
Using Predicate Fields in a Highly
Flexible Industrial Control System

Shay Artzi*, Michael D. Ernst

CSAIL, MIT

* Work done while at Rafael, Ltd.

2

Evaluating Predicate Fields
 Predicate oriented programming is a promising research idea

that has never been evaluated in practice
 Dynamic classification of an object into subclasses:

 Predicate classes [Chambers et al. 93]
 Kea language classifiers [Mugridge et al. 91, Hamer et al. 92]
 Modes [Taivalsaari 93]

 Predicate Dispatch [Ernst el at. 98, Millstein 04]
 We successfully deployed them in an industrial application
 Conclusion:

 Increase software flexibility to handle changing and unknown
requirements

 Simplify certain development task

3

Ye
s

Predicate Fields
Example

First name: Shay
Last name: Artzi
…
Parking required : No
License Plate : …

Dates :………..

Dates :………..

obj:Reservation

-firstName -- “Shay”

-lastName -- “Artzi’

-parkingRequired -- false

- dates

obj:Reservation

-firstName -- “Shay”

-lastName -- “Artzi”

-parkingRequired -- true

-licensePlate

-dates

 A predicate field is present or not,
depending on the values of other fields

4

Implementation with
Predicate Fields

// Definition
pred arriveWithCar (needsParking==true);
class Reservation {
 ...
 bool needsParking;
 String licensePlateNum when@arriveWithCar;
}

// Use
Reservation r = new Reservation();
r.licensePlateNum = “44GT23”; //RUN-TIME ERROR
r.needsParking = true;
r.licensePlateNum = “44GT23”; //OK

5

Advantages of Predicate
Fields

 Allow an object to change its structure
during its life cycle
 Recover from user errors in user interface
 Emulate dynamic classification of an object

into subclasses

 Expedite user interface development
 Fine-grained customization of objects

6

Outline

 Introduction
 Case Study: Experiment control system
 Predicate Fields Motivation
 Developer Experience
 Summary

7

Case Study:
Experimental Control System

 System goal: define, control, execute,
and examine results of experiments

 Experiment:
 Ordered instructions on a set of devices
 Control complex events and vast number

of devices

8

Requirements and Design

 Non functional requirement: adaptability to
physical hardware changes (new devices,
device locations)

 MML language to create experiments
 Two-level system architecture

 Knowledge level: legal configuration of operational
objects.

 Operational level: concrete model of the system.

9

Implementation 1

 Development:
 Fifteen man years
 Written in Delphi IDE and the Object Pascal

language
 Component based (COM/DCOM)
 ~100,000 lines of code

 In daily use
 Won several internal prizes
 Its deficiencies inspired the use of predicates

in Implementation 2

10

Implementation 2

 In development since 2002 in Visual Studio .
NET and C#

 Currently in integration phase (adding
controlled hardware)

 Five developers
 Implementation 1 functionality was subsumed

 in less than two years
 Controls more complicated hardware
 Uses predicate fields.

11

Implementation 2 tiers

Predicate
Library

MML
Interpreter
Predicate
Definitions

Corresponds

MML
Interpreter
and Editor

Using

U
si

ng

Developer:
Knowledge Level in

Database

Developer:
Operational Level

 in C#

Experiments

U
si

n
g

User:
Implementation

 in MML

C# library

12

Outline

 Introduction
 Case Study: Experiment control system
 Predicate Fields Motivation
 Developer Experience
 Summary

13

Predicate Fields Motivation
in Implementation 2

 Implementation 1 deficiencies were
resolved using predicates:
 Tight coupling of persistent objects with

their user interface
 Many custom made user interface forms
 Can’t change object types
 Inflexibility to some hardware changes

14

Motivation 1
 Tight coupling

 Cause: MML statements which are persistent objects with UI
representation had tight coupling with other components

 Problem: Changes to the structure of the MML statement
required cross cutting modifications

 Example: adding a max_repeat field
 Solution: Dynamic objects. Structure and connections defined

using predicates. Predicate fields carry the rest of the
information

 Outcome: Changes to the MML statement data type can be
easily done in one place (database)

User Interface
 components

Object
Viewers

Objects
Database

 Connection Layer
Database

15

Motivation 2
 Many Custom Made UI

Forms
 Cause: One UI form per MML statement type, and device

type
 Problem: UI development and changes were costly
 Example: Adding a new measurement device type with a

different number of channels
 Solution: Adopting .NET editing concept

 One adjustable properties form
 Object exposing properties to be edited
 PropertyGrid uses reflection to query a selected object structure
 Dynamic objects can be easily wrapped to expose properties

 Outcome: Homogeneous look and feel and reduced user
interface development effort.

16

Editing concept example

Setting Properties Defining an MML instruction

17

Motivation 3
Can’t Change Object Types

 Cause: The user is unable to change an
object type in the MML UI

 Problem: losing mutual information of the new
and the old object type

 Example: Changing an automatic statement
to a manual one

 Solution: Using predicate fields to dynamically
classify into subclasses.

 Outcome: Allowing objects to “switch type”
while maintaining mutual information

18

Motivation 4
Inflexibility to Hardware Changes

 Cause: New device types with components
that exists in the set of known devices
required cloning information

 Problem: Introducing clones into the system.
Maintenance complexity increase

 Solution: Using predicate fields to support fine
grained combination of existing fields

 Outcome: More flexibility to new device types

19

Outline

 Introduction
 Case Study: Experiment control system
 Predicate Fields Motivation
 Developer Experience
 Summary

20

Definitions Modifications

 Developers making modification to the
MML interpreter definitions:
 Modify the dynamic types (rarely)
 Modify predicates, fields and fields’ types

(usually).

 Initially found to be difficult due to the
library use and integral limitations

21

Limitations

 Declarative approach
 Far-reaching, system behavior depends on the

metadata
 Developers need to master the knowledge level
 Type safety cannot be guaranteed

 Implemented as a library
 Incur performance overhead
 Software is harder to understand, less readable
 Poor UI (MML interpreter definitions were saved in

database)

22

Developer Experience
(after further use)

 Familiarity and ease
 Easily perform seemingly complex task
 Surprising uses (E.g. wizards for the

knowledge level editor)
 Change in perspective toward designing the UI
 Dynamic type errors cause distrust
 Active interest from other development teams

23

Summary

 Used predicate fields in a large
industrial application

 Developers find predicate fields useful
 Software flexibility is increased
 UI development costs were greatly

decreased
 Lack of static type checking is a

problem

