating the first set expression (cor-
responding to p2.f= p1), the parameters n.p2 and m.p2 in the mutability set of

Fig. 21 The left-hand side contains a simplified version of method modifyAll from Fig. 1. Parameters
p2 and p3 are mutable since they are mutated in lines 2 and 4. Parameter p1 is also mutable. It will be
mutated when parameters p2 and p3 are aliased, for example in the call m(x,y,y). The right-hand side
contains the same method and the call m(x,y,y), converted to MLJ. Since MLJ has no local variables,
we have converted the local variable l into a method’s parameter (method q). Method n passes the same
parameter twice to method m, used to implement the Java call m(x,y,y)
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(|o6, {n1.p2,m
1.p2}|) are classified as mutable. Step 6 presents the result of evaluat-

ing the field access. The resulting object o4 has the combined mutability set of both its
previous value (|o4, {n1.p1,m

1.p1}|) (from the store) those of the dereferenced value
(|o6, {n1.p2,m

1.p3}|). When that value is modified in step 7, all the parameters in its
mutability set (n1.p1,m

1.p1, n
1.p2,m

1.p3) are classified as mutable. Thus definition
recognizes that parameter m.p1 is mutable.
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