
Pluggable type systems
reconsidered

ISSTA 2018 Impact Paper Award for
“Practical Pluggable Types for Java”

Michael D. Ernst
University of Washington

https://checkerframework.org/

Optional Type Checking

int x = "hello world"; Compiler error

Optional Type Checking

Compiler Run

Optional
Type Checker

Guaranteed
behaviorFix bugs

Fix bugs

Add/change
annotations

No errors

Optional
Type Checker

Optional
Type CheckerChange types

.java

Errors

Errors

Optional

Impacts

160+ citations
40+ type systems built using the Checker Framework
Used at Amazon, Google, Uber, startups, Wall Street, …
Java has syntax to support the Checker Framework

For practitioners: more robust and correct code

For researchers: easier experimentation ⇒ better theory
and more impact

For both: appreciation of type systems

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

Who deserves credit for this paper?

Undergraduate Undergraduate Undergraduate Programmer Tenured

Who deserves credit for this work?

Abraham Lin, Alvin Abdagic, Anatoly Kupriyanov, Arie van Deursen, Arthur Baars,
Ashish Rana, Asumu Takikawa, Atul Dada, Basil Peace, Bohdan Sharipov, Brian
Corcoran, Calvin Loncaric, Charles Chen, Charlie Garrett, Christopher Mackie,
Colin S. Gordon, Dan Brotherston, Dan Brown, David Lazar, David McArthur, Eric
Spishak, Felipe R. Monteiro, Google Inc., Haaris Ahmed, Javier Thaine, Jeff Luo,
Jianchu Li, Jiasen (Jason) Xu, Joe Schafer, John Vandenberg, Jonathan Burke,
Jonathan Nieder, Kivanc Muslu, Konstantin Weitz, Lázaro Clapp, Liam
Miller-Cushon, Luqman Aden, Mahmood Ali, Manu Sridharan, Mark Roberts,
Martin Kellogg, Matt Mullen, Michael Bayne, Michael Coblenz, Michael Ernst,
Michael Sloan, Mier Ta, Nhat Dinh, Nikhil Shinde, Pascal Wittmann, Patrick
Meiring, Paulo Barros, Paul Vines, Philip Lai, Ravi Roshan, Renato Athaydes,
René Just, Ruturaj Mohanty, Ryan Oblak, Sadaf Tajik, Shinya Yoshida, Stefan
Heule, Steph Dietzel, Stuart Pernsteiner, Suzanne Millstein, Tony Wang, Trask
Stalnaker, Jenny Xiang, Utsav Oza, Vatsal Sura, Vlastimil Dort, Werner Dietl.

Who deserves credit for this work?

Werner Dietl Suzanne Millstein

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

Context for the paper

2001-2008 was Static Typing Winter
Dynamic types: flexible, fast development
Type systems:
● Hard to understand
● Many false positives
● Inapplicable to the most important problems

Today:
Type systems:
● Rich, expressive, precise type systems
● Simple, usable
● Address real-world problems
● Errors and security vulnerabilities matter

Why did I work on pluggable type-checking?

Project: automated SAT translation (idea: Kautz & Selman)

Custom
solver

Problem Problem solution

Encode DecodeSAT solver
SAT instanceProblem SAT solution

a ∨ b ⋀ ¬a ∨ c ⋀ ...

Problem solution
a=true, b=false, ...

Implementation optimizations:
sharing rather than purely functional

Problem: undesired side effects

Solution: integrate functional &
imperative

Controlling side effects

Project: programmer-controlled, statically-enforced
immutability

A type system must be:
● Sound: proofs
● Useful: experiments, integration with a language

2001: compiler implementation (Java extension)
2002-2009: 7 more compilers, for 5 languages

Problem: huge implementation effort

Solution: framework for defining a type system

Pluggable type-checking

Project: Type system implementation framework

Goals: expressiveness for rich type systems
 conciseness when possible

Express the four parts of a type system:
● Type hierarchy
● Type rules
● Type introduction
● Type refinement

Problem: No syntax for pluggable types

Solution: Change the language (Java)

Type qualifiers in Java

@Untainted String query;
List<@NonNull String> strings;
myGraph = (@Immutable Graph) tmp;
class UnmodifiableList<T> implements @Readonly List<T> {}

@Present Optional<String> maidenName;

Type qualifier Java basetype
Type

Project: Java language extension
2004: Proposal
2006: Proposal accepted
2005-2014: Implement in javac, draft Java specification
2014: Approved
Today: Consulting on spec and implementation

Motivation #2: Formal verification

Beautiful, compelling idea
Provides guarantees that testing cannot
Many research papers show successes

Not used in practice
I tried to use it and couldn’t

⊇ type systems

Verification
Program
Property

Proof

Exception: Type systems
● Lightweight, practical, familiar
● Partial verification

Can this bring verification to all programmers?

Type systems Specification and verification

Specifications can be complicated
Verification is hard; complex reasoning

Programmers are reluctant
Not appropriate for every project

Benefits:
● Reliability
● Documentation
● Efficiency
● Reasoning
● IDE tooling
● Leads to simpler designs

Motivation #2a: Teaching

Don’t teach methodology without practical application

Don’t teach methodology without tool support

Experiment: Students using the Checker Framework had
more correct programs and higher grades
● No difference in time spent

Motivation #3: Research methodology

● Sound
○ Provides a guarantee
○ No loopholes (except explicit

ones)
○ Precision is essential
○ Formal proofs can be useful

A type system must have two properties:

Formalizations

Too much research
omits one!

Motivation #3: Research methodology

● Sound
○ Provides a guarantee
○ No loopholes (except explicit

ones)
○ Precision is essential
○ Formal proofs can be useful

Helmuth von Moltke
the Elder

● Useful
○ Solves a real problem
○ Simple to explain
○ Low usage burden
○ Applicable to real languages,

programs, development model
○ Evaluated experimentally

A type system must have two properties:

Goal: Make implementation easy
Better experimentation ⇒ better theory

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

Implementing a type system

Example: Ensure encrypted communication

 void send(@Encrypted String msg) {…}

 @Encrypted String msg1 = ...;

 send(msg1); // OK

 String msg2 =;

 send(msg2); // Warning!

The complete checker:

 @Target(ElementType.TYPE_USE)

 @SubtypeOf(Unqualified.class)

 public @interface Encrypted {}

Today, 4 KLOC

Easy to use
Not too verbose
Not too many false positives
Better than competing tools

Our mistakes

Analysis on AST
● Common approach
● Solution: build a CFG
● Our dataflow analysis was adopted by Google, Uber, etc.

Poor performance
● Compilation time doubles or worse
● We lost users

Limitation: Generics
● Complex specification
● Difficult to implement correctly

Example type systems

Null dereferences (@NonNull)
>200 errors in javac, Google Collections, ...

Equality tests (@Interned)
>200 problems in Lucene, Xerces, ...

Concurrency / locking (@GuardedBy)
>500 errors in Guava, Tomcat, BitcoinJ, Derby, ...

Fake enumerations / typedefs (@Fenum)
problems in Swing, JabRef

Array indexing (@IndexFor)
89 bugs in Guava, JFreeChart, plume-lib

String contents

Regular expression syntax (@Regex)
56 errors in Apache, etc.; 200 annotations required

printf format strings (@Format)
104 errors, only 107 annotations in 2.8 MLOC

Method signature format (@FullyQualified)
28 errors in OpenJDK, ASM, AFU

Compiler messages (@CompilerMessageKey)
8 wrong keys in Checker Framework

Security type systems

Command injection vulnerabilities (@OsTrusted)
5 missing validations in Hadoop

Information flow privacy (@Source)
SPARTA detected malware in Android apps

Industrial use

You can write your own type system!
Many problems can be expressed as a type system
No run-time overhead; standard VM and tools

Previous work

CQual: Jeff Foster, Alex Aiken, others (1999-2006)
Type qualifiers for the C programming language

“Pluggable type systems” term: Gilad Bracha (2004)

ESC/Java: Cormac Flanagan, Rustan Leino, others (2002)
Lightweight verification, programmer-written partial specs

Chose the problem and approach on my own

Closely read to learn lessons, avoid repeating mistakes, give
credit, make comparisons

https://checkerframework.org/

Create, evaluate, and use custom type systems
An effective verification methodology

For practitioners: more robust and correct code

For researchers: easier experimentation
 ⇒ better theory and more impact

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

Reaction at ISSTA 2008

My ISSTA 2008 paper received expedited journal publication
(“best paper honorable mention”)

Reaction at ISSTA 2008

Reviews:

“There is nothing particularly novel”

“The general idea of pluggable types is not new”

“JQual is superior ... [very incomplete list of JQual limitations]
... JQual could be easily enhanced to handle them”

Useful reviews!

Reviewer concerns

Declarative syntax
Inadequate for rich type systems

Results claimed by previous work
The reviewers believed them

Simple, clear explanation ⇒ trivial

Too much engineering
Only 2 new type systems

Programmer writes specs
The reviewers preferred inference

It’s hard to predict impact

160 papers

3 impact
awards

10 best-paper
awards

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

Ideas and results

Idea: a thought or suggestion

Result: evidence that answers a question or provides
information

Results lead to the best research

Most ideas are terrible*

Most ideas are not novel*

* including my ideas!

Crisis of reproducibility

Most published findings are false
● bias
● testing by independent teams
● size of studies
● effect sizes
● number of tested relationships
● vagueness/flexibility of definitions
● financial interests

Multiple discovery

Calculus
Oxygen
Evolution
...

Undefinability theorem, universal computing machine,
integrated circuit, Kolmogorov complexity, packet switching,
CFG parsing, KMP string searching, Cook-Levin theorem,
RSA algorithm, elliptic curve cryptography, distributed hash
tables, …

I have been scooped, and I have scooped others

Results vs. ideas: not a new debate

"Should computer scientists experiment more?"
by Walter F. Tichy, Computer 31:5, May 1998

Translation:
● My ideas are uniquely valuable
● My ideas are obviously good
● I don’t like the work of evaluation

Critique: Requiring experiments will
● Slow dissemination of ideas
● Slow scientific progress
● Waste resources

We should publish some ideas

Some are good!
Some are novel!

Explore the design space and justify your choice
Draw connections
Recognize the limitations of an idea

Different kinds of results are valuable
● Including evaluation, generalization, filtering

Danger in publishing too many ideas

Proposing lots of ideas indiscriminately
● Good for tenure
● Bad for science

A trivial or contrived evaluation is worse than no evaluation

If you believe in your idea, evaluate and implement it
Don’t expect credit for science fiction

The filtering of conferences is valuable

Don’t fetishize algorithmic novelty

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

My approach to research

● Work with undergraduates
● Scratch your own itch
● Don’t give up
● Publish your implementations
● Never say “easy” or “obvious”
● Focus on results (pursue ideas to results)
● Community actions

Disclaimer: Your mileage may vary

Work with undergraduates

Undergraduate Undergraduate Undergraduate

I got my start because faculty took a gamble on me

CRA-E Undergraduate Research Faculty Mentoring Award, 2018
Laura Dean, Adam Czeisler, Michael Harder, Alex Rolfe, Ben Morse, Jeremy Nimmer, Nii Dodoo, Lee Lin, Gustavo Santos, Arjun Narayanswamy, Emily Marcus, Jeff
Mellen, Cemal Akcaba, Samir Meghani, Adrian Birka, Toh Ne Win, Yuriy Brun, Faisal Anwar, Stanley Cheung, James Anderson, Deepali Garg, Matthew Tschantz,
Jonathan Grall, Aaron Iba, Benjamin Wang, Vikash Mansinghka, Jelani Nelson, Punyashloka Biswal, Alan Dunn, Joseph Sikoscow, Meng Mao, Galen Pickard, Kathryn
Shih, Kevin Chevalier, Pramook Khungurn, Eric Fellheimer, Philip J. Guo, Michael Gebauer, Sanjukta Pal, Chen Xiao, David Glasser, Matt Papi, Jaime Quinonez,
Mahmood Ali, Arjun Dayal, Jeff Yuan, Stephie Wu, Charles Tam, Telmo Luis Correa~Jr., John Marrero, David Harvison, Paley Li, Sigurd Schneider, Robert Rudd,
Slava Chernyak, Matt Mullen, David Koenig, Gareth Snow, Tim Vega, Eric Spishak, Stephanie Dietzel, Laure Thompson, Peter Kalauskas, David Lazar, Artem
Melentyev, Asumu Takikawa, Naomi Bancroft, Michael Sloan, Zachary Stein, Jeff Gertler, Yoong Woo Kim, Donovan Hunt, Kevin Thai, Allen Liu, William Mason Remy,
Mark Davis, Haochen Wei, Andrew Davies, Brian Walker, Jenny Abrahamson, Timothy Vega, Roykrong Sukkerd, Stefan Heule, Wing Lam, Nat Mote, Kellen Donohue,
Philip Lai, Jake Bailey, Tyler Rigsby, Forrest Coward, Rafael Vertido, Riley Klinger, Yuxuan (Shawn) Zhang, Rafael Vertido, Gene Kim, Katie Madonna, Siwakorn Ping
Srisakaokul, Pingyang He, Dominic Langenegger, Luke Swart, Alain Orbino, Christopher Wei-Chieh Chen, Max Han, Paulo Barros, Patty Wang, Akshay Chalana,
Kevin Bi, Hiep Can, Deric Pang, Steve Anton, Haoming Liu, Christopher Mackie, Sergio Delgado Castellanos, Omar Alhadlaq, Waylon Huang, Anmol Jammu,
Abhishek Sangameswaran, Joe Santino, Kevin Vu, Arianna Blasi, Justin Kotalik, Adam Geller, David Grant.

Be a programmer

Generates lots of good ideas

Ensures your work is relevant

Leads to impact

Fun! (cf. writing grant proposals and grading exams)

Scratch your own itch

Choose problems you care about
Use your tool
● If not, do you believe in it?
● If not, do you understand the domain?

Don’t pursue fads

Don’t use the literature to suggest a project
● If you do, you may solve the wrong problem
● Good for understanding existing techniques
● May inspire new ideas

Choose problems that are grounded in programming
Ask, “Why do I care?” and “How is this actionable?”

Don’t give up

It takes time for your great work to be recognized

It takes time to turn ideas into results
Impact comes from follow-through

Work on ideas you believe in
Believe in yourself, too

Also know when to declare victory and move on

Checker Framework maintenance

As of the ISSTA talk:
● 22 public releases
● >1MLOC of code type-checked

Today:
● Release every month
● Closed 264 issues in the past year
● 30 talks in the last 3.5 years

Publish your implementations

Science is built on reproducibility

Lets others work faster

Increases confidence in your work, citations, impact

Community should prioritize this

Reusable frameworks

Don't claim reusability until you have multiple real
instantiations

Checker Framework, as of ISSTA 2008 talk:
● 5 full type-checkers that had found bugs
● 9 universities building type systems

Never say “easy” or “obvious”

“It would be easy to …”
If it's so easy, why don't you do it?

“Conceptually easy, but uninteresting engineering.”
Why don’t you automate or abstract it?
Why don’t you just do it?

“It’s obvious that …”
It’s obvious that the earth is flat
and the sun revolves around it.

Your intuition is wrong beyond human scale
Avoid Aristotelian science

Checker Framework was not easy or obvious

Several previous attempts had failed

Differences in design

Value in case studies to assess pluggable type-checking

Reusable engineering

Focus on results (pursue ideas to results)

There is no substitute for experiments

Rationally assess the value of your ideas
Get external feedback

Publish fewer papers rather than more
● Make every paper outstanding

Assess impact rather than counting papers
Learn to read and think, not just to count
● Your dean needs to learn this too

Community actions

Give credit where it is due (not necessarily first publication)
Publish some idea papers, but recognize their value
Don't denigrate results (anti-intellectual)

Encourage experimentation, replication, and extensions
Accept papers whose results are convincing but not perfect

Don't blindly believe the claims of related work
Reviewers, hold papers to their claims

Outline

Credits

Motivation

Contributions

Predicting impact

Ideas and results

Research approach

Try the Checker Framework today

You have nothing to lose but your bugs

https://checkerframework.org/

