
© Kıvanç Muşlu, University of Washington, 2013

Making Offline Analyses Continuous

Kıvanç Muşlu, Yuriy Brun,

Michael D. Ernst, David Notkin

 University of Washington

 University of Massachusetts, Amherst

of 16

Compilation: Continuous vs. Offline Analysis

1

Continuous Analysis
• Invoked without developer interaction
• Updates the result as input program changes
Offline analysis: invoked by the developer manually

of 16

Continuous Analysis Feedback is Good

2

• Manual invocation interrupts development

• Research: continuous feedback is useful
[Boehm 1981, Katzan 1969, SaffE 2003]

– Continuous testing reduces development time 15%
[SaffE 2003]

of 16

Goal: Let’s build tons of
continuous analyses!

Wait! Building
continuous analyses is hard

3

of 16

Ways to Build a Continuous Analysis

Re-architect an offline analysis:
• Incrementalization [Eclipse compilation]

– Extremely complex, not possible for some analyses

Wrap an offline analysis:
• Trigger-based analysis [Metrics, FindBugs, Check-style plug-ins]

– Analysis must be fast
– Analysis cannot observe buffer-level edits

• Manually-managed copy codebase
(Quick Fix Scout [MusluBHEN 2012], Crystal [BrunHEN 2011])

– Implementation is complex and difficult

4

of 16

Our approach:
Making Offline Analyses Continuous

Wrap an offline analysis into an
IDE-integrated continuous analysis

easily and efficiently

5

Outline

• Motivation

• Wrapping offline analyses into continuous

• Evaluation and results

• Contributions

Outline

• Motivation

• Wrapping offline analyses into continuous

• Evaluation and results

• Contributions

of 16

Goal 1: Currency

6

Analysis should have access to most recent code

Most recent analysis results
should be accessible to the developer

of 16

Goal 2: Isolation

7

Analysis should run on a consistent codebase

Analysis should not block the developer

of 16

Approach: Codebase Replication

Achieves goals of currency and isolation

8

Codebase
Replication

Developer’s
codebase

Copy
codebase

of 16

Codebase Replication: Architecture

9

of 16

Codebase Replication: Architecture

9

of 16

Codebase Replication: Architecture

9

of 16

Codebase Replication: Architecture

9

developer
isolation

analysis
input
currency

analysis
output
currency

analysis
isolation

of 16

Codebase Replication: Architecture

9

analysis
isolation

developer
isolation

analysis
input
currency

analysis
output
currency

of 16

Solstice:
Codebase Replication for Eclipse

Eclipse-specific design changes:

• Solstice runs a headless (w/o UI) copy Eclipse

• Copy Eclipse manages the copy workspace

– One Eclipse is associated with one workspace

• Bidirectional link between two Eclipses

10

of 16

Solstice: Architecture

11

Developer’s Eclipse Copy (headless) Eclipse

Outline

• Motivation

• Wrapping offline analyses into continuous

• Evaluation and results

• Contributions

of 16

Research Questions

Quantitative evaluation: Currency and isolation

• How fast does the analysis get access to changed code?

• How fast does the developer see new analysis results?

• Does the developer notice any IDE slowdown?

• How much is the analysis delayed?

Case study

• How hard is it to implement Solstice analysis
wrappers?

• Are Solstice analysis wrappers useful?
– Preliminary result: yes. Refer to the paper for details.

12

of 16

Analysis Input Delay
2.5ms

Efficient Currency & Isolation

13

Penalty on Analysis
70ms

Overhead on the Developer
Edits: 2.5ms File ops: 1.5ms

Analysis Results Delay
3ms

of 16

It is Easy to Implement an Analysis Wrapper

3 analysis wrappers:

• FindBugs

• PMD

• Testing

On average 800 LoC (500 LoC without UI), 18 hours.

Compare to:

• Eclipse FindBugs plug-in: 16 KLoC

• Quick Fix Scout: 7.4 KLoC

• Eclipse continuous testing plug-in: 3.5 KLoC

14

of 16

Example Analysis Wrapper
Implementation

15

□ = Provided by Solstice API

of 16

Contributions

• Codebase Replication

– New approach to implement continuous analyses

– Analyses get currency and isolation

• Solstice

– Evaluation: fast and responsive

– Implement continuous analyses quickly and easily

http://bitbucket.org/kivancmuslu/solstice

16

