Pluggable type systems
reconsidered

ISSTA 2018 Impact Paper Award for
“Practical Pluggable Types for Java”

Michael D. Ernst
University of Washington

CHECKER

https://checkerframework.org/
framework

Type Checking

int x = "hello world"; x Compiler error

Optional Type Checking

Java m
] No errors .

i » Compiler >
vErrors v | Guaranteed
Fix bugs L behavior
2 Optional -
Change types Type Checker >
Fix bugs Errors
Add/change

annotations

Impacts

160+ citations

40+ type systems built using the Checker Framework
Used at Amazon, Google, Uber, startups, Wall Street, ...
Java has syntax to support the Checker Framework

For practitioners: more robust and correct code

For researchers: easier experimentation = better theory
and more impact

For both: appreciation of type systems

Outline

Credits
Motivation
Contributions
Predicting impact
ldeas and results

Research approach

Outline

Credits
Motivation
Contributions
Predicting impact
ldeas and results

Research approach

Who deserves credit for this paper?

™
0

Undergraduate Undergraduate Undergraduate Programmer Tenured

Practical Pluggable Types for Java

Matthew M. Papi Mahmood Ali Telmo Luis Correa Jr. Jeff H. Perkins Michael D. Ernst
MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA

{mpapi,mali,telmo,jhp,mernst}@csail.mit.edu

Abstract

This paper introduces the Checker Framework, which supports
adding pluggable type systems to the Java language in a backward-
compatible way. A type system designer defines type qualifiers
and their semantics, and a compiler plug-in enforces the semantics.
Programmers can write the type qualifiers in their programs and use
the plug-in to detect or prevent errors. The Checker Framework is
useful both to programmers who wish to write error-free code, and
to type system designers who wish to evaluate and deploy their type

permit more expressive compile-time checking and guarantee the
absence of additional errors.

A pluggable type framework serves two key constituencies. It
enables a programmer to write type qualifiers in a program and to
run a type checker that verifies that the program respects the type
system. It enables a type system designer to define type qualifiers,
to specify their semantics, and to create the checker used by the
programmer.

Programmers wish to improve the quality of their code without

i 1 R, » T AR I - gl - USR t (U . OB o - PR, OISR TING - L T R L S SR L AP 11, BB (L

Who deserves credit for this work?

Abraham Lin, Alvin Abdagic, Anatoly Kupriyanov, Arie van Deursen, Arthur Baars,
Ashish Rana, Asumu Takikawa, Atul Dada, Basil Peace, Bohdan Sharipov, Brian
Corcoran, Calvin Loncaric, Charles Chen, Charlie Garrett, Christopher Mackie,
Colin S. Gordon, Dan Brotherston, Dan Brown, David Lazar, David McArthur, Eric
Spishak, Felipe R. Monteiro, Google Inc., Haaris Ahmed, Javier Thaine, Jeff Luo,
Jianchu Li, Jiasen (Jason) Xu, Joe Schafer, John Vandenberg, Jonathan Burke,
Jonathan Nieder, Kivanc Muslu, Konstantin Weitz, Lazaro Clapp, Liam
Miller-Cushon, Lugman Aden, Mahmood Ali, Manu Sridharan, Mark Roberts,
Martin Kellogg, Matt Mullen, Michael Bayne, Michael Coblenz, Michael Ernst,
Michael Sloan, Mier Ta, Nhat Dinh, Nikhil Shinde, Pascal Wittmann, Patrick
Meiring, Paulo Barros, Paul Vines, Philip Lai, Ravi Roshan, Renato Athaydes,
René Just, Ruturaj Mohanty, Ryan Oblak, Sadaf Tajik, Shinya Yoshida, Stefan
Heule, Steph Dietzel, Stuart Pernsteiner, Suzanne Millstein, Tony Wang, Trask
Stalnaker, Jenny Xiang, Utsav Oza, Vatsal Sura, Vlastimil Dort, Werner Dietl.

Who deserves credit for this work?

Werner Dietl Suzanne Millstein

Outline

Credits
Motivation
Contributions
Predicting impact
ldeas and results

Research approach

Context for the paper

2001-2008 was Static Typing Winter

Dynamic types: flexible, fast development
Type systems:

e Hard to understand

e Many false positives

e |napplicable to the most important problems

Today:

Type systems:

e Rich, expressive, precise type systems
e Simple, usable

e Address real-world problems

e Errors and security vulnerabilities matter

id | work on pluggable type-checking?

roject: automated SAT translation

Problem

Custom
solver

Problem solution

Problem SAT instance

Encode
aVbA-aVcA..

SAT solver

idea: Kautz & Selman)

SAT solution

Implementation optimizations:

sharing rather than purely functional

Problem: undesired side effects

Solution: integrate functional &

Imperative

Decode
a=true, b=false, ...

Problem solution

This paper appears in Proceedings of the
15th International Joint Conference on Arti-
Jieial Intelligence (1JCAI-9T), Nagoya, Aichi,
Japan, August 23-29, 1997, pp. 1169-1176.

Automatic SAT-Compilation of Planning Problems

Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld*
Department of Computer Science and Engineering
University of Washington, Box 352350 Seattle WA 98195 2350 USA
{mernst, todd, weld}@cs.washington.edu

Abstract

it work by Kautz e al. provides tantalizing
evidence that large, classical planning problems
may be efficiently solved by translating them into
propositional satisfiability problems, using stochas-
tic search techniques, and translating the resulting
truth assignments back into plans for the original
problems. We explore the space of snch transfor-
mations, providing a simple framework that gener-
ates eight major encodings (generated by selecting
one of four action representations and one of two
frame axioms) and a number of subsidiary ones.
We describe a fully-implemented compiler that can
generate each of these encodings, and we test the
compiler on a suite of STRIPS planning problems
in order to determine which encodings have the
best properties

1 Tetemdiimdimn

o We present an analytic framework that accounts for
all previously reported non-causal encodings,' including
several novel possibilities. We parameterize the space
of encodings along two major dimensions, action and
frame representation. For twelve points in this two-
dimensional space, we list the axioms necessary for a
minimal encoding, and we calculate the asymptotic en-
coding sizes

o We describe an automatic compiler that generates all of

these encodings. While it is difficult for a compiler to

produce encodings that are as lean as the hand-coded
versions of [Kautz and Selman, 1996], we describe type-
analysis and factoring techniques that get us close. Ex-
periments demonstrate these methods can reduce the

number of variables by half and formula size by 80%

We run the compiler o a suite of STRIPS-style planning

problems, determining that the regular and simply-split

explanatory encodings are smallest and can be solved
fastest

MTha @rane f Tlanmdinoo

Controlling side effects

Project: programmer-controlled, statically-enforced
immutability

A type system must be:
e Sound: proofs
e Useful: experiments, integration with a language

2001: compiler implementation (Java extension)
2002-2009: 7 more compilers, for 5 languages

Problem: huge implementation effort

Solution: framework for defining a type system

Pluggable type-checking

Project: Type system implementation framework

Goals: expressiveness for rich type systems
conciseness when possible

Express the four parts of a type system:
e T[ype hierarchy

e Type rules

e Type introduction

e Type refinement

Problem: No syntax for pluggable types

Solution: Change the language (Java)

Type qualifiers in Java

Project: Java language extension

2004: Proposal

2006: Proposal accepted

2005-2014: Implement in javac, draft Java specification
2014: Approved

Today: Consulting on spec and implementation

@Present Optional<String> maidenName;

- > < >
'I}/pe qualifier Java basetype

Type

@Untainted String query;

List<@NonNull String> strings;

myGraph = (@Immutable Graph) tmp;

class UnmodifiablelList<T> implements @Readonly List<T> {}

Motivation #2: Formal verification 2 type systems

Program
Property Verification

Proof i

Beautiful, compelling idea
Provides guarantees that testing cannot
Many research papers show successes

Not used in practice
| tried to use it and couldn’t

Exception: Type systems
e Lightweight, practical, familiar
e Partial verification

Can this bring verification to all programmers?

Hyrpe-systems Specification and verification

Specifications can be complicated
Verification is hard; complex reasoning

Programmers are reluctant
Not appropriate for every project

Benefits:

Reliability
Documentation
Efficiency

Reasoning

IDE tooling

Leads to simpler designs

Motivation #2a: Teaching

Don’t teach methodology without practical application

Don’t teach methodology without tool support

Experiment. Students using the Checker Framework had
more correct programs and higher grades
e No difference in time spent

Motivation #3: Research methodology

A type system must have two properties:

e Sound

o Provides a guarantee

o No loopholes (except explicit
ones)

o Precision is essential

o Formal proofs can be useful

i i h € Heap = Addr — 0bj
Formalizations L € Addr = Set of Addresses U {nulla}
o & 0Obj — *Type, Fields
— 2 € FType = OwnerAddr ClassId<*Type>
P & Program — Class, Classld, Expz e Fislds — FieldTd — hdds
Cls €& Class = class ClassId<TVarI« o L]
extends ClassId<*Ty} . & 9 waerMdr = AddrUdany,;
o=y I .
{ Fieldid *Type; Met [e Env = TVarld *Type; ParId Addr
°T & °Type = SNType | TVarld h,’T, eq ~~ h’,l,o
°N & °©NType = OM ClassId<*Type> 11
G € Mw oo R il s ()
mt € Meth = L =h"(t f
- ! L0 # nulla OS R 0 2
MethSi = -Read
& ho,*C,e2 ~» ho,t h,'T, eo.f Wh’,b
w & Purity = h/ = hy [L().f = L]
. 0OS-Upd
4 € - N T S
CHep:No No = ug Co<>
Expr .MethId<*Type>(Expr) | T; = fType(Co, £
new *Type | (3T!pe) Expr Ik :0 y}; ([>'I,‘)
ST & SEnv = TVarld °NType; Parld ®Type R0 Sal
T Upd 0 F 2y rp(uo,T1)
QT Resid—— 20 :Ho N? — = [eo.f=e2 : Nol>Ty
hi-tT: 't eo.f : Nol>f1ype(Co, f)

ht ¢ :dyn(®N,h,',
ht e :dyn(®*T,e1,h(e1) 1
SN=uy Cy<>

; : IT = <> FET*<: J CETH
uy = this, = *['(this) =y vy 0

dom(C) =X

) l —> ht 2 : dyn(®N>°T.h.T)

e HFET R C<ﬁ> > FIT T *Ta
free(®*T) CXo X

free(®T) C dom(Cx) DYN

dyn(®T,¢,*T, (X’ *T’;_)) = *T[¢/ /this, " /peer, ¢ /rep,any , /any, ,*T/X,*T' /X’]

Too much research
omits one!

Motivation #3: Research’'methodology

A type system must have two properties:

e Sound o Useful
o Provides a guarantee o Solves a real problem
o No loopholes (except explicit o Simple to explain
ones) o Low usage burden
o Precision is essential o Applicable to real languages,

o Formal proofs can be useful programs, development model
o Evaluated experimentally

Goal: Make implementation easy
Better experimentation = better theory

Helmuth von Moltke
the Elder

Outline

Credits
Motivation
Contributions
Predicting impact
ldeas and results

Research approach

Contributions

Syntax for type qualifiers in Java

Checker Framework for writing type checkers
5 checkers written using the framework

Case studies enabled by the infrastructure
Insights about the type systems

Implementing a type system

Example: Ensure encrypted communication

void send(@Encrypted String msg) {...}
@Encrypted String msgl = ..
send(msgl); // OK

String msg2 =;
send(msg2); // Warning!

>

The complete checker:

@Target(ElementType.TYPE_USE)
@SubtypeOf (Unqualified.class)
public @interface Encrypted {}

Sample type checkers

e Basic checker (subtyping)
* Null dereferences (@NonNull) %T‘)day’ > KLOC}
* Errors in equality testing (@Interned)

* Reference immutability (Javari)

e Reference & object immutability (1GJ)

< 500 LOC per checker

Case studies

* Annotated existing Java programs
* Found bugs in every codebase

— Verified by a human and fixed

e As of summer 2007: 360 KLOC
— Now: >1 MLOC
— Scales to > 200 KLOC

Easy to use A

Not too verbose
Not too many false positives
kBetter than competing tools y

Lessons learned

Type systems
— Interning

— Nullness

— Javari

— 1GJ
Polymorphism
Framework design

Others: supertype qualifiers, simple type systems,
inference, syntax, language integration, toolchain,

Our mistakes

Analysis on AST

e Common approach

e Solution: build a CFG

e Our dataflow analysis was adopted by Google, Uber, etc.

Poor performance
e Compilation time doubles or worse
e \We lost users

Limitation: Generics
e Complex specification
e Difficult to implement correctly

Example type systems

Null dereferences (@NonNull)
>200 errors in javac, Google Collections, ...

Equality tests (¢ Interned)
>200 problems in Lucene, Xerces, ...
Concurrency / locking (@GuardedBy)

>500 errors in Guava, Tomcat, Bitcoind, Derby, ...

Fake enumerations / typedefs (@QFenum)
problems in Swing, JabRef

Array indexing (@ IndexFor)
89 bugs in Guava, JFreeChart, plume-lib

String contents

Regular expression syntax (eRRegex)
956 errors in Apache, etc.; 200 annotations required

printf format strings (eFormat)
104 errors, only 107 annotations in 2.8 MLOC

Method signature format (eFullyQualified)
28 errors in OpendDK, ASM, AFU

Compiler messages (GCompilerMessageKey)
8 wrong keys in Checker Framework

Security type systems
Command injection vulnerabilities (c0OsTrusted)
5 missing validations in Hadoop

Information flow privacy (@Source)
SPARTA detected malware in Android apps @

Industrial use

You can write your own type system!
Many problems can be expressed as a type system
No run-time overhead; standard VM and tools

Previous work

CQual: Jeff Foster, Alex Aiken, others (1999-2006)
Type qualifiers for the C programming language

“Pluggable type systems” term: Gilad Bracha (2004)

ESC/Java: Cormac Flanagan, Rustan Leino, others (2002)
Lightweight verification, programmer-written partial specs

Chose the problem and approach on my own

Closely read to learn lessons, avoid repeating mistakes, give
credit, make comparisons

CHECKER

fromework

https://checkerframework.org/

Practical Pluggable Types for Java

Create, evaluate, and use custom type systems
An effective verification methodology

For practitioners: more robust and correct code

This paper it For r@esearchers: easier experimentation

adding pluggabld constituencies. It

i . d to
compatible way, = a program an
o s sl better theory and more impact respects the type
Programmers cairwime e Ty PC qUaTTIIeTS 1T UICT PrOET alTs aire use e type quahﬁers’

N A T to specify their semantics, and to create the checker used by the

Outline

Credits

Motivation
Contributions
Predicting impact
ldeas and results

Research approach

Reaction at ISSTA 2008

My ISSTA 2008 paper received expedited journal publication
(“best paper honorable mention”

Finding Bugs in Dynamic Web Applications

Julian Dolby* ‘
Michael D. Ernst’

Adam Kiezun'
Amit Paradkar*

Shay Artzi'

Frank Tip’ Danny Dig'

MIT CSAIL, {artzi,akiezun,dannydig,mernst}@csail.mit.edu
£|BM T.J. Watson Research Center, {dolby,ftip,paradkar}@us.ibm.com

Abstract

Web script crashes and malformed dynamically-generated Web
pages are common errors, and they seriously impact usability of
Web applications. Current tools for Web-page validation cannot
handle the dynamically-generated pages that are ubiquitous on to-
day’s Internet. In this work, we apply a dynamic test generation
technique, based on combined concrete and symbolic execution, to
the domain of dynamic Web applications. The technique generates
tests automatically, uses the tests to detect failures, and minimizes
the conditions on the inputs exposing each failure, so that the re-
sulting bug reports are small and useful in finding and fixing the
underlying faults. Our tool Apollo implements the technique for
PHP. Apollo generates test inputs for the Web application, moni-
tors the application for crashes, and validates that the output con-
forms to the HTML specification. This paper presents Apollo’s al-
gorithms and implementation, and an experimental evaluation that
revealed 214 faults in 4 PHP Web applications.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging;

General Terms Reliability, Verification

Keywords Software Testing, Web Applications, Dynamic Analy-
sis, PHP

1. Introduction

manifested as Web application crashes or as malformed HTML.
Some faults may terminate the application, such as when a Web
application calls an undefined function or reads a nonexistent file.
In such cases, the HTML output presents an error message and the
application execution is halted.

More commonly in deployed applications, a Web application
creates output that is not syntactically well-formed HTML, for ex-
ample by generating an opening tag without a matching closing tag.
‘Web browsers are designed to tolerate some degree of malformed-
ness in HTML, but this merely masks underlying failures. Mal-
formed HTML is less portable across browsers and is vulnerable
to breaking on new browser releases. An application that creates
invalid (but displayable) HTML during testing may create undis-
playable HTML on different executions. More seriously, browsers’
attempts to compensate for malformed Web pages may lead to
crashes and security vulnerabilities'. A browser might also succeed
in displaying only part of a malformed webpage, silently discarding
important information. Search engines may have trouble indexing
incorrect pages. Standard HTML renders on more browsers, and
valid pages are more likely to look as expected, including on future
versions of Web-browsers. Standard HTML renders faster’. For
example, in Mozilla, “improper tag nesting [...] triggers residual
style handling to try to produce the expected visual result, which
can be very expensive” [25].

Web developers widely recognize the importance of creating le-
gal HTML. Many websites are validated using HTML validators®
e e W SR Co R M e A NN e

Reaction at ISSTA 2008

Reviews:
“There is nothing particularly novel”
“The general idea of pluggable types is not new”

“JQual is superior ... [very incomplete list of JQual limitations]
... JQual could be easily enhanced to handle them”

Useful reviews!

Reviewer concerns

Declarative syntax
Inadequate for rich type systems

Results claimed by previous work
The reviewers believed them

Simple, clear explanation = trivial

Too much engineering
Only 2 new type systems

Programmer writes specs
The reviewers preferred inference

It’s hard to predict impact

160 papers

3 impact
awards

10 best-paper
awards

Outline

Credits

Motivation
Contributions
Predicting impact
Ideas and results

Research approach

Ideas and results

Idea: a thought or suggestion

Result: evidence that answers a question or provides
information

Results lead to the best research

Most ideas are terrible*

Most ideas are not novel*

* including my ideas!

Crisis of reproducibility

Most published findings are false

bias

testing by independent teams
size of studies

effect sizes

number of tested relationships
vagueness/flexibility of definitions
financial interests

John P. A.loannidis

Ehe New Pork Times

MIND

Psychology Itself
Is Under Scrutiny

Many famous studies of human behavior cannot
be reproduced. Even so, they revealed aspects of

our inner lives that feel true.

=

By Benedict Carey

July 16, 2018

factors that influence this problem and
some corollaries thereof.

Modeling the Framework for False
Positive Findings

Several methodologists have

pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
vet ill-founded strategy of claiming
conclusive research findings solely on
the basis of a single study asscssed by
formal statistical significance, typically
for a pvalue less than 0.05. Research

is not most appropriate
and summarized by pvalues, but,
unfortunately, there is a widespread
notion that medical research articles

@ I] 102

Open access, freely available online

is characteristic of the field and can
vary a lot depending on whether the
field targets highly likely relationships
or searches for only one or a few

truc relationships among thousands
and millions of hypotheses that may

be postulated. Let us also consider,

for computational simplicity,
circumscribed fields where cither there
is only onc truc relationship (among
many that can be hypothesized) or

the power is similar to find any of the
several existing true relationships. The
pre-study probability of a relationship
being true is R/(R + 1). The probability
of a study finding a true relationship
reflects the power 1 - B (one minus
the Type II error rate). The probability
of claiming a relationship when none
truly exists reflects the Type I error

Multiple discovery

Calculus
Oxygen
Evolution

Undefinability theorem, universal computing machine,
iIntegrated circuit, Kolmogorov complexity, packet switching,
CFG parsing, KMP string searching, Cook-Levin theorem,
RSA algorithm, elliptic curve cryptography, distributed hash
tables, ...

| have been scooped, and | have scooped others

Results vs. ideas: not a new debate

"Should computer scientists experiment more?"
by Walter F. Tichy, Computer 31:5, May 1998

Critique: Requiring experiments will
e Slow dissemination of ideas

e Slow scientific progress

e \Vaste resources

Walter F. Tichy

Translation: Should Computer
e My ideas are uniquely valuable ﬁ:)f’lzgstsEXpwment

dddddd

e My ideas are obviously good
e | don't like the work of evaluation

We should publish some ideas

Some are good!
Some are novel!

Explore the design space and justify your choice
Draw connections

Recognize the limitations of an idea

Different kinds of results are valuable
e Including evaluation, generalization, filtering

Danger in publishing too many ideas

Proposing lots of ideas indiscriminately
e (Good for tenure
e Bad for science

A trivial or contrived evaluation is worse than no evaluation

If you believe in your idea, evaluate and implement it
Don’t expect credit for science fiction

[ules Yonez OUSAND
' _.;WENL!'{%AGUES
UNDER#SEA

The filtering of conferences is valuable

Don't fetishize algorithmic novelty

Outline

Credits
Motivation
Contributions
Predicting impact
ldeas and results

Research approach

My approach to research

Work with undergraduates

Scratch your own itch

Don’t give up

Publish your implementations

Never say “easy” or “obvious”

Focus on results (pursue ideas to results)
Community actions

Disclaimer: Your mileage may vary

Work with undergraduates

Undergraduate Undergraduate Undergraduate

| got my start because faculty took a gamble on me

CRA-E Undergraduate Research Faculty Mentoring Award, 2018

Laura Dean, Adam Czeisler, Michael Harder, Alex Rolfe, Ben Morse, Jeremy Nimmer, Nii Dodoo, Lee Lin, Gustavo Santos, Arjun Narayanswamy, Emily Marcus, Jeff
Mellen, Cemal Akcaba, Samir Meghani, Adrian Birka, Toh Ne Win, Yuriy Brun, Faisal Anwar, Stanley Cheung, James Anderson, Deepali Garg, Matthew Tschantz,
Jonathan Grall, Aaron Iba, Benjamin Wang, Vikash Mansinghka, Jelani Nelson, Punyashloka Biswal, Alan Dunn, Joseph Sikoscow, Meng Mao, Galen Pickard, Kathryn
Shih, Kevin Chevalier, Pramook Khungurn, Eric Fellheimer, Philip J. Guo, Michael Gebauer, Sanjukta Pal, Chen Xiao, David Glasser, Matt Papi, Jaime Quinonez,
Mahmood Ali, Arjun Dayal, Jeff Yuan, Stephie Wu, Charles Tam, Telmo Luis Correa~Jr., John Marrero, David Harvison, Paley Li, Sigurd Schneider, Robert Rudd,
Slava Chernyak, Matt Mullen, David Koenig, Gareth Snow, Tim Vega, Eric Spishak, Stephanie Dietzel, Laure Thompson, Peter Kalauskas, David Lazar, Artem
Melentyev, Asumu Takikawa, Naomi Bancroft, Michael Sloan, Zachary Stein, Jeff Gertler, Yoong Woo Kim, Donovan Hunt, Kevin Thai, Allen Liu, William Mason Remy,
Mark Davis, Haochen Wei, Andrew Davies, Brian Walker, Jenny Abrahamson, Timothy Vega, Roykrong Sukkerd, Stefan Heule, Wing Lam, Nat Mote, Kellen Donohue,
Philip Lai, Jake Bailey, Tyler Rigsby, Forrest Coward, Rafael Vertido, Riley Klinger, Yuxuan (Shawn) Zhang, Rafael Vertido, Gene Kim, Katie Madonna, Siwakorn Ping
Srisakaokul, Pingyang He, Dominic Langenegger, Luke Swart, Alain Orbino, Christopher Wei-Chieh Chen, Max Han, Paulo Barros, Patty Wang, Akshay Chalana,
Kevin Bi, Hiep Can, Deric Pang, Steve Anton, Haoming Liu, Christopher Mackie, Sergio Delgado Castellanos, Omar Alhadlagq, Waylon Huang, Anmol Jammu,
Abhishek Sangameswaran, Joe Santino, Kevin Vu, Arianna Blasi, Justin Kotalik, Adam Geller, David Grant.

Be a programmer

Generates lots of good ideas
Ensures your work Is relevant
Leads to impact

Fun! (cf. writing grant proposals and grading exams)

Scratch your own itch

Choose problems you care about

Use your tool

e If not, do you believe in it?

e If not, do you understand the domain?

Don’t pursue fads

Don’t use the literature to suggest a project

e If you do, you may solve the wrong problem
e (ood for understanding existing techniques
e May inspire new ideas

Choose problems that are grounded in programming
Ask, “Why do | care?” and “How is this actionable?”

Don’t give up

It takes time for your great work to be recognized

It takes time to turn ideas into results
Impact comes from follow-through

Work on ideas you believe in
Believe in yourself, too

Also know when to declare victory and move on

Checker Framework maintenance

As of the ISSTA talk:
e 22 public releases
e >1MLOC of code type-checked

Today:

e Release every month

e Closed 264 issues in the past year
e 30 talks in the last 3.5 years

Publish your implementations

Science is built on reproducibility
Lets others work faster
Increases confidence in your work, citations, impact

Community should prioritize this

Reusable frameworks

Don't claim reusability until you have multiple real
iInstantiations

Checker Framework, as of ISSTA 2008 talk:
e 5 full type-checkers that had found bugs
e 9 universities building type systems

| What You Do Is Easy, |

Never say “easy” or “obvious”

sy JAKE WOLF
rictures sy ANNA DEWDNEY

“It would be easy to ...”
If it's so easy, why don't you do it?

“Conceptually easy, but uninteresting engineering.”
Why don’t you automate or abstract it?
Why don’t you just do it?

“It's obvious that ...”
It's obvious that the earth is flat

and the sun revolves around it.

Your intuition is wrong beyond human scale
Avoid Aristotelian science

Checker Framework was not easy or obvious

Several previous attempts had failed
Differences in design
Value in case studies to assess pluggable type-checking

Reusable engineering

Focus on results (pursue ideas to results)

There is no substitute for experiments

Rationally assess the value of your ideas
Get external feedback

Publish fewer papers rather than more
e Make every paper outstanding

Assess impact rather than counting papers
Learn to read and think, not just to count
e Your dean needs to learn this too

Community actions

Give credit where it is due (not necessarily first publication)
Publish some idea papers, but recognize their value
Don't denigrate results (anti-intellectual)

Encourage experimentation, replication, and extensions
Accept papers whose results are convincing but not perfect

Don't blindly believe the claims of related work
Reviewers, hold papers to their claims

Outline

Credits
Motivation
Contributions
Predicting impact
ldeas and results

Research approach

Try the Checker Framework today

You have nothing to lose but your bugs

CHECKER

framework

https://checkerframework.org/

