Making Offline Analyses Continuous

Kivan¢ Muslu®, Yuriy Brun®,
Michael D. Ernst®, David Notkin®

é University of Washington
% University of Massachusetts, Amherst

© Kivan¢ Muslu, University of Washington, 2013

Compilation: Continuous vs. Offline Analysis

1] SolsticeDemo.java

4] SolsticeDemo.java Refactor Navigate Search | Project

w] SolsticeDemo.java &

1] SolsticeDemo.java
] SolsticeDemo.java
1] SolsticeDemo.java
public class SolsticeDemo {

public static void main(String [] args) {
System.out.println("Solstice");

}

% SolsticeDemo java = Rofactar Navinate Search | Praiect
Yl SolsticeDemo.java #
4] SolsticeDemo.java &
&l SolsticeDemo java
} &l SolsticeDemo.java
Ul SolsticeDemo.java =
public class SolsticeDemo {
public static void main(String [] args) {
System.out.println("Solstice");

i Problems

0 items

Description Resource

}
}

Ll Problems &

0 items

Description Resource

Continuous Analysis
* |Invoked without developer interaction
 Updates the result as input program changes
Offline analysis: invoked by the developer manually

1 of 16

Continuous Analysis Feedback is Good

* Manual invocation interrupts development

e Research: continuous feedback is useful
[Boehm 1981, Katzan 1969, SaffE 2003]

— Continuous testing reduces development time 15%
[SaffE 2003]

2 of 16

Goal: Let’s build tons of
continuous analyses!

Wait! Building
continuous analyses is hard

3 of 16

Ways to Build a Continuous Analysis

Re-architect an offline analysis:

* Incrementalization [eclipse compilation]
— Extremely complex, not possible for some analyses

Wrap an offline analysis:

¢ Trigger-based analysis [Metrics, FindBugs, Check-style plug-ins]
— Analysis must be fast
— Analysis cannot observe buffer-level edits

* Manually-managed copy codebase
(Quick Fix Scout [MusluBHEN 2012], Crystal [BrunHEN 2011])

— Implementation is complex and difficult

4 of 16

Our approach:
Making Offline Analyses Continuous

continuous analysis
| offline analysis |

Wrap an offline analysis into an
IDE-integrated continuous analysis
easily and efficiently

5 of 16

Outline

Motivation

Wrapping offline analyses into continuous
Evaluation and results

Contributions

Outline

* Motivation

* Wrapping offline analyses into continuous
* Evaluation and results

* Contributions

Goal 1: Currency

Analysis should have access to most recent code

continuous analysis |
offline analysis
Most recent analysis results
should be accessible to the developer

6 of 16

Goal 2:

Analysis should run on a consistent codebase

continuous analysis
offline analysis |

Analysis should not block the developer

7 of 16

Approach: Codebase Replication

continuous analysis

| offline analysis |

Developer’s COde |
codebase Replicat

> Copy

codebase

-

Achieves goals of currency and

8 of 16

Codebase Replication: Architecture

developer’s
editor

developer

Codebase
Replication

IDE API

developer edits

9 of 16

Codebase Replication: Architecture

developer’s
editor

developer copy
edits Codebase codebase

Replication

IDE API

| developer edits developer edits

9 of 16

Codebase Replication: Architecture

‘ run offline analysis l

; continuous analysis
developer’s offline analysis

editor

developer copy
edits Codebase codebase

Replication
IDE AP

developer edits developer edits

9 of 16

Codebase Replication: Architecture

display offline run offline analysis
analysis results

; continuous analysis
developer’s offline analysis

editor

developer copy
edits Codebase codebase

Replication
IDE AP

developer edits developer edits

9 of 16

Codebase Replication: Architecture

display offline run offline analysis
analysis results

continuous analysis
developer’s offline analysis
editor
pause(..) Developer
resume(..) l edits

develgger copy

HLS Codebase codebase
Replication

IDE API I:”:II:II:“:I
(e

IDE developer edits developer edits

9 of 16

Solstice:
Codebase Replication for Eclipse

&

Eclipse-specific design changes:
* Solstice runs a headless (w/o Ul) copy Eclipse

* Copy Eclipse manages the copy workspace
— One Eclipse is associated with one workspace

e Bidirectional link between two Eclipses

10 of 16

Solstice: Architecture

d|splay offline run offline analysis
analysis results

COTrtniauus araiysis

pause(..) Developer
resume(..) edits

developer copy
edits Codebhasr codebase

Replication
IDE API event queue

developer edits developer edits

Developer’s Eclipse Copy (headless) Eclipse

11 of 16

Outline

Motivation

Wrapping offline analyses into continuous
Evaluation and results

Contributions

Research Questions

Quantitative evaluation: and
How fast does the analysis get access to changed code?
How fast does the developer see new analysis results?
Does the developer notice any IDE slowdown?
How much is the analysis delayed?

Case study

* How hard is it to implement Solstice analysis
wrappers?

* Are Solstice analysis wrappers useful?
— Preliminary result: yes. Refer to the paper for details.

12 of 16

Efficient &

display offline [run offline analysis

analysis results

; continuous analysis
developer’s offline analysis

editor
pause(..) Developer

resume(..) edits
developer copy

edits Codebase codebase
Replication

IDE API

NENEN

] /1
w developer edits
I/

13 of 16

It is Easy to Implement an Analysis Wrapper

3 analysis wrappers:
* FindBugs
e PMD
* Testing
On average (500 LoC without Ul),
Compare to:
* Eclipse FindBugs plug-in: 16 KLoC
* Quick Fix Scout: 7.4 KLoC
* Eclipse continuous testing plug-in: 3.5 KLoC

14 of 16

Example Analysis Wrapper

Implementation

|@EGL_:::eEer?e:;:e:eren:eskpreferencePageID = ContinuousFindBugsPreferencePage. PREFERENCE ID,
storedPreferenceIDs = {Sharedﬁperations.EXECUTABLE_EHTE_PREFERENCE_ID}]
public class ContinuousFindBugsServer extends|SolsticeServerNodeWithLogger

{

public ContinucusFindBugsServer () |
super (true) ;
}

}
}

public class ContinuousFindBugs extends|SCPurePreci5eﬁnalysi5
{

private volatile String findBugsExecutablePath = "";
public ContinucusFindBugs () {

superdanalysisGranularity.PRGJECT';

;ublic volid preferenceChanged(String preferencelID, String preferencevValues) {
if {preferencelﬂ.equals{Sharedﬁperations.EXECUTABLE_E&TE_PREFERENCE_ID]]
findBugsExecutablePath = preferenceValue;
|resume£nalysi5{]4

}
protected ENullable ClientZnalvsisFailedMessage shallBunfinalysis() |
return|projectContainsCompilationErrors (getCurrentProject ()) ;

}
protected ClientAnalysisMessage runfnalysis () {
'/ Bun FindBugs & return results.
. O = Provided by Solstice API

15 of 16

Contributions

IRy L
g

E

* Codebase Replication
— New approach to implement continuous analyses
— Analyses get currency and

e Solstice
— Evaluation: fast and responsive
— Implement continuous analyses quickly and easily

http://bitbucket.org/kivancmuslu/solstice

16 of 16

