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High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system
● Our contribution: a new approach for type inference specialized 

to pluggable typecheckers
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Background: Pluggable Types

● widely adopted 
○ Uber, Meta, AWS, Google, Oracle, etc.

● attractive to developers
○ familiar, high precision, sound, fast checking, modular, …

● downside: manual annotation of legacy codebases
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Are there other things in typecheckers 
that are type-system-agnostic?
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● Pluggable typecheckers implement local type inference within 
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis
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Q:  Does dataflow already know whether the 
return type is @NonNull  or @Nullable?    YES!

Fortress getFort(City city) {
  Fortress result = null;
  if (city != LUXEMBOURG)

  result = fortDB.get(city);
  return result;
}



● wrap existing local inference algorithm in a fixpoint loop
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More complicated than it sounds…

Read the paper for details!
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Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for 

details)
● many small, important details:

○ separate compilation, storing intermediate results, 
programmer-written types, warning suppressions, interaction 
with defaulting, pre- and post-conditions, non-type properties 
like purity, side effects, etc. All these details (and 

more) in the paper!
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Implementation

● Implemented as part of the Checker Framework (our tool is called 
“Whole Program Inference” or “WPI”) for Java
○ automatically works with all checkers built on the framework

● Scripts automate it for Maven and Gradle projects
● You can try it out:

https://checkerframework.org/manual/#whole-program-inference
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● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that 
we recover exactly

○ warning reduction %: percentage of warnings on unannotated 
code that our annotations remove

These metrics are proxies for human effort 
to verify an unannotated codebase
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Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total) 
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings
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● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable 

● Generics (10%)
○ future work

● We inferred something stronger (9%)
○ e.g., @Positive int instead of @NonNegative int
○ Exact matching underestimates WPI’s effectiveness

■ If we count these, annotation % is 48%
● Long tail of other causes, none greater than 5%

Reasons WPI missed human-written annotations
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● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record 
summaries

Start

Summaries are results of local inference 
on externally-visible expressions!
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Motivation

● pluggable typecheckers are cool (show some evidence that 
they’re used in real life)

● but there is a problem: writing annotations
○ show an example of an annotation that’s tough to write, but 

that WPI can find?
○ show a slide with tables from the last X Checker Framework 

papers, showing how many annotations were necessary just 
in the experiments

○ Mike doesn’t think either of the above is compelling.  The first 
makes the system seem unusable/unreadable, and the second 
is too abstract.  Here are some other ideas, which might not 
be very good either.

○ Show a birds-eye (heavily zoomed out) image of a program’s 
source code, with the lines that contain an annotation 
colored.  This will emphasize that although annotations are 
not needed everywhere, they are needed many places, and 
programmers don’t want to go to the work of finding those 
places.

● another important desiderata that these slides must 
communicate: our solution must work for all typecheckers.

● And, it must work for legacy code.  That’s where it’s hard to write 
type annotations.

●
● Where will we note that type inference is an inherently 

whole-program problem?
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Key insight/approach

● briefly explain that extant frameworks already have local 
inference in the form of dataflow analyses within method bodies

● transition to an example. The example starts with a method, and 
we show how local inference works. Then, show one of the type 
rules from the paper (RETURN?) and show hold we use the 
results of local dataflow to create an annotation that is global

● then, basically say “run this to fixpoint” (or show algorithm 1, 
which is super simple)

●
● We might not want to get really technical too quickly; that might 

lose the audience.  Maybe say that there are two fixpoint loops:  
one within method bodies (and it’s already implemented!) and 
one that is whole-program.  

● Or, start out with a transition from the end of the previous slide 
that discusses how it’s inherently a whole-program analysis, and 
wonder about how to modularize it.  Then transition from there 
into the two “parts” of the analysis:  local and global.
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Theoretical properties

● soundness in the verification sense because we’ll run the checker 
after

● termination
● completeness (i.e., all annotations we infer are verifiable) and 

soundness in the traditional inference sense (i.e., type all typable 
programs) are non-goals
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Putting it into practice

● There were a surprising number of difficult, technical problems 
we had to overcome to get this to work in practice. Give a taste (1 
or 2) and say the rest are in the paper. Here are some candidates, 
ordered by how well I think they’re suited to presentation here:
○ generated code & termination
○ preconditions and postconditions
○ warning suppressions
○ non-type properties (purity, specifically)
○ any of the others?
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Experiments

● Give a high-level summary of table 2:
○ what the experiment was, and how we collected the subject 

programs
○ what the resulting numbers mean
○ results

● Briefly discuss the causes for WPI missing annotations
○ generics is maybe worth discussing as future work?
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Discussion

● Our results are decent (½ way there!), but not yet suitable for 
replacing a human annotator
○ possible combinations with other inference techniques?

● Too many annotations, making results hard for humans to 
interpret

● Humans often write “more conservative” annotations than WPI 
produces (e.g., the “defensive programming” category in table 3). 
This is an interesting fact on its own. What are the implications?
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Contributions

● Pluggable typecheckers are awesome, but writing type 
annotations in legacy code is a chore

● Inference is a possible solution to this problem, which will help us 
convince developers to use more powerful typecheckers

● Our approach leverages the local inference that already exists 
inside extant typecheckers to do inference for a whole program

● We built it and it’s publicly available
● It works okay! (repeat some numbers?)

Thanks to my collaborators :) 68


