
Lightweight and Modular Resource Leak Checking (Extended
Version)

Narges Shadab1, Pritam Gharat2, Shrey Tiwari3, Michael D. Ernst4,
Martin Kellogg5, Shuvendu K. Lahiri6, Akash Lal2, Manu Sridharan1

1*University of California, Riverside, USA.
2*Microsoft Research, India.

3*Carnegie Mellon University, USA.
4*University of Washington, USA.

5*New Jersey Institute of Technology, USA.
6*Microsoft Research, USA.

Contributing authors: Nshad001@ucr.edu; pritamgharat@microsoft.com;
Smtiwari@andrew.CMU.edu; mernst@cs.washington.edu; martin.kellogg@njit.edu;

shuvendu.lahiri@microsoft.com; akashl@microsoft.com; manu@cs.ucr.edu;

Abstract
A resource leak occurs when a program allocates a resource but fails to deallocate it. Resource leaks
cause resource starvation, slowdowns, and crashes. Previous techniques to prevent resource leaks are
either unsound, imprecise, inapplicable to existing code, slow, or a combination of these. We present a
resource leak checking approach that is applicable, sound, precise, and fast. Our key insight is that
leak detection can be reduced to an accumulation problem, a class of typestate problems amenable to
sound and modular checking without whole-program alias analysis. The precision of an accumulation
analysis can be improved with targeted aliasing information, and we augmented our baseline checker
with three such novel techniques: a lightweight ownership transfer system; a specialized resource alias
analysis; and a system to create a fresh obligation when a non-final resource field is updated. Our
approach occupies a unique slice of the design space: it is sound and runs relatively quickly (taking
minutes on programs that a state-of-the-art approach took hours to analyze). Moreover, our approach
generalizes to multiple analysis backends. The Resource Leak Checker revealed 49 real resource leaks in
widely-deployed software; RLC# revealed 24 real resource leaks in five programs, including three Azure
microservices. Both implementations scale well, have manageable false positive rates (comparable to
heuristic bug-finders), and impose only a small annotation burden (about 1/6000 LoC) for developers.
This is an extended version of an ESEC/FSE 2021 publication. The key new contribution of this work
is the introduction of the RLC# tool for checking of C# code. We describe the implementation of
RLC# as a reachability-based analysis built on CodeQL (quite different than the previous approach)
and present an evaluation of its effectiveness.

Keywords: Resource Leak, CodeQL, Checker Framework, Static Analysis

1



1 Introduction
A resource leak occurs when some finite resource
managed by the programmer is not explicitly dis-
posed of. In an unmanaged language like C, that
explicit resource might be memory; in a managed
language like Java, it might be a file descriptor, a
socket, or a database connection. Resource leaks
continue to cause severe failures, even in modern,
heavily-used applications [16]. This state-of-the-
practice does not differ much from two decades
ago [45]. Microsoft engineers consider resource
leaks to be one of the most significant development
challenges [25]. Preventing resource leaks remains
an urgent, difficult, open problem.

An ideal tool to prevent resource leaks would:
• be applicable to existing code with few changes;
• be sound, so that undetected resource leaks do

not slip into the program;
• be precise, so that developers are not bothered

by excessive false positive warnings; and
• be fast, so that it scales to real-world programs

and developers can use it regularly.
Extant approaches fail at least one of these cri-
teria. Language-based features may not apply
to all uses of resource variables: Java’s try-
with-resources statement [28], for example, can
only close resource types that implement the
java.lang.AutoCloseable interface, and cannot
handle common resource usage patterns that span
multiple procedures. Heuristic bug-finding tools
for leaks, such as those built into Java IDEs
including Eclipse [9] and IntelliJ IDEA [19], are
fast and applicable to legacy code, but they are
unsound. Inter-procedural typestate or dataflow
analyses [42, 49] achieve more precise results—
though they usually remain unsound—but their
whole-program analysis can require hours to ana-
lyze a large-scale Java program. Finally, ownership
type systems [5] as employed in languages like
Rust [23] can prevent nearly all resource leaks (see
section 10.2), but using them would require a sig-
nificant rewrite for a legacy codebase, a substantial
task which is often infeasible.

This paper presents an approach to resource
leak checking that is simultaneously applicable,
sound, precise, and fast. It is an extended version
of Kellogg et al. [21], which introduced the core
techniques of the approach and presented and eval-
uated an implementation for checking Java code.
In this extended version, we introduce a new tool

RLC#, which shares the core analysis approach
of Kellogg et al., but features an entirely differ-
ent style of implementation. RLC# finds resource
leaks in C# programs, utilizing CodeQL’s dataflow
module to perform a reachability-style analysis for
checking leaks.

The goal of a leak detector for a Java-like lan-
guage is to ensure that required methods (such as
close()) are called on all relevant objects; we deem
this a must-call property. Verifying a must-call
property requires checking that required meth-
ods (or must-call obligations) have been called at
any point where an object may become unreach-
able. A static verifier does this by computing an
under-approximation of invoked methods. Our key
insight is that checking of must-call properties is an
accumulation problem, and hence does not require
heavyweight whole-program analysis.

An accumulation analysis [22] is a special-
case of typestate analysis [37]. Typestate analysis
attaches a finite-state machine (FSM) to each pro-
gram element of a given type, and transitions
the state of the FSM whenever a relevant oper-
ation is performed. In an accumulation analysis,
the order of operations performed cannot change
what is subsequently permitted, and executing
more operations cannot add additional restrictions.
Unlike arbitrary typestate analyses, accumulation
analyses can be built in a sound, modular fash-
ion without any whole-program alias analysis,
improving scalability and usability.

Prior work [20] presented an accumulation anal-
ysis for verifying that certain methods are invoked
on each object before a specific call (e.g., build()).
Resource leak checking is similar in that certain
methods must be invoked on each object before it
becomes unreachable. An object becomes unreach-
able when its references go out of scope or are
overwritten. By making an analogy between object-
unreachability points and method calls, we show
that resource leak checking is an accumulation
problem and hence is amenable to sound, modular,
and lightweight analysis.

There are two key challenges for this leak-
checking approach. First, due to subtyping, the
declared type of a reference may not accurately rep-
resent its must-call obligations; we devised a simple
type system to soundly capture these obligations.
Second, the approach is sound, but highly impre-
cise without targeted reasoning about aliasing. The
most important patterns to handle are:

2



• copying of resources via parameters and
returns, or storing of resources in final fields
(the RAII pattern [38]);

• wrapper types, which share their must-call
obligations with one of their fields; and,

• resources in non-final fields, which might be
lazily initialized or written more than once.

To address this need, we extend it with three sound
techniques to improve precision:
• a lightweight ownership transfer system, which

indicates which reference is responsible for
resolving a must-call obligation. Unlike typical
ownership type systems, our approach does not
impact the privileges of non-owning references.

• resource aliasing, for cases in which a resource’s
must-call obligations can be resolved by closing
one of multiple references.

• a system for creating new obligations outside
constructors, which allows our system to handle
lazy initialization or re-initialization.

Variants of some of these ideas exist in previ-
ous work. We bring them together in a general,
modular manner, with full verification and the
ability for programmers to easily extend check-
ing to their own types and must-call properties.
Our approach occupies a novel point in the design
space for a leak detector: unlike most prior work,
it is sound; it is an order of magnitude faster than
state-of-the-art whole-program analyses; it has a
false positive rate similar to a state-of-the-practice
heuristic bug-finder; and, though it does require
manual annotations from the programmer, its anno-
tation burden is reasonable: about 1 annotation
for every 6,000 lines of non-comment, non-blank
code. Moreover, it can be implemented on top of
multiple analysis backends with different underly-
ing analysis strategies: we present both a pluggable
typechecker targeting Java and an implementa-
tion of our approach that targets C#, using the
reachability engine from CodeQL [6] as a backend.

The contributions of this work shared with the
previous paper [21] are:
• the insight that the resource leak problem

is an accumulation problem, and an analysis
approach based on this fact (section 2).

• three innovations that improve the precision of
our analysis via targeted reasoning about alias-
ing: a lightweight ownership transfer system
(section 3), a lightweight resource-alias tracking

analysis (section 4), and a system for handling
lazy or multiple initialization (section 5).

• an open-source implementation for Java, called
the Resource Leak Checker or RLC (section 6).

• an empirical evaluation of the RLC: case stud-
ies on heavily-used Java programs (section 7.1),
an ablation study that shows the contribu-
tions of each innovation to the RLC’s precision
(section 7.2), and a comparison to other state-
of-the-art approaches that demonstrates the
unique strengths of our approach (section 7.3).
The key new contributions of this extended

version are:
• RLC#, a new implementation of our resource

leak checking approach for C#. The imple-
mentation of RLC# is based on reachability
analysis, leveraging the dataflow module of
CodeQL [6], quite a different approach from the
RLC for Java. This new approach is described
in sections 8.2 through 8.4.

• A comparison of the RLC and RLC#
approaches, including a discussion of the chal-
lenges arising from the differing designs of C#
and Java (section 8.6).

• An experimental evaluation of RLC#, showing
its effectiveness (section 8.7).

2 Core Accumulation Analysis
This section presents a sound, modular,
accumulation-based resource leak checker (“the
Resource Leak Checker” or “the RLC”). Sections 3–
5 soundly enhance its precision. The RLC is
composed of three cooperating analyses:
1. a taint tracking type system (section 2.2) com-

putes a conservative overapproximation of the
set of methods that might need to be called on
each expression in the program.

2. an accumulation type system (section 2.3) com-
putes a conservative underapproximation of the
set of methods that are actually called on each
expression in the program.

3. a dataflow analysis (section 2.4) checks consis-
tency of the results of the two above-mentioned
type systems and provides a platform for tar-
geted alias reasoning. It issues an error if some
method that might need to be called on an
expression is not always invoked before the
expression goes out of scope or is overwritten.

3



2.1 Background on Pluggable Types
Sections 2.2 and 2.3 describe pluggable type sys-
tems [13] that are layered on top of the type system
of the host language. Types in a pluggable type sys-
tem are composed of two parts: a type qualifier and
a base type. The type qualifier is the part of the
type that is unique to the pluggable type system;
the base type is a type from the host language. Our
implementation is for Java (see section 6), so we use
the Java syntax for type qualifiers: “@” before a type
indicates that it is a type qualifier, and a type with-
out “@” is a base type. This paper sometimes omits
the base type when it is obvious from the context.

A type system checks the programmer-written
types. Our system requires the programmer to
write types on method signatures, but within
method bodies it uses flow-sensitive type refine-
ment, a dataflow analysis that performs type
inference. This permits an expression to have
different types on different lines of the program.

2.2 Tracking Must-Call Obligations
The Must Call type system tracks which methods
might need to be called on a given expression.
This type system—and our entire analysis—is not
specific to resource leaks. Another such property is
that the build() method of a builder [14] should
always be called.

The Must Call type system supports two
qualifiers: @MustCall and @MustCallUnknown. The
@MustCall qualifier’s arguments are the methods
that the annotated value must call. The declaration
@MustCall({"a"}) Object obj means that before
obj is deallocated, obj.a() might need to be called.
The RLC conservatively requires all these methods
to be called, and it issues a warning if they are not.

For example, consider fig. 1. The expression
null has type @MustCall({})—it has no obliga-
tions to call any particular methods—so s has
that type after its initialization. The new expres-
sion has type @MustCall("close"), and therefore
s has that type after the assignment. At the start
of the finally block, where both values for s flow,
the type of s is their least upper bound, which is
@MustCall("close").

Part of the type hierarchy appears in fig. 2.
All types are subtypes of @MustCallUnknown. The

Socket s = null;
try {
s = new Socket(myHost, myPort);

} catch (Exception e) { // do nothing
} finally {
if (s != null) {
s.close();

}
}

Fig. 1: A safe use of a Socket resource.

subtyping rule for @MustCall type qualifiers is:

A ⊆ B

@MustCall(A) ⊑ @MustCall(B)

The default type qualifier is @MustCall({}) for
base types without a programmer-written type
qualifier.1 Our implementation provides JDK
annotations which require that every object of
Closeable type must have the close() method
called before it is deallocated, with exceptions for
types that do not have an underlying resource, e.g.,
ByteArrayOutputStream.

2.3 Tracking Called Methods
The Called Methods type system tracks a conser-
vative underapproximation of which methods have
been called on an expression. It is an extension
of a similar system from prior work [20]. The pri-
mary difference in our version is that a method is
considered called even if it throws an exception—a
necessity in Java because the close() method in
java.io.Closeable is specified to possibly throw
an IOException. In the prior work, a method was
only considered “called” when it terminated suc-
cessfully. The remainder of this section is a brief
summary of the prior work [20].

The checker is an accumulation analysis whose
accumulation qualifier is @CalledMethods. The type
@CalledMethods(A) Object represents an object
on which the methods in the set A have definitely
been called; other methods not in A might also
have been called. The subtyping rule is:

B ⊆ A

@CalledMethods(A) ⊑ @CalledMethods(B)

1For unannotated local variable types, flow-sensitive type
refinement infers a qualifier.

4



@MustCallUnknown = ⊤

@MustCall({"a", "b"})

@MustCall({"a"}) @MustCall({"b"})

@MustCall({}) = ⊥
Fig. 2: Part of the MustCall type hierarchy for rep-
resenting which methods must be called; the full
hierarchy is a lattice of arbitrary size. If an expres-
sion’s type has qualifier @MustCall({"a", "b"}), then the
methods “a” and “b” might need to be called before the
expression is deallocated. Arrows represent subtyping
relationships.

The top type is @CalledMethods({}). The quali-
fier @CalledMethodsBottom is a subtype of every
@CalledMethods qualifier.

Thanks to flow-sensitive type refinement,
Called Methods types are inferred within
method bodies. In fig. 1 the type of s is ini-
tially @CalledMethods({}), but it transitions to
@CalledMethods("close") after the call to close.

2.4 Consistency Checking
Given @MustCall and @CalledMethods types, the
Must Call Consistency Checker ensures that the
@MustCall methods for each object are always
invoked before it becomes unreachable, via an intra-
procedural dataflow analysis. We employ dataflow
analysis to enable targeted reasoning about alias-
ing, crucial for precision. Here, we present a simple,
sound version of the analysis. Sections 3–5 describe
sound enhancements to this approach.

Language. For simplicity, we present the anal-
ysis over a simple assignment language in three-
address form. An expression e in the language is
null, a variable p, a field read p.f, or a method
call m(p1,p2,...) (constructor calls are treated as
method calls). A statement s takes one of three
forms: p = e, where e is an expression; p.f = p’,
for a field write; or return p. Methods are repre-
sented by a control-flow graph (CFG) where nodes
are statements and edges indicate possible control
flow. We elide control-flow predicates because the
consistency checker is path-insensitive.

For a method CFG, CFG .statements is the
statements, CFG .formals is the formal parameters,
CFG .entry is its entry node, CFG .exit is its exit
node, and CFG .succ is its successor relation. For

Algorithm 1 Finding unfulfilled @MustCall obli-
gations in a method. Algorithm 2 defines helper
functions.

1: procedure FindMissedCalls(CFG)
2: // D maps each statement s to a set of dataflow
3: // facts reaching s. Each fact is of the form ⟨P, e⟩,
4: // where P is a set of variables that must-alias e
5: // and e is an expression with a nonempty must-
6: // call obligation.
7: D ← InitialObligations(CFG)
8: while D has not reached fixed point do
9: for s ∈ CFG.statements, ⟨P, e⟩ ∈ D(s) do

10: if s is exit then
11: report a must-call violation for e
12: else if ¬MCSatisfiedAfter(P, s) then
13: kill← s assigns a variable ? {s.LHS} : ∅
14: gen← CreatesAlias(P, s) ? {s.LHS} : ∅
15: N ← (P − kill) ∪ gen
16: ∀t ∈ CFG.succ(s) . D(t)← D(t) ∪ {⟨N, e⟩}
17: procedure InitialObligations(CFG)
18: D ← {s 7→ ∅ | s ∈ CFG.statements}
19: for p ∈ CFG.formals,

t ∈ CFG.succ(CFG.entry) do
20: if HasObligation(p) then
21: D(t)← D(t) ∪ {⟨{p}, p⟩}
22: for s ∈ CFG.statements of the form

p = m(p1, p2, ...) do
23: ∀t ∈ CFG.succ(s) .

D(t)← D(t) ∪ FactsFromCall(s)
24: return D

a statement s of the form p = e, s.LHS = p and
s.RHS = e.

Pseudocode. Algorithm 1 gives the pseudocode
for the basic version of our checker, with helper
functions in algorithm 2. At a high level, the
dataflow analysis computes a map D from each
statement s in a CFG to a set of facts of the
form ⟨P, e⟩, where P is a set of variables and e
is an expression. The meaning of D is as follows:
if ⟨P, e⟩ ∈ D(s), then e has a declared @MustCall

type, and all variables in P are must aliases for the
value of e at the program point before s. Comput-
ing a set of must aliases is useful since any must
alias may be used to satisfy the must-call obliga-
tion of e. Using D, the analysis finds any e that
does not have its @MustCall obligation fulfilled, and
reports an error.

Algorithm 1 proceeds as follows. Line 7 invokes
InitialObligations to initialize D. Only formal
parameters or method calls can introduce obliga-
tions to be checked (reads of local variables or
fields cannot). The fixed-point loop iterates over
all facts ⟨P, e⟩ present in any D(s) (our implemen-
tation uses a worklist for efficiency). If s is the exit
node (line 10), the obligation for e has not been

5



Algorithm 2 Helper functions for algorithm 1.
Except for MCAfter and CMAfter, all func-
tions will be replaced with more sophisticated
versions in sections 3–5.

1: // Does e introduce a must-call obligation to check?
2: procedure HasObligation(e)
3: return e has a declared @MustCall type
4: // s must be a call statement p = m(p1, p2, ...)
5: procedure FactsFromCall(s)
6: p← s.LHS, c← s.RHS
7: return HasObligation(c) ? {⟨{p}, c⟩} : ∅
8: // Is must-call obligation for P satisfied after s?
9: procedure MCSatisfiedAfter(P, s)

10: return ∃p ∈ P.
MCAfter(p, s) ⊆ CMAfter(p, s)

11: // Does s introduce a must-alias for a var in P?
12: procedure CreatesAlias(P, s)
13: return ∃q ∈ P . s is of the form p = q
14: procedure MCAfter(p, s)
15: return methods in @MustCall type of p after s
16: procedure CMAfter(p, s)
17: return methods in @CalledMethods type of p after s

satisfied, and an error is reported. Otherwise, the
algorithm checks if the obligation for e is satisfied
after s (line 12). For the basic checker, MCSatis-
fiedAfter in algorithm 2 checks whether there
is some p ∈ P such that after s, the set of meth-
ods in p’s @MustCall type are contained in the
set of methods in its @CalledMethods type; if true,
all @MustCall methods have already been invoked.
This check uses the inferred flow-sensitive @Must-

Call and @CalledMethods qualifiers described in
sections 2.2 and 2.3.

If the obligation for e is not yet satisfied, the
algorithm propagates the fact to successors with
an updated set N of must aliases. N is computed
in a standard gen-kill style on lines 13–15. The kill
set simply consists of whatever variable (if any)
appears on the left-hand side of s. The gen set
is computed by checking if s creates a new must
alias for some variable in P , using the Create-
sAlias routine. Since our analysis is accumulation,
CreatesAlias could simply return false without
impacting soundness. In algorithm 2, Create-
sAlias handles the case of a variable copy where
the right-hand side is in P . (Section 4 presents more
sophisticated handling.) Finally, line 16 propagates
the new fact to successors. The process continues
until D reaches a fixed point.

Example. To illustrate our analysis, fig. 3 shows
a simple program (irrelevant details elided) and its
corresponding CFG. The CFG shows the dataflow

s = new Socket(...);
// 1

if (...) {
s = null; // 2

} else {
t = s; // 3
close(t); // 4

}

{<{s, t}, e>}

{<∅, e>}

entry

1: s = new Socket(…);

2: s = null;

3: t = s;

4: close(t)

exit

{<{s}, e>}
{<{s}, e>}

∅

∅

Fig. 3: CFG and code for illustrating algorithm 1.
‘e’ is “new Socket(...)”. Non-shaded facts are created by
InitialObligations, and shaded facts are propagated
by the fixed-point loop.

facts propagated along each edge. For initialization,
statement 1 introduces the fact ⟨{s}, e⟩ (where e
is the new Socket(...) call) to D(2) and D(3). At
statement 2, s is killed, causing ⟨∅, e⟩ to be added
to D(exit). This leads to an error being reported
for statement 1, as the socket is not closed on this
path. Statement 3 creates a must alias t for s, caus-
ing ⟨{s, t}, e⟩ to be added to D(4). For statement
4, MCSatisfiedAfter({s, t}, close(t)) holds, so
no facts are propagated from 4 to exit .

3 Lightweight Ownership
Section 2 describes a sound accumulation-based
checker for resource leaks. However, that checker
often encounters false positives in cases where an
@MustCall obligation is satisfied in another proce-
dure via parameter passing, return values, or object
fields. Consider the following code that safely closes
a Socket:
void example(String myHost, int myPort) {
Socket s = new Socket(myHost, myPort);
closeSocket(s);

}
void closeSocket(@Owning @MustCall("close") Socket t) {
t.close();

}

The closeSocket() routine takes ownership of
the socket—that is, it takes responsibility for clos-
ing it. The checker described by section 2 would
issue a false positive on this code, because it would
warn when s goes out of scope at the end of
example().

This section describes a lightweight owner-
ship transfer technique for reducing false positives
in such cases. Programmers write annotations
like @Owning that transfer an obligation from one
expression to another. Programmer annotations

6



cannot introduce any checker unsoundness; at
worst, incorrect @Owning annotations will cause
false positive warnings. Unlike an ownership type
system like Rust’s (see section 10.2), lightweight
ownership transfer imposes no restrictions on what
operations can be performed through an alias, and
hence has a minimal impact on the programming
model.

3.1 Ownership Transfer
@Owning is a declaration annotation, not a type
qualifier; it can be written on a declaration such as
a parameter, return, field, etc., but not on a type. A
pseudo-assignment to an @Owning lvalue transfers
the right-hand side’s @MustCall obligation. More
concretely, in the Must Call Consistency Checker
(section 2.4), at a pseudo-assignment to an lvalue
with an @Owning annotation, the right-hand side’s
@MustCall obligation is treated as satisfied.

The MCSatisfiedAfter(P, s) and HasObli-
gation(e) procedures of algorithm 2 are enhanced
for ownership transfer as follows:

procedure MCSatisfiedAfter(P, s)
return ∃p ∈ P.

MCAfter(p, s) ⊆ CMAfter(p, s)
∨ (s is return p ∧OwningReturn(CFG))
∨ PassedAsOwningParam(s, p)
∨ (s is q.f = p ∧ f is @Owning)

procedure HasObligation(e)
return e has a declared @MustCall type and

e’s declaration is @Owning

procedure OwningReturn(CFG)
return CFG’s return declaration is @Owning

procedure PassedAsOwningParam(s,p)
return s passes p to an @Owning parameter

of its callee

Section 3.2 discusses checking of @Owning fields.
Constructor returns are always @Owning.

The RLC’s default for unannotated method
returns is @Owning, and for unannotated parame-
ters and fields is @NotOwning. These assumptions
coincide well with coding patterns we observed in
practice, reducing the annotation burden for pro-
grammers. Further, this treatment of parameter
and return types ensures sound handling of unan-
notated third-party libraries: any object returned
from such a library is tracked by default, and the
checker never assumes that passing an object to
an unannotated library satisfies its obligations.

3.2 Final Owning Fields
Class-level checking is required for @Owning fields,
as the code satisfying their @MustCall obligations
usually spans multiple procedures. This section
handles final fields,2 which cannot be overwritten
after initialization of the enclosing object. When
checking non-final fields, the checker must ensure
that overwriting the field is safe (see Section 5.1).

For final fields, our checking enforces the
“resource acquisition is initialization (RAII)” pro-
gramming idiom [38]. Some destructor-like method
d() must ensure the field’s @MustCall obligation
is satisfied, and the enclosing class must have an
@MustCall("d") obligation to ensure the destructor
is called. More formally, consider a final @Owning
field f declared in class C, where f has type
@MustCall("m"). To modularly verify that f ’s
@MustCall obligation is satisfied, the RLC checks
the following conditions:
1. All C objects must have a type @MustCall("d")

for some method C.d().
2. C.d() must always invoke this.f.m(), thereby

satisfying f ’s @MustCall obligation.
Condition 1 is checked by inspecting the @MustCall

annotation on class C. Condition 2 is checked by
requiring an appropriate @EnsuresCalledMethods

postcondition annotation on C.d(), which is then
enforced by section 2.3’s checker.

4 Resource aliasing
This section introduces a sound, lightweight, spe-
cialized must-alias analysis that tracks resource
alias sets—sets of pointers that definitely corre-
spond to the same underlying system resource.
Closing one alias also closes the others. Thus,
the RLC can avoid issuing false positive warnings
about resources that have already been closed
through a resource alias.

4.1 Wrapper Types
Java programs extensively use wrapper types. For
example, the Java BufferedOutputStream wrap-
per adds buffering to some delegate OutputStream,
which may or may not represent a resource that

2The Resource Leak Checker considers all static fields as
non-owning, so no assignment to them can fulfill a must-call obli-
gation. Our case studies showed no assignments of expressions
with non-empty must-call obligations to static fields. Handling
owning static fields is left for future work.

7



needs closing. The wrapper’s close() method
invokes close() on the delegate. Wrapper types
introduce two additional complexities for @Must-

Call checking:
1. If a delegate has no @MustCall obligation, the

corresponding wrapper object should also have
no obligation.

2. Satisfying the obligation of either the wrapped
object or the wrapper object is sufficient.

For example, if a BufferedOutputStream b wraps
a stream with no underlying resource (e.g., a
ByteArrayOutputStream), b’s @MustCall obligation
should be empty, as b has no resource of its own.
By contrast, if b wraps a stream managing a
resource, like a FileOutputStream f , then close()

must be invoked on either b or f .
Previous work has shown that reasoning about

wrapper types is required to avoid excessive false
positive and duplicate reports [42, 9]. Wrapper
types in earlier work were handled with hard-coded
specifications of which library types are wrappers,
and heuristic clustering to avoid duplicate reports
for wrappers [42]. Our technique handles wrapper
types more generally by tracking resource aliases.
Two references r1 and r2 are resource aliases if
r1 and r2 are must-aliased pointers, or if satis-
fying r1’s @MustCall obligation also satisfies r2’s
obligation and vice-versa.

Introducing resource aliases. To indicate
where an API method creates a resource-alias
relationship between distinct objects, the program-
mer writes a pair of @MustCallAlias qualifiers:
one on a parameter of a method, and another on
its return type. For example, one constructor of
BufferedOutputStream is:
@MustCallAlias BufferedOutputStream(@MustCallAlias

OutputStream arg0);

@MustCallAlias annotations are verified, not
trusted; see section 4.3.

At a call site to an @MustCallAlias method,
there are two effects. First, the must-call type of
the method call’s return value is the same as that
of the @MustCallAlias argument. If the type of
the argument has no must-call obligations (like
a ByteArrayOutputStream), the returned wrapper
has no must-call obligations.

Second, the Must Call Consistency Checker
(section 2.4) treats the @MustCallAlias param-
eter and return as aliases. For our section 2.4

pseudocode, this version of CreatesAlias from
algorithm 2 handles resource aliases:

procedure CreatesAlias(P, s)
return ∃q ∈ P . s is of the form p = q

∨ IsMustCallAliasParam(s, q)

procedure IsMustCallAliasParam(s, p)
return s passes p to an @MustCallAlias parameter

of its callee

4.2 Beyond Wrapper Types
@MustCallAlias can also be employed in scenar-
ios beyond direct wrapper types, a capability
not present in previous work on resource leak
detection. In certain cases, a resource gets shared
between objects via an intermediate object that
cannot directly close the resource. For exam-
ple, java.io.RandomAccessFile (which must be
closed) has a method getFd() that returns a
FileDescriptor object for the file. This file descrip-
tor cannot be closed directly—it has no close()

method. However, the descriptor can be passed
to a wrapper stream such as FileOutputStream,
which if closed satisfies the original must-call obli-
gation. By adding @MustCallAlias annotations to
the getFd() method, our technique can verify code
like the below (adapted from Apache Hadoop [39]):
RandomAccessFile file = new RandomAccessFile(myFile,

"rws");
FileInputStream in = null;
try {
in = new FileInputStream(file.getFD());
// do something with in
in.close();

} catch (IOException e){
file.close();

}

Because the must-call obligation checker
(section 2.2) treats @MustCallAlias annotations
polymorphically, regardless of the associated base
type, the RLC can verify that the same resource
is held by the RandomAccessFile and the File-

InputStream, even though it is passed via a class
without a close() method.

4.3 Verification of @MustCallAlias

A pair of @MustCallAlias annotations on m’s return
type and its parameter p can be verified if either
of the following holds:
1. p is passed to another method or constructor in

an @MustCallAlias position, and m returns that
method’s result, or the call is a super() con-
structor call annotated with @MustCallAlias.

8



2. p is stored in an @Owning field of the enclosing
class. (@Owning field verification is described
in sections 3.2 and 5.1.)

These verification procedures permit a programmer
to soundly specify a resource-aliasing relationship
in their own code, unlike prior work that relied on
a hard-coded list of wrapper types.

5 Creating New Obligations
Every constructor of a class that has must-call obli-
gations implicitly creates obligations for the newly-
created object. However, non-constructor methods
may also create obligations when re-assigning
non-final owning fields or allocating new system-
level resources. To handle such cases soundly,
we introduce a method post-condition annota-
tion, @CreatesMustCallFor, to indicate expressions
for which an obligation is created at a call. At
each call-site of a method annotated as @Creates-

MustCallFor(expr), the RLC removes any inferred
Called Methods information about expr , reverting
to @CalledMethods({}).

When checking a call to a method anno-
tated as @CreatesMustCallFor(expr), the Must
Call Consistency Checker (1) treats the @MustCall

obligation of expr as satisfied, and (2) creates a
fresh obligation to check. We update the Facts-
FromCall and MCSatisfiedAfter procedures
of algorithm 2 as follows ([. . .] stands for the cases
shown previously, including those in section 3.1):

procedure FactsFromCall(s)
p← s.LHS, c← s.RHS
return {⟨{pi}, c⟩ | pi ∈ CMCFTargets(c)}

∪ (HasObligation(c) ? {⟨{p}, c⟩} : ∅)
procedure MCSatisfiedAfter(P, s)
return ∃p ∈ P. [. . .] ∨ p ∈ CMCFTargets(s)

procedure CMCFTargets(c)
return { pi | pi passed to an @CreatesMustCallFor

target for c’s callee }

This change is sound: the checker creates a
new obligation for calls to @CreatesMustCallFor

methods, and the must-call obligation checker
(section 2.2) ensures the @MustCall type for the
target will have a superset of any methods present
before the call. There is an exception to this check:
if an @CreatesMustCallFor method is invoked
within a method that has an @CreatesMustCallFor

annotation with the same target—imposing the
obligation on its caller—then the new obligation
can be treated as satisfied immediately.

5.1 Non-Final, Owning Fields
@CreatesMustCallFor allows the RLC to verify
uses of non-final fields that contain a resource,
even if they are re-assigned. Consider the following
example:
@MustCall("close") // sets default qual. for uses of

SocketContainer
class SocketContainer {
private @Owning Socket sock;
public SocketContainer() { sock = ...; }
void close() { sock.close() };
@CreatesMustCallFor("this")
void reconnect() {
if (!sock.isClosed()) {
sock.close();

}
sock = ...;

}
}

In the lifetime of a SocketContainer object, sock
might be re-assigned arbitrarily many times: once
at each call to reconnect(). This code is safe,
however: reconnect() ensures that sock is closed
before re-assigning it.

The RLC must enforce two new rules to ensure
that re-assignments to non-final, owning fields like
sock in the example above are sound:
• any method that re-assigns a non-final, owning

field of an object must be annotated with an
@CreatesMustCallFor annotation that targets
that object.

• when a non-final, owning field f is re-assigned
at statement s, its inferred @MustCall obliga-
tion must be contained in its @CalledMethods

type at the program point before s.
The first rule ensures that close() is called after
the last call to reconnect(), and the second rule
ensures that reconnect() safely closes sock before
re-assigning it. Because calling an @CreatesMust-

CallFor method like reconnect() resets local type
inference for called methods, calls to close before
the last call to reconnect() are disregarded.

5.2 Unconnected Sockets
@CreatesMustCallFor can also handle cases where
object creation does not allocate a resource, but
the object will allocate a resource later in its life-
cycle. Consider the no-argument constructor to
java.net.Socket. This constructor does not allo-
cate an operating system-level socket, but instead
just creates the container object, which permits
the programmer to e.g. set options which will be
used when creating the physical socket. When such

9



Table 1: Verifying the absence of resource leaks. Throughout, “LoC” is lines of non-comment, non-blank
Java code. “Resources” is the number of resources created by the program. “Resource leaks” are true
positive warnings. “False positives” are where the tool reported a potential leak, but manual analysis
revealed that no leak is possible. “Annotations” and “code changes” are the number of edits to program
text; see section 7.1.3 for details. “Wall-clock time” is the median of five trials. “zookeeper”, “hadoop”, and
“hbase” are Apache projects.

Resource False Annota- Code Wall-clock
LoC Resources leaks positives tions changes time

zookeeper:zookeeper-server 45,248 177 13 48 122 5 1m 24s
hadoop:hadoop-hdfs-project/hadoop-hdfs 151,595 365 23 49 117 13 16m 21s
hbase:hbase-server, hbase-client 220,828 55 5 22 45 5 7m 45s
plume-lib/plume-util 10,187 109 8 2 2 19 0m 15s
Total 427,858 706 49 121 286 42 -

a Socket is created, it initially has no must-call
obligation; it is only when the Socket is actually
connected via a call to a method such as bind() or
connect() that the must-call obligation is created.

If all Sockets are treated as @Must-

Call({"close"}), a false positive would be
reported in code such as the below, which operates
on an unconnected socket (simplified from real
code in Apache Zookeeper [40]):
static Socket createSocket() {
Socket sock = new Socket();
sock.setSoTimeout(...);
return sock;

}

The call to setSoTimeout can throw a
SocketException if the socket is actually connected
when it is called. Using @CreatesMustCallFor, how-
ever, the RLC can soundly show that this socket
is not connected: the type of the result of the
no-argument constructor is @MustCall({}), and
@CreatesMustCallFor annotations on the methods
that actually allocate the socket—connect() or
bind()—enforce that as soon as the socket is open,
it is treated as @MustCall("close").

6 Java Implementation
We implemented the Resource Leak Checker on
top of the Checker Framework [29], an industrial-
strength framework for building pluggable type
systems for Java. The checkers which propagate
and infer @MustCall and @CalledMethods annota-
tions are implemented directly as Checker Frame-
work type-checkers. The Must Call Consistency
Checker (algorithm 1) is implemented as a post-
analysis pass over the control-flow graph produced
by the Checker Framework’s dataflow analysis,

and is invoked when the other two checkers termi-
nate. The framework provides the checkers with
flow-sensitive local type inference, support for
Java generics and qualifier polymorphism, and
other conveniences. Our implementation is open-
source and distributed as part of the Checker
Framework (https://checkerframework.org/) from
version 3.15.0.

7 Evaluation
Our evaluation has three parts:
• case studies on open-source projects, which

show that our approach is scalable and finds
real resource leaks (section 7.1).

• an evaluation of the importance of lightweight
ownership, resource aliasing, and obligation
creation (section 7.2).

• a comparison to previous leak detectors: both
a heuristic bug finder and a whole-program
analysis (section 7.3).
All code and data for our experiments described

in this section, including the RLC’s implemen-
tation, experimental machinery, and annotated
versions of our case study programs, are pub-
licly available at https://doi.org/10.5281/zenodo.
4902321.

7.1 Case Studies
We selected 3 open-source projects that were ana-
lyzed by prior work [49]. For each, we selected and
analyzed one or two modules with many uses of
leakable resources. We used the latest version of the
source code that was available when we began. We
also analyzed an open-source project maintained by
one of the authors, to simulate the RLC’s expected

10

https://checkerframework.org/
https://doi.org/10.5281/zenodo.4902321
https://doi.org/10.5281/zenodo.4902321


public InputStream getInputStreamForSection(
FileSummary.Section section, String compressionCodec)
throws IOException {

FileInputStream fin = new FileInputStream(filename);
FileChannel channel = fin.getChannel();
channel.position(section.getOffset());
InputStream in = new BufferedInputStream(
new LimitInputStream(fin, section.getLength()));

in = FSImageUtil.wrapInputStreamForCompression(conf,
compressionCodec, in);

return in;
}

Fig. 4: A resource leak that the RLC found in Hadoop.
Hadoop’s developers merged our fix [32].

use case, where the user is already familiar with
the code under analysis (see section 7.1.5).

For each case study, our methodology was
as follows. (1) We modified the build system to
run the RLC on the module(s), analyzing uses of
resource classes that are defined in the JDK. It also
reports the maximum possible number of resources
(references to JDK-defined classes with a non-
empty @MustCall obligation) that could be leaked:
each obligation at a formal parameter or method
call. (2) We manually annotated each program with
must-call, called-methods, and ownership annota-
tions (see section 7.1.3). (3) We iteratively ran the
analysis to correct our annotations. We measured
the run time as the median of 5 trials on a machine
running Ubuntu 20.04 with an Intel Core i7-10700
CPU running at 2.90GHz and 64GiB of RAM.
Our analysis is embarrassingly parallel, but our
implementation is single-threaded because javac is
single-threaded. (4) We manually categorized each
warning as revealing a real resource leak (a true
positive) or as a false positive warning about safe
code that our tool is unable to prove correct. At
least two authors agreed on each categorization.

Table 1 summarizes the results. The RLC
found multiple serious resource leaks in every pro-
gram. The RLC’s overall precision on these case
studies is 29% (49/170). Though there are more
false positives than true positives, the number is
small enough to be examined by a single developer
in a few hours. The annotations in the program
are also a benefit: they express the programmer’s
intent and, as machine-checked documentation,
they cannot become out-of-date.

7.1.1 False Negatives

The primary sources of unsoundness (i.e., false
negatives or missed alarms) in our resource leak

Optional<ServerSocket> createServerSocket(...) {
ServerSocket serverSocket;
try {
if (...) {

serverSocket = new ServerSocket();
serverSocket.setReuseAddress(true);
serverSocket.bind(...);
return Optional.of(serverSocket);

}
} catch (IOException e) {
// log an error

}
return Optional.empty();

}

Fig. 5: Code from the ZooKeeper that causes the
Resource Leak Checker to issue a false positive.

checker are 1) unchecked exceptions and 2) poten-
tial bugs in the implementation. Java supports
both checked and unchecked exceptions; the RLC
“handles” unchecked exceptions by assuming that
they cannot occur (which is clearly unsound), but
because the unchecked exceptions in Java mostly
indicate run-time problems from which the pro-
gram cannot recover (e.g., running out of memory)
this choice is not problematic in practice. Like any
practical implementation, the RLC may have bugs.
In practice, we have only encountered unsoundness
caused by bugs in our implementation.

7.1.2 True and False Positive Examples

This section gives examples of warnings reported by
the RLC. Figure 4 shows code from Hadoop. If an
IO error occurs any time between the allocation of
the FileInputStream in the first line of the method
and the return statement at the end—for exam-
ple, if channel.position(section.getOffset())

throws an IOException, as it is specified to do—
then the only reference to the stream is lost.
Hadoop’s developers assigned this issue a priority
of “Major” and accepted our patch [32]. One
developer suggested using a try-with-resources
statement instead of our patch (which catches the
exception and closes the stream), but we pointed
out that the file needs to remain open if no error
occurs so that it can be returned.

The most common reason for false positives
(which caused 22% of the false positives in our
case studies) was a known bug in the Checker
Framework’s type inference algorithm for Java
generics, which the Checker Framework developers
are working to fix [26]. The second most common
reason (causing 15%) was a generic container
object like java.util.Optional taking ownership

11



Annotation Count
@Owning and @NotOwning 98
@EnsuresCalledMethods 54
@MustCall 53
@MustCallAlias 41
@CreatesMustCallFor 40
Total 286

Table 2: The annotations we wrote in the case studies.

of a resource, such as the example in fig. 5. Our
lightweight ownership system does not support
transferring ownership to generic parameters,
so the RLC issues an error when Optional.of is
returned. In this case, the use of the Optional

class is unnecessary and complicates the code [10].
If Optional was replaced by a nullable Java refer-
ence, the RLC could verify this code. Future work
should expand the lightweight ownership system
to support Java generics. The third most common
reason (causing 8%) is nullness reasoning: some
resource is closed only if it is non-null, but our
checker expects the resource to be closed on every
path. Our checker handles simple comparisons
with null (as in fig. 1), but future work could
incorporate more complex nullness reasoning [29].

While the false positive rate of the RLC is high
when considered absolutely, anecdotally we have
found that the signal-to-noise ratio is high enough
that motivated developers are willing to tolerate
it—e.g., by the Checkstyle project [41]. Moreover,
resource leak checking is a fundamentally hard
problem: extant heuristic bug-finding tools do not
do much better than the RLC in terms of false
positive ratio, but find far fewer real bugs (see
section 7.3).

7.1.3 Annotations and Code Changes

We wrote about one annotation per 1,500 lines of
code (table 2). (In other work [33], we developed
a system to infer many of these annotations.) We
also made 42 small, semantics-preserving changes
to the programs to reduce false positives from
our analysis. In 19 places in plume-util, we added
an explicit extends bound to a generic type. The
Checker Framework uses different defaulting rules
for implicit and explicit upper bounds, and a com-
mon pattern in this benchmark caused our checker
to issue an error on uses of implicit bounds. In
18 places, we made a field final; this allows our
checker to verify the usage of the field without using
the stricter rules for non-final owning fields given

in section 5. In 9 of those cases, we also removed
assignments of null to the field after it was closed;
in 1 other we added an else clause in the con-
structor that assigned the field a null value. In 3
places, we re-ordered two statements to remove an
infeasible control-flow-graph edge. In 2 places, we
extracted an expression into a local variable, per-
mitting flow-sensitive reasoning or targeting by an
@CreatesMustCallFor annotation.

7.1.4 Inference of Annotations

Although the number of annotations is small, man-
ually adding them is a time-consuming task. In
other work, we developed a novel technique to auto-
matically infer resource management annotations
for programs [34], which enhances the applica-
bility of the specify-and-check verification tools
described herein. Inference in this domain is chal-
lenging because resource management annotations
differ significantly from the types most inference
techniques target. Additionally, for practical effec-
tiveness, we need a technique that can infer the
resource management annotations intended by the
developer, even when the code does not fully adhere
to that specification. We address these challenges
with a set of inference rules designed to capture
real-world coding patterns, resulting in an effective
fixed-point-based inference algorithm. Implemen-
tations of this inference technique are available for
both the checkers [35]. In an experimental evalua-
tion, this inference technique inferred 85.5% of the
annotations that programmers had written manu-
ally for a suite of benchmarks. Further, the verifier
issued nearly the same rate of false alarms with
the maually-written and automatically-inferred
annotations.

7.1.5 Simulating the User Experience

To simulate the experience of a typical user who
understands the codebase being analyzed, one
author used the RLC to analyze plume-util, a
10kLoC library he wrote 23 years ago. The pro-
cess took about two hours, including running the
tool, writing annotations, and fixing the 8 resource
leaks that the tool discovered. The annotations
were valuable enough that they are now committed
to that codebase, and the RLC runs in CI to pre-
vent the introduction of new resource leaks. This
example is suggestive that the programmer effort
to use our tool is reasonable.

12



Table 3: False positives in our case studies (“RLC”)
and without lightweight ownership (“w/o LO”),
resource aliasing (“w/o RA”), and obligation creation
(“w/o OC”).
Project w/o LO w/o RA w/o OC RLC
apache/zookeeper 117 158 47 48
apache/hadoop 97 184 58 49
apache/hbase 82 93 26 22
plume-
lib/plume-util

4 11 2 2

Total 300 446 133 121

7.2 Evaluating Our Enhancements
Lightweight ownership (section 3), resource alias-
ing (section 4), and obligation creation (section 5)
reduce false positive warnings and improve
the RLC’s precision. To evaluate the contribution
of each enhancement, we individually disabled each
feature and re-ran the experiments of section 7.1.
Table 3 shows that each of lightweight ownership
and resource aliases prevents more false positive
warnings than the total number of remaining
false positives on each benchmark. The system
for creating new obligations at points other than
constructors reduces false positives by a small
amount: non-final, owning field re-assignments are
rare. Although @CreatesMustCallFor annotations
permit verification of some uses of non-final, own-
ing fields, our experience suggests that its discipline
is too restrictive for most real programs, and so
we still view finding a better way to verify such
patterns as an open problem.

7.3 Comparison to Other Tools
Our approach represents a novel point in the design
space of resource leak checkers. This section com-
pares our approach with two other modern tools
that detect resource leaks:
• The analysis built into the Eclipse Compiler

for Java (ecj), which is the default approach for
detecting resource leaks in the Eclipse IDE [9].
We used version 4.18.0.

• Grapple [49], a state-of-the-art typestate
checker that leverages whole-program alias
analysis.

In brief, both of the above tools are unsound
and missed 87–93% of leaks. Both tools neither
require nor permit user-written specifications, a
plus in terms of ease of use but a minus in terms
of documentation and flexibility. Eclipse is very
fast (nearly instantaneous) but has low precision

Table 4: Comparison of resource leak checking
tools: Eclipse, Grapple, and the Resource Leak
Checker. Recall is the ratio of reported leaks to all
leaks present in the code, and precision is the ratio
of true positive warnings to all tool warnings. Differ-
ent tools were run on different versions of the case
study programs. The number of leaks and the recall
are computed over the code that is common to all
versions of the programs, so recall is directly com-
parable within rows. Precision is computed over the
code version analyzed by each tool, so it may not be
directly comparable within rows. Eclipse reports no
high-confidence warnings for JDK types in HBase.

Recall Precision*
Project leaks Ecl Gr RLC Ecl Gr RLC
ZooKeeper 6 17% 17% 100% 33% 67% 21%
HDFS 7 14% 0% 100% 20% 71% 32%
HBase 2 0% 0% 100% - 35% 19%
Total 15 13% 7% 100% 25% 50% 26%

(25% for high-confidence warnings, much lower if
all warnings are included). Grapple is more precise
(50% precision), but an order of magnitude slower
than the RLC. The RLC had 100% recall and 26%
precision. Users can select whichever tool matches
their priorities. Tables 4 and 5 quantitatively com-
pare the tools. Our comparison uses parts of the 3
case study programs that Grapple was run on in
the past; see section 7.3.2 for details.

7.3.1 Eclipse

The Eclipse analysis is a simple dataflow analysis
augmented with heuristics. Since it is tightly inte-
grated with the compiler, it scales well and runs
quickly. It has heuristics for ownership, resource
wrappers, and resource-free closeables, among
others; these are all hard-coded into the analysis
and cannot be adjusted by the user. It supports
two levels of analysis: detecting high-confidence
resource leaks and detecting “potential” resource
leaks (a superset of high-confidence resource leaks).

We ran Eclipse’s analysis on the exact same
code that we ran the RLC on for section 7.1
(excluding the plume-util case study). Table 4
reports results for a subset of the code; this
paragraph reports results for the full code. In “high-
confidence” mode on the three projects, Eclipse
reports 8 warnings related to classes defined in
the JDK: 2 true positives (thus, it misses 39 real
resource leaks) and 6 false positives. In “poten-
tial” leak mode, the analysis reports many more
warnings. Thus, we triaged only the 180 warnings
about JDK classes from the ZooKeeper benchmark.
Among these were 3 true positives (it missed 10

13



real resource leaks) and 177 false positives (2% pre-
cision). The most common cause of false positives
was the unchangeable, default ownership transfer
assumption at method returns, leading to a warn-
ing at each call that returns a resource-alias, such
as Socket#getInputStream.

7.3.2 Grapple

Grapple is a modern typestate-based resource
leak analysis “designed to conduct precise and
scalable checking of finite-state properties for very
large codebases” [49]. Grapple models its alias and
dataflow analyses as dynamic transitive-closure
computations over graphs, and it leverages novel
path encodings and techniques from predecessor-
system Graspan [44] to achieve both context- and
path-sensitivity. Grapple contains four checkers,
of which two can detect resource leaks. Unlike
the RLC, Grapple is unsound, as it performs a
fixed bounded unrolling of loops to make path sen-
sitivity tractable. The RLC reports violations of
a user-supplied specification (which takes effort to
write but provides documentation benefits), so it
can ensure that a library is correct for all possible
clients. By contrast, Grapple checks a library in the
context of one specific client; it only reports issues
in methods reachable from entry points (like a
main() method) in a whole-program call graph [48].

The Grapple authors evaluated their tool on
earlier versions of the first three case study pro-
grams in section 7.1 [49]. Unfortunately, a direct
comparison on our benchmark versions is not pos-
sible, because Grapple’s leak detector currently
cannot be run (by us or by the Grapple authors)
due to library incompatibilities and bitrot in the
implementation. The Grapple authors provided us
with the finite-state machine (FSM) specifications
used in Grapple to detect resource leaks, and also
details of all warnings issued by Grapple in the
versions of the benchmarks they analyzed.

We used the following methodology to permit
a head-to-head comparison. We started with all
warnings issued by either tool. We disregarded
any warning about code that is not present iden-
tically in the other version of the target program
(due to refactoring, added code, bug fixes, etc.).
We also disregarded warnings about code that is
not checked by both tools. For example, Grapple
analyzed test code, but our experiments did not
write annotations in test code nor type-check it.

Table 5: Run times of the resource leak check-
ing tools.

Project Eclipse Grapple RLC
ZooKeeper <5s 1h 07m 02s 1m 24s
HDFS <5s 1h 54m 52s 16m 21s
HBase <5s 33h 51m 59s 7m 45s

isSourceNode(DataFlow::Node node) {
exists(ObjectCreation o | o.getType() in RType)
or
exists(Call c, Callable m, Attribute a |
m = c.getARuntimeTarget() and a = m.getAnAttribute()
and a.getType().hasName("Owning"))
or
exists(Call c, Callable m, Attribute a |
m = c.getARuntimeTarget() and a = m.getAnAttribute()
and a.getType().hasName("CreatesMust..."))
or
exists(Parameter p, Attribute a | a = p.getAttribute()
and a.getType().hasName("Owning"))

}

Fig. 6: CodeQL predicate for source node

The remaining warnings pertain to resource leaks
in identical code that both tools ought to report.
For each remaining warning, we manually identi-
fied it as a true positive (a real resource leak) or
a false positive (correct code, but the tool cannot
determine that fact). Table 4 reports the preci-
sion and recall of Eclipse, Grapple, and the RLC.
Some of Grapple’s false positives are reports about
types like java.io.StringWriter with no underly-
ing resource that must be closed. (These reports
were mis-classified as true positives in [49], which is
one reason the numbers there differ from table 4.)
Grapple’s false negatives might be due to anal-
ysis unsoundness or gaps in API modeling (e.g.,
Grapple does not include FSM specifications for
OutputStream classes).

Grapple runs can take many hours (run times
are from [49]), whereas the RLC runs in minutes
(table 5). Further, Grapple is not modular, so if
the user edits their program, Grapple must be re-
run from scratch [48]. After a code edit, the RLC
only needs to re-analyze modified code (and possi-
bly its dependents if the modified code’s interface
changed).

8 RLC#
Based on the Resource Leak Checker (RLC) for
Java, we designed and developed a similar checker
for C# code named RLC#, using CodeQL for
dataflow analysis. While both RLC and RLC#

14



address resource leak checking as an accumulation
problem, the core difference lies in their imple-
mentation strategies. The RLC directly solves the
accumulation problem, whereas RLC# reduces
it to a reachability problem. RLC# leverages
CodeQL’s local dataflow engine and adapts the
pluggable type system introduced by RLC to suit
the C# language: for example, the Java RLC imple-
ments its type qualifiers as annotations; RLC#
implements its qualifiers via C# attributes. This
section briefly introduces CodeQL, then details
RLC#’s design and implementation. Subsequently,
we present an evaluation of RLC# and discuss its
limitations.

8.1 An Overview of CodeQL
CodeQL [6] is widely used taint-tracking tool for
security analysis. The core components of CodeQL,
which trace data flow from sources (where data
enters a program) to sinks (where data is used),
are designed to detect security issues such as SQL
injection and cross-site scripting. CodeQL offers a
generic configuration for data flow analysis, which
we adapted for resource leak checking. By leverag-
ing this flexibility, we can trace the flow of resources
within C# programs, identifying potential leaks.
This innovative application of CodeQL’s dataflow
module shows its versatility beyond traditional
security applications: we can reason about resource
management with the same robust infrastructure
used for security analysis.

CodeQL supports a wide range of languages
and frameworks; it treats code as data and uses
a query language (QL) for pattern-matching to
extract information from a CodeQL database,
which is a relational model of the source files. A
simple query that finds redundant if statements
in the source code is given below.
from IfStmt ifstmt, BlockStmt block
where ifstmt.getThen() = block and block.isEmpty()
select ifstmt, "if-stmt is redundant."

In this query, the from clause declares variables,
the where clause defines the logical conditions, and
the select clause specifies the results for variables
that meet the where clause conditions.

CodeQL users can define queries to discover var-
ious types of coding errors. The DataFlow module
in CodeQL performs a taint-style dataflow anal-
ysis with sources and sinks. A dataflow graph is
constructed that models dataflow during program

isSink(DataFlow::Node node) {
exists(Callable c, Call call |
c = call.getARuntimeTarget() and
(c.hasName("Close") or c.hasName("Dispose")))
or
exists(Callable m, Expr e, Attribute a |
m.canReturn(e) and a = m.getAnAttribute() and
a.getType().hasName("Owning"))
or
exists(Call c, Parameter p, Callable m, Attribute a |
m = c.getARuntimeTarget() and p = m.getParameter(_)
and a = p.getAnAttribute() and
a.getType().hasName("Owning"))
or
exists(Call c, Callable c, Attribute a |
m = c.getARuntimeTarget() and a = m.getAnAttribute()
and a.getType().hasName("EnsuresCalledMethods"))
or
exists(Call c, Callable m, Attribute a |
m = c.getARuntimeTarget() and a = m.getAnAttribute()
and a.getType().hasName("CreatesMustCallFor"))

}

Fig. 7: CodeQL predicate for sink node

execution, with nodes representing elements like
expressions and parameters, and edges representing
the flow between them.

Users of the DataFlow module need only define
the desired nodes and edges using predicates. For
instance, to detect null-pointer dereferences, a
source node could be an assignment of null to
a reference or a method call that returns null,
while a sink node could be a dereference operation
on the same reference. For resource leak check-
ing, the CodeQL predicates for source and sink
nodes are defined in fig. 6 and fig. 7 (explained in
section 8.2). CodeQL also includes other nodes in
the dataflow graph, which may represent aliases.
It represents the dataflow between the nodes as
edges but also allows for the addition of explicit
edges to capture additional dataflow. To address
challenges such as unavailable source code, alias
information, and scalability, CodeQL provides both
local and global dataflow analysis. Local dataflow
analysis is confined to a single method and is faster
and more precise, whereas global dataflow analy-
sis spans multiple methods and includes dataflow
through method calls. CodeQL’s local dataflow
analysis is flow-sensitive, meaning it tracks the flow
of data through the program, considering the order
of statements and control flow.

Local dataflow computes may-alias information,
while sound resource leak detection requires must-
alias information (see section 2.4). RLC# treats
the may-alias information from local dataflow as

15



Fig. 8: A C# example to demonstrate the working of RLC#.

1. [MustCall("Dispose")]
2. public class Container() {
3.
4. [Owning]
5. private readonly Socket sock;
6.
7. [MustCallAlias]
8. public Container([MustCallAlias] Socket s) {
9. sock = s;
10. }
11.
12. [EnsuresCalledMethods("sock","close(sock)")]
13. public void Dispose() {
14. closeSocket(socket);
15. }
16. [Owning]
17. public static Socket createSocket() {
18. return new Socket(...);
19. }
20.
21. public void close([Owning] Socket s) {
22. s.Dispose();
23. }
24.

25. [CreatesMustCallFor("sock")]
26. public void reset() {
27. if (this.sock != null) {
28. this.sock.Dispose();
29. }
30. this.sock = createSocket();
31. }
32.}
33. public static void Main() {
34. try {
35. Socket s = Container.createSocket();
36. Container c = new Container(s);
37. ...
41. c.reset();
42. ...
55. c.Dispose();
56. }
57. catch(...) {
58. c.Dispose();
59. }
60. }

must information, to re-use the tuned DataFlow
module, at the cost of potential unsoundness.

For RLC#, nodes are defined using CodeQL’s
code-pattern-matching capabilities, and local
dataflow is used for intraprocedural analysis. Like
RLC, RLC# uses the lightweight ownership trans-
fer system, a lightweight resource-alias tracking
analysis, and a system for handling lazy or mul-
tiple initialization for capturing interprocedural
(global) dataflow.

8.2 RLC# Query Design
RLC# uses CodeQL’s local dataflow analysis to
check must-call properties by checking for the pres-
ence of a dataflow path between the node where
a resource is acquired (referred to as the source
node) and the node where it is released (referred
to as the sink node), thereby framing the issue as
a reachability problem. Interprocedural dataflow
is tracked using attributes similar to Java anno-
tations. These attributes are derived from RLC’s
pluggable type systems (section 2), lightweight
ownership transfer (section 3), resource-alias track-
ing (section 4), and mechanisms to handle lazy or
multiple initializations (section 5).

RLC#’s algorithm has three key steps:
(a) defining source and sink nodes for dataflow,
(b) checking the existence of a path between each
source and corresponding sinks in a dataflow graph,
and (c) ensuring that a sink exists along every

path from the source to the method’s exit in the
control flow graph. Since we use CodeQL’s local
dataflow analysis, both the source and sink are
within the same method. For calls to other meth-
ods, the query examines the attributes added to the
method boundaries instead of their bodies to cap-
ture global dataflow. This approach makes RLC#
modular, similar to RLC.

In this section, we outline the design of RLC#
by defining the resource type, specifying the source
and sink nodes, and explaining how to verify
the must-call property by checking for dataflow
between these nodes. Additionally, we provide
implementation details of RLC# in CodeQL.

Resource Type. We define Resource Type
(RType) as a set of types that represent resources.
A type t belongs to RType if and only if it satisfies
one of the following conditions:
• t implements the System.IDisposable inter-

face, or
• t has a MustCall attribute associated to its

definition, or
• t is a CollectionType (like Vectors, Arrays)

where the type of the elements is in RType,3 or

3Similar to RLC, RLC# handles collection types conser-
vatively. As a result, warnings related to resource leaks for
collection types are often reported even if a sink node exists
for them. This conservative approach is due to the difficulty in
ensuring that all resources within the collection are properly
released, as the analysis is not path-sensitive. Path sensitivity
would require tracking the exact execution paths to confirm that

16



35: createSocket()

35: s

36: s

36: c

41: c.reset()

55: c.Dispose() 58: c.Dispose()

source

source/sink

sink sink

LA

LA

RA

LA

LA LA

Fig. 9: DataFlow graph for procedure main in Figure 8.
LA and RA represent local alias and resource alias, respec-
tively. The numbers in each node refer to line numbers
in the source code.

• t is a subtype of another type in RType.

Modelling Source and Sink Nodes. RLC#
harnesses CodeQL’s code-pattern-matching capa-
bilities to specify the source and sink nodes, which
are method calls with specific attributes. This
design, like the Java RLC, has the benefit of
modularity: interprocedural dataflow facts are com-
municated via the summaries (i.e., attributes), so
the analysis is usually fast.
Sources: A source node is any of the following:
1. A new expression (call to a constructor) that

allocates a resource (e.g. line 18 in Figure 8).
2. A call to a method whose return type has the

Owning attribute associated to it (e.g. lines 30
and 35 in Figure 8). The Owning attribute on a
method’s return type indicates that a resource
is allocated within the method and returned to
the caller. Therefore, a call to such a method
constitutes a source node.

3. A call to a method with CreatesMustCallFor

attribute (e.g. line 41 in Figure 8). The invoca-
tion of a method with the CreatesMustCallFor

attribute signifies the allocation of a new
resource within the method; so, such an invo-
cation is a source node.

every resource in the collection is released, which is complex
and computationally expensive.

4. A parameter with an Owning attribute (e.g. line
21 in Figure 8), which indicates that the param-
eter is the owner of a resource (hence obligated
to release the resource); thereby making it a
source node.

The CodeQL predicate isSource identifies the
source node in Figure 6. The CodeQL pattern iden-
tifies the new expression (1st case above) as an
ObjectCreation (o); the source node is any o whose
type is a RType. The predicate identifies the source
node as a call c where the called method m has an
Owning attribute (2nd case). A call c to a method
m with the CreatesMustCallFor attribute a is iden-
tified as a source node (third case). A parameter p

is checked for an Owning attribute to determine if
it is a source node (fourth case).

The CodeQL predicate getARuntimeTarget

returns a set of methods that could be invoked
at the call node c. CodeQL computes an over-
approximation of the call graph (during the
CodeQL database creation), which includes virtual
calls. As a result, the set of methods returned by
getARuntimeTarget encompasses all possible meth-
ods that could be called at c. Additionally, CodeQL
provides a predicate getATarget that excludes
callees for virtual calls, focusing only on non-virtual
call targets. The Java RLC handles this differently:
it does not directly account for virtual method
calls within its primary analysis. Instead, a sepa-
rate check ensures that method overrides respect
the standard principles of subtyping. The Java
approach requires additional checks, but avoids the
need to build a call graph, potentially improving
scalability and modularity.
Sinks: The specification of a sink node in a
dataflow graph for a resource leak checker includes:
1. A call to the Close or Dispose method is used

to release a resource in C# (e.g. line 22 in
Figure 8).

2. A return expression within a method having an
Owning attribute on its return-type (e.g. line 18
in Figure 8). This expression passes a reference
to a resource back to the caller, transferring
the responsibility of releasing the resource to
the caller, thus forming the sink node.

3. A call to a method with a parameter that has
an Owning attribute (e.g. line 14 in Figure 8).
In this scenario, the ownership transfer occurs
to the callee’s parameter, making the callee
responsible for releasing the resource through
that parameter.

17



4. A call to a method with an attribute
EnsuresCalledMethods (e.g. line 13 in Figure 8)
is considered a sink node. The first argument
of this attribute holds the ownership, and the
resource is released within the method by the
call expression specified as the second argu-
ment of the attribute. For example, in Figure 8,
the EnsuresCalledMethods attribute (line 12)
has the field sock as its first argument, which
owns the resource. The resource is released by
the call expression close(sock), which is the
second argument of the attribute.

5. A call to a method with the attribute
CreatesMustCallFor (e.g., line 41 in Figure 8)
is considered both a sink node and a source
node. This dual role arises because the method
allocates a new resource, making it a source
node, but also releases an older resource before
the new allocation, making it a sink node. A
resource leak is reported within this method
if the older resource is not released before the
new resource is allocated.

In our example, the older resource is released
on line 28 before the new resource is allo-
cated on line 30. This approach could poten-
tially result in a false positive, as the older
resource might be released by the caller of this
method before the method itself allocates a
new resource. However, the design expectation
is that this method might be called multiple
times. To ensure modularity and avoid plac-
ing the burden of resource management on the
caller, the method ensures that the resource
is released before allocating a new one. This
practice allows the method to be used more
flexibly and reliably in different contexts.

The CodeQL predicate isSink is defined to identify
the sink node in Figure 7.

8.3 Source-to-Sink Dataflow
In a dataflow graph, a path from a source to a sink
node only exists if the resource obtained at the
source is released at the sink. Consider this code
example:
1. Socket s1 = new Socket(...);
2. Socket s2 = new Socket(...);
3. s2.Dispose();
4. s1.Dispose();

CodeQL identifies the new Socket(...) expression
in lines 1 and 2 as source nodes, and the Dispose

calls on lines 3 and 4 as sink nodes. There’s a
dataflow path from the source on line 1 to the sink
on line 4, and from the source on line 2 to the sink
on line 3.

The CodeQL localFlow predicate checks for
local dataflow between two nodes within the same
method. However, it doesn’t capture aliases created
by callees. The MustCallAlias attribute is used to
capture such aliasing relationships.

A method that establishes a resource-alias
relationship between different objects will have a
MustCallAlias attribute on its return type and
parameter. The parameter and return value are
must-aliases, creating an alias relationship between
the method call’s argument and its return value.
For instance, x and y become resource aliases
in the assignment x = createHandle(y) if the
createHandle method’s parameter and return-type
have the MustCallAlias attribute.
predicate isResourceAlias(n1, n2) {
exists(AssignableDefinition def, Call c, Callable m,
Parameter p, Expr arg |

c = def.getSource() and m = c.getARuntimeTarget()
and p = m.getParameter(_) and
arg = c.getArgumentForParameter(p) and
n2.asExpr() = def.getTarget() and n1.asExpr() = arg
and isMustCallAliasMethod(m) and isMustCallAliasPar(p))
}

We define isResourceAlias predicate to determine
if nodes n1 and n2 are resource aliases. The predi-
cate checks if an assignment def has a call c on its
right-hand side and if the call’s argument arg is
a resource alias to the assignment’s left-hand side
(def.getTarget()). It also verifies that the corre-
sponding parameter p and the callee m’s return-type
have the MustCallAlias attribute.

In Figure 8, within the Container constructor
(line 8), the parameter s and the field sock are must-
aliases. This creates a resource alias between the
Main method’s local variable s and the Container

class instance c, where the constructor call (line
36) occurs.

We define the predicate isAlias that captures
all the dataflow between nodes n1 and n2.
predicate isAlias(n1, n2) {
DataFlow::localFlow(n1, n2) or isResourceAlias(n1, n2)
or exists(DataFlow::Node n |
isAlias(n1, n) and isAlias(n, n2))
}

Nodes n1 and n2 are either local aliases
(localFlow) or resource aliases (isResourceAlias)
or a combination of the two.

18



LoC Resources TP FP Attr. Time
Lucene.Net 609,754 284 8 12 71 55m 56s

EFCore 883,195 176 0 19 29 76m 27s
Service 1 670,988 149 7 2 23 2m 18s
Service 2 194,765 263 6 3 31 3m 31s
Service 3 170,471 33 3 1 26 3m 0s

Total 2,529,173 905 24 37 180

Table 6: Verifying resource leaks: “LoC” refers to lines
of non-comment, non-blank C# code. “Resources” indi-
cates the number of resources created by an application.
“TP” are true positive warnings, while “FP” are false posi-
tives where RLC# reported a potential leak, but manual
analysis found none. “Attr.” are attributes added to the
code. Time is the average of three trials.

8.4 Verifying the Must-Call Property
For a source node src, confirming the presence of a
sink node and a dataflow path between src and the
sink is necessary but not sufficient. It is essential
that the resource is released on all control-flow
paths from the source to the method’s exit.

In Figure 8, resources are allocated on lines 36
and 41 and released on lines 55 and 58. Removing
the call to c.Dispose() on line 58 would result in a
resource leak because there would be a control-flow
path (an exceptional path) where the sink node
is absent, despite the existence of a dataflow path
between the source and sink nodes.

The notDisposed predicate defined below
checks whether a resource associated with src

is released on all control-flow paths. The second
parameter nd is a control-flow node that changes as
the control-flow graph is traversed backward (using
CodeQL predicate getAPredecessor for backward
traversal). The traversal of a control-flow path
stops when a sink node or a source node is encoun-
tered. If a source node is encountered, it indicates
a control-flow path from the source node to the
method’s exit that does not include a sink. If a
sink node is encountered, the path is not further
explored, indicating that the resource is released
along this path.
predicate notDisposed(src, nd) {
nd = src.getControlFlowNode() or
notDisposed(src,nd.getAPredecessor()) and not
exists(DataFlow::Node sink |
sink.getControlFlowNode() = nd and isAlias(src, sink))

}

The CodeQL predicates getEnclosingCallable

and getExitPoint are used to determine the
method in which src is allocated and its exit point.

8.5 RLC# Example
This section illustrates how RLC# operates on
our motivating example. In Figure 8, the type
Container is identified as a resource type because it
has the MustCall attribute. The dataflow graph for
the method Main is given in Figure 9. The source
node is a call to the method createSocket on line
35, which has the Owning attribute on its return
type. The expression s on line 35 is aliased to the
source node createSocket(). The local dataflow
analysis computes the alias relationship between
the expression s on line 35 and the expression s

on line 36 representing the argument being passed
to the constructor. The isResourceAlias predicate
identifies the expressions c and s on line 36 as
resource aliases.

The call to the method reset on line 41 is a
sink node for the resource allocated on line 35.
However, it also serves as a source node since a new
resource is allocated on line 30 within the method,
as indicated by the CreatesMustCallFor attribute
on the method. The release of the resource on line
28 within the method reset, before reallocating a
resource on line 30, is verified when the method
reset is analyzed independently. For the source
node on line 41, the sink nodes are the calls to
Dispose on lines 55 and 58.

However, the presence of sink nodes for the
sources on lines 35 and 41 is not sufficient to ensure
the absence of resource leaks. It is necessary to
verify that each control flow path from the source
to the method’s exit has a sink node. For the source
on line 35, the sink node is on line 41. In the event of
an exception occurring after line 36, the sink node
would be the call to Dispose on line 58. Similarly,
for the source on line 41, the sink node is on line
55; however, in case of an exception, the resource
is released on line 58, ensuring no resource leak.

8.6 Comparing RLC# and RLC
RLC and the RLC# share a common approach:
a pluggable type system to track interprocedural
dataflow. However, they differ in their underlying
design philosophies and handling of language-
specific features.

RLC models resource leak checking as an accu-
mulation problem, while RLC# addresses it as
a reachability problem. This fundamental differ-
ence in perspective influences how each checker

19



Attribute Count
Owning 57

EnsuresCalledMethods 41
MustCallAlias 14

MustCall 44
CreatesMustCallFor 19

Total 180

Table 7: The attributes we wrote in the case studies.

approaches the problem of resource management
and also its implementation.

In terms of language-dependent distinctions,
RLC and RLC# diverge in two main areas:
• Java incorporates both checked and unchecked

exceptions, whereas C# only has unchecked
exceptions. Both checkers handle unchecked
exceptions in a way that is not sound, but this
does not affect Java applications significantly
as critical exceptions in Java are checked. The
impact is more pronounced in C# applications
due to the absence of checked exceptions.

• Java employs type erasure for generic types, a
feature not supported by C#. Consequently,
in C#, attributes must be explicitly associ-
ated with each bound of the type parameters,
complicating the addition of attributes in the
source code for generic types. To circumvent
this, attributes are added as logical formulas
within the CodeQL query rather than in the
source code. This approach identifies the spe-
cific locations and program elements in the
source code where attributes need to be added,
avoiding the repetitive task of building code
and creating a new CodeQL database for each
new attribute addition.

8.7 Evaluation
We used CodeQL version 2.11.4 to implement
RLC#. This section outlines an evaluation of
RLC# on both open-source projects and Azure
microservices, and compares RLC# with a pre-
existing (naive) query from the CodeQL repository.

Case Studies. We selected two open-source C#
projects, Lucene.Net and EFCore by convenience.
Additionally, we analyzed three proprietary Azure
microservices. Our methodology for each applica-
tion was as follows: (a) We constructed a CodeQL
database for the source code. (b) We manually
annotated the source code for each application with
appropriate attributes and iteratively ran RLC#

RLC# NCQ
TP FP TP FP

Lucene.Net 8 12 3 42
EFCore 0 19 0 1
Service 1 7 2 0 38
Service 2 6 3 0 234
Service 3 3 1 0 3

Total 24 37 3 318

Table 8: Comparison of RLC# with an existing
“Naive CodeQL Query” (NCQ) for resource leaks. “TP”
means True Positives (actual resource leaks) and “FP”
stands for False Positives.

to refine our annotations. (c) We manually cate-
gorized each RLC# warning as either an actual
resource leak (true positive) or a false warning.

Results. Table 6 presents our findings. RLC#
detected resource leaks in four out of five appli-
cations and successfully identified known resource
leaks in microservices that previously caused high-
impact incidents. RLC#’s precision rate across
these applications is 39.34% (24/61). Manual
source code annotation with attributes is labo-
rious and time-consuming. To mitigate this, we
selectively annotated only library-defined program
elements, disregarding verifier warnings for cus-
tom types. Our subsequent work [34], extends this
approach to custom types and has uncovered more
resource leaks using inferred attributes.

The majority of false positives (76%) arise
from path sensitivity issues, where resources are
conditionally released based on their null status,
while RLC# anticipates an unconditional release
across all paths. RLC# can handle straightforward
null comparisons. A smaller fraction of false posi-
tives arises from conservative exception handling
(3%) and conservative handling of collection types
(4%). The rest involve resources allocated to an
Owning field (e.g., f) without a class-defined dis-
posal method; verification of such resources is not
modular and hence not handled by RLC#.

There are three sources of unsoundness in
RLC#. First, the local dataflow analysis in RLC#
computes may-alias information, whereas sound
resource leak detection requires must-alias infor-
mation. To leverage the existing DataFlow module,
RLC# treats may-alias information as must-alias
information. Second, C# only supports unchecked
exceptions. While the handling of unchecked excep-
tions by both checkers is not sound, in C#
applications the effect is noticeable due to the lack

20



of checked exceptions. Third, like any practical
implementation, RLC# may contain bugs.

Attributes added to Source Code. For
every 7,000 lines of code, we introduced one
attribute (refer to Table 7). The manual addition
of attributes to the source code entails a rebuild
of the source code and the creation of a new
CodeQL database, as the database creation is not
incremental. To circumvent the repetitive gener-
ation of the CodeQL database, we incorporated
attributes as logical formulas within the query,
rather than directly modifying the code. An exam-
ple of one such formula for an Owning parameter s

is (“RLCTests” is the namespace):
fileName="RLCTests/SimpleEg.cs" and lineNo="17"
and elementType="Parameter" and elementName="s"
and annotation="Owning"

Comparing to An Existing CodeQL Query.
We contrast RLC# with an existing CodeQL
query “NCQ” for heuristic detection of resource
leaks [27]. NCQ relies on CodeQL’s local dataflow,
which overlooks method calls and field derefer-
ences, and is hence unsound due to untracked
interprocedural dataflow and incomplete aliasing
information. Unlike RLC#, NCQ does not require
adding attributes to the source code and is faster.
As seen in table 8, except for Lucene.Net, NCQ
fails to detect resource leaks in our benchmarks. Its
high false positive rate stems from naively treating
every constructor call as resource allocation.

9 Threats to Validity
Like any tools that analyze source code, the RLC
and RLC# only give guarantees for the code
they check: the guarantee excludes native code,
the implementation of unchecked libraries (such
as the JDK), and code generated dynamically
or by other annotation processors such as Lom-
bok. Though the Checker Framework can handle
reflection soundly [3], by default (and in our case
studies) the RLC compromises this guarantee by
assuming that objects returned by reflective invo-
cations do not carry must-call obligations. (Users
can customize this behavior.) Within the bounds
of a user-written warning suppression, the RLC
assumes that 1) any errors issued can be ignored,
and 2) all annotations written by the programmer
are correct.

The RLC is sound with respect to specifica-
tions of which types have a @MustCall obligation
that must be satisfied. We wrote such specifications
for the Java standard library, focusing on IO-
related code in the java.io and java.nio packages.
Any missing specifications of @MustCall obligations
could lead the RLC to miss resource leaks. Simi-
larly, RLC# is sound for types marked with the
MustCall attribute, primarily for IO-related code in
the System.IO package. Also, RLC# does not track
resource leaks on exceptional paths if a statement
that may throw an exception is not enclosed in a
try-catch-finally block or declared with a throws

clause. It only soundly handles developer-managed
exceptions. Finally, in RLC# resource allocation
(source nodes) and deallocation (sink nodes) are
identified through pattern matching. Missing a
source node may cause unsoundness, while missing
a sink node could only cause false positives.

The results of our experiments may not gen-
eralize, compromising the external validity of the
experimental results. The RLC may produce more
false positives, require more annotations, or be
more difficult to use if applied to other programs.
Case studies on legacy code represent a worst case
for a source code analysis tool. Using the RLC
from the inception of a project would be easier,
since programmers know their intent as they write
code and annotations could be written along with
the code. It would also be more useful, since it
would guide the programmers to a better design
that requires fewer annotations and has no resource
leaks. The need for annotations could be viewed as
a limitation of our approach. However, the annota-
tions serve as concise documentation of properties
relevant to resource leaks—and unlike traditional,
natural-language documentation, machine-checked
annotations cannot become out-of-date.

Like any practical system, it is possible that
there might be defects in the implementation of
the RLC or RLC#, or in the design of their analy-
ses. We have mitigated this threat with code review
and extensive test suites: 209 test classes contain-
ing 6,418 lines of non-comment, non-blank code for
the RLC (publicly-available and distributed with
the RLC); and 88 test cases with 4,843 lines of code
for RLC# (available with the RLC# code [31]).

21



10 Related Work
Most prior work on resource leak detection either
uses program analysis to detect leaks or adds
language features to prevent them. Here we focus
on the most relevant work from these categories.

10.1 Analysis-Based Approaches
Static analysis. The most closely related work
are our prior conference publications about
the RLC [21] and about an inference system for
RLC annotations and RLC# attributes [33].

Tracker [42] performs inter-procedural dataflow
analysis to detect resource leaks, with various fea-
tures to make the tool practical, including issue pri-
oritization and handling of wrapper types. Tracker
avoids whole-program alias analysis for scalability,
instead using a local, access-path-based approach.
While Tracker does scale to large programs, it is
deliberately unsound, unlike the RLC.

The Eclipse Compiler for Java includes a
dataflow-based bug-finder for resource leaks [9]. Its
analysis uses a fixed set of ownership heuristics and
a fixed list of wrapper classes; unlike the RLC, it
is unsound. It is very fast. Similar analyses—with
similar trade-offs compared to the RLC—exist in
other heuristic bug-finding tools, including Spot-
Bugs [36], PMD [30], and Infer [18]. Section 7.3.1
experimentally evaluates the Eclipse analysis.

Typestate analysis [37, 12] can be used to find
resource leaks. Grapple [49] is the most recent sys-
tem to use this approach, leveraging a disk-based
graph engine to achieve unprecedented scalability
on a single machine. Compared to the RLC, Grap-
ple is more precise but suffers from unsoundness
and longer run times. Section 7.3.2 gives a more
detailed comparison to Grapple.

CLOSER [8] automatically inserts Java code
to dispose of resources when they are no longer
“live” according to its dataflow analysis. It requires
an expensive alias analysis for soundness, as well
as manually-provided aliasing specifications for
linked libraries. The RLC uses accumulation anal-
ysis [22, 11] to achieve soundness without the need
for a whole-program alias analysis. RLFixer [43]
also automatically fixes leaks, but runs exist-
ing leak detectors (including the RLC) for fault
localization.

Dynamic analysis. Some approaches use
dynamic analysis to ameliorate leaks. Resco [7]

operates similarly to a garbage collector, tracking
resources whose program elements have become
unreachable. When a given resource (such as file
descriptors) is close to exhaustion, the runtime
runs Resco to clean up any resources of that type
that are unreachable. With a static approach such
as ours, leaks are impossible and a tool like Resco
is unnecessary.

Automated test generation can also be used
to detect resource leaks. For example, leaks in
Android applications can be found by repeatedly
running neutral—i.e. eventually returning to the
same state—GUI actions [46, 47]. Other techniques
detect common misuse of the Android activity
lifecycle [2]. Testing can only show the presence
of failures, not the absence of defects; the RLC
verifies that no resource leaks are present.

Data sets and surveys. The DroidLeaks bench-
mark [24] is a set of Android apps with known
resource leaks. Unfortunately, it includes only the
compiled apps. The RLC runs on source code, so
we were unable to run the RLC on DroidLeaks.
Ghanavati et al. [16] performed a detailed study
of resource leaks and their repairs in Java projects,
showing the pressing need for better tooling for
resource leak prevention. In particular, their study
showed that developers consider resource leaks
to be an important problem, and that previous
static analysis tools are insufficient for preventing
resource leaks. We plan to apply the RLC to more
programs from their study.

10.2 Language-Based Approaches
Ownership types and Rust. Ownership type
systems [5] impose control over aliasing, which in
turn enables guaranteeing other properties, like
the absence of resource leaks. We do not discuss
the vast literature on ownership type systems [5]
here. Instead, we focus on Rust [23] as the most
popular practical example of using ownership to
prevent resource leaks.

For a detailed overview of ownership in Rust,
see chapter 4 of [23]; we give a brief overview
here. In Rust, ownership is used to manage both
memory and other resources. Every value associ-
ated with a resource must have a unique owning
pointer, and when an owning pointer’s lifetime
ends, the value is “dropped,” ensuring all resources
are freed. Rust’s ownership type system statically
prevents not only resource leaks, but also other

22



important issues like “double-free” defects (releas-
ing a resource more than once) and “use-after-free”
defects (using a resource after it has been released).
But, this power comes with a cost; to enforce
uniqueness, non-owning pointers must be invali-
dated after an ownership transfer and can no longer
be used. Maintaining multiple usable pointers to
a value requires use of language features like ref-
erences and borrowing, and even then, borrowed
pointers have restricted privileges.

The RLC has less power than Rust’s own-
ership types; it cannot prevent double-free or
use-after-free defects. But, the RLC’s lightweight
ownership annotations impose no restrictions on
aliasing; they simply aid the tool in identifying
how a resource will be closed. Lightweight own-
ership is better suited to preventing resource leaks
in existing, large Java code bases; adapting such
programs to use a full Rust-style ownership type
system would be impractical.

Other approaches. Java’s try-with-resources
construct [28] was discussed in section 1. Java also
provides finalizer methods [17, Chapter 12], which
execute before an object is garbage-collected, but
they should not be used for resource management,
as their execution may be delayed arbitrarily. Com-
pensation stacks [45] generalize C++ destructors
and Java’s try-with-resources, to avoid resource
leak problems in Java. While compensation stacks
make resource leaks less likely, they do not guar-
antee that leaks will not occur, unlike the RLC.
Previous work has performed modular typestate
analysis for annotated Java programs [4] or pro-
posed typestate-oriented programming languages
with modular typestate checking [1, 15]. The type
systems of these approaches can express arbitrary
typestate properties, beyond what can be checked
with the RLC. However, these systems impose
restrictions on aliasing and a higher type annota-
tion burden than the RLC, making adoption for
existing code more challenging.

11 Conclusion
We have developed a sound and modular approach
to detecting and preventing resource leaks in large-
scale Java and C# programs. The Resource Leak
Checker consists of sound core analyses, built on
the insight that leak checking is an accumula-
tion problem, augmented by three new features to

handle common aliasing patterns: lightweight own-
ership transfer, resource aliasing, and obligation
creation by non-constructor methods. Inspired by
The Resource Leak Checker, RLC# detects and
prevents resource leaks in large-scale C# programs,
leveraging the insight that leak checking can be
viewed as a reachability problem.

The Resource Leak Checker discovered 49
resource leaks in heavily-used, heavily-tested Java
code. Its analysis speed is an order of magnitude
faster than whole-program analysis, and its false
positive rate is similar to a state-of-the-practice
heuristic bug-finder. It reads and verifies user-
written specifications; the annotation burden is
about 1 annotation per 1,500 lines of code. RLC#
discovered 24 resource leaks in C# code, and its
annotation burden is about 1 annotation per 7000
lines of code.

References
[1] Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.:

Typestate-oriented programming. In: OOP-
SLA Companion: Object-Oriented Program-
ming Systems, Languages, and Applications,
pp. 1015–1022. Orlando, FL, USA (2009)

[2] Amalfitano, D., Riccio, V., Tramontana, P.,
Fasolino, A.R.: Do memories haunt you? an
automated black box testing approach for
detecting memory leaks in android apps. IEEE
Access 8, 12217–12231 (2020)

[3] Barros, P., Just, R., Millstein, S., Vines, P.,
Dietl, W., d’Amorim, M., Ernst, M.D.: Static
analysis of implicit control flow: Resolving
Java reflection and Android intents. In: ASE
2015: Proceedings of the 30th Annual Inter-
national Conference on Automated Software
Engineering, pp. 669–679. Lincoln, NE, USA
(2015)

[4] Bierhoff, K., Aldrich, J.: Modular typestate
checking of aliased objects. In: OOPSLA
2007, Object-Oriented Programming Systems,
Languages, and Applications, pp. 301–320.
Montreal, Canada (2007)

[5] Clarke, D., Östlund, J., Sergey, I., Wrigstad,
T.: Ownership types: A survey. In: Alias-
ing in Object-Oriented Programming. Types,
Analysis and Verification. Springer, Berlin,
Heidelberg (2013)

[6] CodeQL. https://codeql.github.com

23

https://codeql.github.com


[7] Dai, Z., Mao, X., Lei, Y., Wan, X., Ben,
K.: Resco: Automatic collection of leaked
resources. IEICE TRANSACTIONS on Infor-
mation and Systems 96(1), 28–39 (2013)

[8] Dillig, I., Dillig, T., Yahav, E., Chandra, S.:
The closer: automating resource management
in java. In: International symposium on
Memory management, pp. 1–10 (2008)

[9] Eclipse developers: Avoiding resource leaks.
https://help.eclipse.org/2020-12/index.
jsp?topic=%2Forg.eclipse.jdt.doc.user%
2Ftasks%2Ftask-avoiding_resource_leaks.
htm&cp%3D1_3_9_3 (2020). Accessed 3
February 2021

[10] Ernst, M.D.: Nothing is better than
the optional type. https://homes.
cs.washington.edu/~mernst/advice/
nothing-is-better-than-optional.html (2016)

[11] Fähndrich, M., Leino, K.R.M.: Heap mono-
tonic typestates. In: IWACO 2003: Interna-
tional Workshop on Aliasing, Confinement
and Ownership in object-oriented program-
ming, pp. 58–72. Darmstadt, Germany (2003)

[12] Fink, S.J., Yahav, E., Dor, N., Ramalingam,
G., Geay, E.: Effective typestate verification
in the presence of aliasing. ACM TOSEM
17(2) (2008)

[13] Foster, J.S., Fähndrich, M., Aiken, A.: A
theory of type qualifiers. In: PLDI ’99:
Proceedings of the ACM SIGPLAN ’99 Con-
ference on Programming Language Design and
Implementation, pp. 192–203. Atlanta, GA,
USA (1999). DOI 10.1145/301618.301665

[14] Gamma, E., Helm, R., Johnson, R.E., Vlis-
sides, J.: Design Patterns. Addison-Wesley,
Reading, MA (1995)

[15] Garcia, R., Tanter, E., Wolff, R., Aldrich, J.:
Foundations of typestate-oriented program-
ming. ACM Trans. Program. Lang. Syst.
36(4), 12:1–44 (2014)

[16] Ghanavati, M., Costa, D., Seboek, J., Lo,
D., Andrzejak, A.: Memory and resource leak
defects and their repairs in java projects.
Empirical Software Engineering 25(1), 678–
718 (2020)

[17] Gosling, J., Joy, B., Steele, G.L., Bracha, G.,
Buckley, A.: The Java Language Specifica-
tion, Java SE 8 Edition. Addison-Wesley
Professional (2014)

[18] Infer developers: Resource leak in java. https:
//fbinfer.com/docs/checkers-bug-types#

resource-leak-in-java (2021). Accessed 4
February 2021

[19] JetBrains: List of java inspections.
https://www.jetbrains.com/help/
idea/list-of-java-inspections.html#
resource-management (2020). Accessed 5
February 2021

[20] Kellogg, M., Ran, M., Sridharan, M., Schäf,
M., Ernst, M.D.: Verifying object construction.
In: ICSE 2020, Proceedings of the 42nd Inter-
national Conference on Software Engineering,
pp. 1447–1458. Seoul, Korea (2020)

[21] Kellogg, M., Shadab, N., Sridharan, M., Ernst,
M.D.: Lightweight and modular resource leak
verification. In: ESEC/FSE 2021: The ACM
29th joint European Software Engineering
Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE),
pp. 181–192. Athens, Greece (2021). DOI 10.
1145/3468264.3468576

[22] Kellogg, M., Shadab, N., Sridharan, M., Ernst,
M.D.: Accumulation analysis. In: ECOOP
2022 — Object-Oriented Programming, 33rd
European Conference, pp. 10:1–10:31. Berlin,
Germany (2022). DOI 10.4230/DARTS.8.2.22

[23] Klabnik, S., Nichols, C.: The Rust Program-
ming Language (2018). URL https://doc.
rust-lang.org/1.50.0/book/

[24] Liu, Y., Wang, J., Wei, L., Xu, C., Cheung,
S.C., Wu, T., Yan, J., Zhang, J.: Droidleaks:
a comprehensive database of resource leaks in
android apps. Empirical Software Engineering
24(6), 3435–3483 (2019)

[25] Lo, D., Nagappan, N., Zimmermann, T.: How
practitioners perceive the relevance of soft-
ware engineering research. In: ESEC/FSE
2015: The 10th joint meeting of the European
Software Engineering Conference (ESEC) and
the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE), pp.
415–425. Bergamo, Italy (2015)

[26] Millstein, S.: Implement java 8 type argument
inference. https://github.com/typetools/
checker-framework/issues/979 (2016).
Accessed 17 April 2020

[27] NCQ CodeQL Query for missing Dispose calls.
https://github.com/github/codeql/blob/
28f8874243bc110099483535633e7f4c9c2738a3/
csharp/ql/src/API%20Abuse/
NoDisposeCallOnLocalIDisposable.ql (2024).
Accessed 15 October 2024

24

https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_resource_leaks.htm&cp%3D1_3_9_3
https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_resource_leaks.htm&cp%3D1_3_9_3
https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_resource_leaks.htm&cp%3D1_3_9_3
https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_resource_leaks.htm&cp%3D1_3_9_3
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://fbinfer.com/docs/checkers-bug-types#resource-leak-in-java
https://fbinfer.com/docs/checkers-bug-types#resource-leak-in-java
https://fbinfer.com/docs/checkers-bug-types#resource-leak-in-java
https://www.jetbrains.com/help/idea/list-of-java-inspections.html#resource-management
https://www.jetbrains.com/help/idea/list-of-java-inspections.html#resource-management
https://www.jetbrains.com/help/idea/list-of-java-inspections.html#resource-management
https://doc.rust-lang.org/1.50.0/book/
https://doc.rust-lang.org/1.50.0/book/
https://github.com/typetools/checker-framework/issues/979
https://github.com/typetools/checker-framework/issues/979
https://github.com/github/codeql/blob/28f8874243bc110099483535633e7f4c9c2738a3/csharp/ql/src/API%20Abuse/NoDisposeCallOnLocalIDisposable.ql
https://github.com/github/codeql/blob/28f8874243bc110099483535633e7f4c9c2738a3/csharp/ql/src/API%20Abuse/NoDisposeCallOnLocalIDisposable.ql
https://github.com/github/codeql/blob/28f8874243bc110099483535633e7f4c9c2738a3/csharp/ql/src/API%20Abuse/NoDisposeCallOnLocalIDisposable.ql
https://github.com/github/codeql/blob/28f8874243bc110099483535633e7f4c9c2738a3/csharp/ql/src/API%20Abuse/NoDisposeCallOnLocalIDisposable.ql


[28] Oracle: The try-with-resources state-
ment (the java tutorials). https:
//docs.oracle.com/javase/tutorial/essential/
exceptions/tryResourceClose.html (2020).
Accessed 24 February 2021

[29] Papi, M.M., Ali, M., Correa Jr., T.L., Perkins,
J.H., Ernst, M.D.: Practical pluggable types
for Java. In: ISSTA 2008, Proceedings of the
2008 International Symposium on Software
Testing and Analysis, pp. 201–212. Seattle,
WA, USA (2008). DOI 10.1145/1390630.
1390656

[30] PMD developers: Closeresource. https:
//pmd.github.io/pmd-6.31.0/pmd_rules_
java_errorprone.html#closeresource (2021).
Accessed 4 February 2021

[31] RLC# implementation. https://github.com/
microsoft/global-resource-leaks-codeql (2024)

[32] Shadab, N.: Hdfs-15791. possible resource
leak in fsimageformatprotobuf. https://
github.com/apache/hadoop/pull/2652 (2021).
Accessed 16 June 2021

[33] Shadab, N., Gharat, P., Tiwari, S., Ernst,
M.D., Kellogg, M., Lahiri, S., Lal, A., Srid-
haran, M.: Inference of resource management
specifications. Proc. ACM Program. Lang.
7(OOPSLA2, article #282), 1705–1728 (2023)

[34] Shadab, N., Gharat, P., Tiwari, S., Ernst,
M.D., Kellogg, M., Lahiri, S.K., Lal, A., Srid-
haran, M.: Inference of resource management
specifications. Proc. ACM Program. Lang.
7(OOPSLA2) (2023). DOI 10.1145/3622858.
URL https://doi.org/10.1145/3622858

[35] Shadab, N., Gharat, P., Tiwari, S., Ernst,
M.D., Kellogg, M., Lahiri, S.K., Lal, A.,
Sridharan, M.: Inference of resource manage-
ment specifications (2023). DOI 10.5281/
zenodo.10438985. URL https://doi.org/10.
5281/zenodo.10438985

[36] SpotBugs developers: Obl: Method
may fail to clean up stream or
resource. https://spotbugs.readthedocs.
io/en/latest/bugDescriptions.html#
obl-method-may-fail-to-clean-up-stream-or-resource-obl-unsatisfied-obligation
(2021). Accessed 4 February 2021

[37] Strom, R.E., Yemini, S.: Typestate: A pro-
gramming language concept for enhancing
software reliability. IEEE TSE SE-12(1),
157–171 (1986)

[38] Stroustrup, B.: 16.5, resource management.
In: The design and evolution of C++, pp.

388–389. Pearson Education India (1994)
[39] The Apache Hadoop develop-

ers: Storageinfo.java. https://
github.com/apache/hadoop/blob/
aa96f1871bfd858f9bac59cf2a81ec470da649af/
hadoop-hdfs-project/hadoop-hdfs/src/
main/java/org/apache/hadoop/hdfs/server/
common/StorageInfo.java#L246 (2018).
Accessed 22 February 2021

[40] The Apache ZooKeeper devel-
opers: Learner.java. https://
github.com/apache/zookeeper/blob/
c42c8c94085ed1d94a22158fbdfe2945118a82bc/
zookeeper-server/src/main/java/org/
apache/zookeeper/server/quorum/Learner.
java#L465 (2020). Accessed 24 February 2021

[41] the Checkstyle developers: Check-
style’s pom.xml file. https://github.
com/checkstyle/checkstyle/blob/
20733949774a9accb7cd1a15b12da6b0eb795627/
pom.xml#L2622 (2025)

[42] Torlak, E., Chandra, S.: Effective interproce-
dural resource leak detection. In: International
Conference on Software Engineering (ICSE),
pp. 535–544 (2010)

[43] Utture, A., Palsberg, J.: From leaks to fixes:
Automated repairs for resource leak warnings.
In: ACM Joint European Software Engineer-
ing Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE),
pp. 159–171 (2023)

[44] Wang, K., Hussain, A., Zuo, Z., Xu, G.H.,
Sani, A.A.: Graspan: A single-machine disk-
based graph system for interprocedural static
analyses of large-scale systems code. In:
Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pp.
389–404 (2017)

[45] Weimer, W., Necula, G.C.: Finding and pre-
venting run-time error handling mistakes.
In: Object-oriented programming, systems,
languages, and applications (OOPSLA), pp.
419–431 (2004)

[46] Wu, H., Wang, Y., Rountev, A.: Sentinel: gen-
erating gui tests for android sensor leaks. In:
International Workshop on Automation of
Software Test (AST), pp. 27–33. IEEE (2018)

[47] Zhang, H., Wu, H., Rountev, A.: Automated
test generation for detection of leaks in
android applications. In: International Work-
shop on Automation of Software Test (AST),

25

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://pmd.github.io/pmd-6.31.0/pmd_rules_java_errorprone.html#closeresource
https://pmd.github.io/pmd-6.31.0/pmd_rules_java_errorprone.html#closeresource
https://pmd.github.io/pmd-6.31.0/pmd_rules_java_errorprone.html#closeresource
https://github.com/microsoft/global-resource-leaks-codeql
https://github.com/microsoft/global-resource-leaks-codeql
https://github.com/apache/hadoop/pull/2652
https://github.com/apache/hadoop/pull/2652
https://doi.org/10.1145/3622858
https://doi.org/10.5281/zenodo.10438985
https://doi.org/10.5281/zenodo.10438985
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#obl-method-may-fail-to-clean-up-stream-or-resource-obl-unsatisfied-obligation
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#obl-method-may-fail-to-clean-up-stream-or-resource-obl-unsatisfied-obligation
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#obl-method-may-fail-to-clean-up-stream-or-resource-obl-unsatisfied-obligation
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/checkstyle/checkstyle/blob/20733949774a9accb7cd1a15b12da6b0eb795627/pom.xml#L2622
https://github.com/checkstyle/checkstyle/blob/20733949774a9accb7cd1a15b12da6b0eb795627/pom.xml#L2622
https://github.com/checkstyle/checkstyle/blob/20733949774a9accb7cd1a15b12da6b0eb795627/pom.xml#L2622
https://github.com/checkstyle/checkstyle/blob/20733949774a9accb7cd1a15b12da6b0eb795627/pom.xml#L2622


pp. 64–70 (2016)
[48] Zuo, Z.: Personal communication (2021)
[49] Zuo, Z., Thorpe, J., Wang, Y., Pan, Q., Lu,

S., Wang, K., Xu, G.H., Wang, L., Li, X.:

Grapple: A graph system for static finite-state
property checking of large-scale systems code.
In: EuroSys, pp. 1–17 (2019)

26


	Introduction
	Core Accumulation Analysis
	Background on Pluggable Types
	Tracking Must-Call Obligations
	Tracking Called Methods
	Consistency Checking
	Language
	Pseudocode
	Example



	Lightweight Ownership
	Ownership Transfer
	Final Owning Fields

	Resource aliasing
	Wrapper Types
	Introducing resource aliases

	Beyond Wrapper Types
	Verification of @MustCallAlias

	Creating New Obligations
	Non-Final, Owning Fields
	Unconnected Sockets

	Java Implementation
	Evaluation
	Case Studies
	False Negatives
	True and False Positive Examples
	Annotations and Code Changes
	Inference of Annotations
	Simulating the User Experience

	Evaluating Our Enhancements
	Comparison to Other Tools
	Eclipse
	Grapple


	RLC#
	An Overview of CodeQL
	RLC# Query Design
	Resource Type
	Modelling Source and Sink Nodes


	Source-to-Sink Dataflow
	Verifying the Must-Call Property
	RLC# Example
	Comparing RLC# and RLC
	Evaluation
	Case Studies
	Results
	Attributes added to Source Code
	Comparing to An Existing CodeQL Query



	Threats to Validity
	Related Work
	Analysis-Based Approaches
	Static analysis
	Dynamic analysis
	Data sets and surveys


	Language-Based Approaches
	Ownership types and Rust
	Other approaches



	Conclusion

