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Abstract
Logging is a powerful method for capturing program activity and
state during an execution. However, log inspection remains a tedious
activity, with developers often piecing together what went on from
multiple log lines and across many files. This paper describes Synop-
tic, a tool that takes logs as input and outputs a finite state machine
that models the process generating the logs. The paper overviews
the model inference algorithms. Then, it describes the Synoptic tool,
which is designed to support a rich log exploration workflow.

Categories and Subject Descriptors: D.2.5 [Testing and Debug-
ging]: Debugging aids
General Terms: Algorithms, Reliability
Keywords: log analysis, temporal invariant mining, model infer-
ence, Synoptic

1. Introduction
Examining logs is one of the most popular means of gaining

insight into program execution. Developers add logging statements
to record events and state transitions. The resulting logs are then
inspected to find anomalies, verify correctness, debug performance,
and for other tasks.

Unfortunately, developers find it difficult to inspect and reason
about logged information. As an example of this consider Figure 1,
which lists two log snippets based on a real log of security-related
events on an OS X system. Each snippet represents a sequence of
login attempts resulting in authorization. One of the two snippets
contains a bug, but it is difficult to tell which one.

This paper describes Synoptic1 — a tool that takes a log as input
and infers a compact finite state machine model of the process that
generated the log. Previous work has referred to this procedure as
model inference, specification mining, and process discovery. For
example, a longer log consisting of login attempts like the ones listed
in Figure 1 can be processed with Synoptic to derive the model in
Figure 4(b). This model captures the essential information necessary
to understand basic temporal relationships between the logged events
and can be used for various tasks by the developer. For example,
this model makes it easier to notice the aforementioned bug — a
failed authentication attempt sometimes results in an authorized

1http://synoptic.googlecode.com
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loginwindow[35]: Login Window Started Security Agent
May 20 16:15:27 my-mac SecurityAgent[130]: Showing Login Window
May 20 16:29:19 my-mac SecurityAgent[130]: User info context values set for jenny
May 20 16:29:19 my-mac authorizationhost[129]: Failed to authenticate user <jenny> (tDirStatus: -14090).
May 20 16:29:22 my-mac SecurityAgent[130]: User info context values set for jenny
May 20 16:29:22 my-mac SecurityAgent[130]: Login Window Showing Progress
May 20 16:29:22 my-mac SecurityAgent[130]: Login Window done
May 20 16:29:22 my-mac com.apple.SecurityServer[23]: Succeeded authorizing right 
'system.login.console' by client '/System/Library/CoreServices/loginwindow.app' for authorization created 
by '/System/Library/CoreServices/loginwindow.app'

loginwindow[35]: Login Window Started Security Agent
May 22 07:24:18 my-mac SecurityAgent[130]: Showing Login Window
May 22 07:25:13 my-mac SecurityAgent[130]: User info context values set for ivan
May 22 07:25:13 my-mac authorizationhost[129]: Failed to authenticate user <ivan> (tDirStatus: -14090).
May 22 07:25:15 my-mac SecurityAgent[130]: Login Window Showing Progress
May 22 07:25:15 my-mac SecurityAgent[130]: Login Window done
May 22 07:25:16 my-mac com.apple.SecurityServer[23]: Succeeded authorizing right 
'system.login.console' by client '/System/Library/CoreServices/loginwindow.app' for authorization created 
by '/System/Library/CoreServices/loginwindow.app'

(b)

(a)

Figure 1: Two log snippets based on the /var/log/secure.log file
found in OS X 10.6.8. Each snippet represents a sequence of login
attempts resulting in authorization. One of the snippets contains
a security bug. Can you figure out which one? Answer is in the
footnote.2 Synoptic helps with the task of understanding what is in
a log by generating a model that describes it (Figure 4(b)).

login. The developer can also be more confident that the bug has
been successfully removed by inspecting the model generated with
Synoptic for a log of a system with the bug fix.

Synoptic works on logs of systems that can be modeled as a
finite state machine. In particular, Synoptic cannot yet reason about
concurrency. Further, the log must contain sufficient information
to effectively model the system. The efficacy of a given model
depends on its intended use. More concretely, Synoptic requires an
input log that (1) contains one or more system executions, each of
which can be thought of as a path through a finite state machine; (2)
totally orders the log lines belonging to the same execution (e.g.,
with respect to a time field, or the ordering of lines in the file); and
(3) captures the abstract event type or abstract state of the system on
each line belonging to an execution.

We have previously formally evaluated Synoptic’s algorithms
and showed that Synoptic-generated models can help developers
discover bugs [3]. In this paper, we briefly summarize Synoptic’s
model inference algorithm (Section 2). We then focus on the design
of the Synoptic tool (Section 3) and describe how Synoptic supports
a workflow in which developers spend most of their time analyzing
the derived Synoptic models (Section 4). We end with a survey of
related tools and techniques (Section 5).

2. How Synoptic works
Figure 2 summarizes how Synoptic works. This section overviews

Synoptic’s mechanisms by working through an example log based
2The two snippets differ structurally in a single place — User info context...

line appears twice in snippet (a) and once in snippet (b). Snippet (b) contains the bug
since the user is authorized even though he failed to authenticate.
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Figure 2: A step-by-step depiction of how Synoptic works.

on Figure 1. We refer the reader to [3] for a more detailed treatment
of the algorithm, as well as proofs of several of its key properties.

2.1 Constructing the trace graph
Synoptic constructs a model from a set of system execution traces.

It takes as input a log file containing the traces and a set of regular
expressions. The log is parsed using the expressions to extract from
some of the lines an event instance, a triplet of: (1) a trace identifier,
(2) an optional timestamp, and (3) an event type. Trace identifiers
group event instances into traces — linear graphs with vertices
representing event instances and edges capturing their ordering.
Synoptic requires event instances in a trace to be totally ordered.
Timestamps may be used for this or the order could be derived
implicitly from the order of lines in the log. Lastly, an event type
is an arbitrary string, defined by the developer as something that
conveys important information about the system.

The union of traces is a trace graph. Figure 3 shows a trace graph
with five traces for a log based on Figure 1: a trace represents a series
of login attempts ending with authorization. The traces are extracted
with an implicit log line ordering and four regular expressions:

.+User info.+guest$(?<TYPE=>guest login)

.+User info.+(?<TYPE=>login attempt)

.+Failed to authenticate.+(?<TYPE=>failed auth)

.+Succeeded authorizing.+(?<TYPE=>authorized)
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Figure 3: A trace graph representing executions parsed from a
log based on Figure 1. Rectangular/diamond/oval nodes indicate
initial/terminal/intermediate events. An execution represents some
login attempts terminating in authorization. Trace 2 contains a bug.

2.2 Mining invariants from the trace graph
To guide model generation, Synoptic mines three kinds of tempo-

ral invariants relating event types from the trace graph:

a Always Followed by b (a→ b). Whenever the event a appears,
the event b must follow later in the same trace.

a Never Followed by b (a 6→ b). Whenever the event a appears,
the event b never appears later in the same trace.

a Always Precedes b (a← b). Whenever the event b appears, the
event a always appears before b in the same trace.

We term these relations “invariants” because they succinctly cap-
ture temporal event type relationships that hold true over all the input
traces. These invariants are based on the most frequently observed
specification patterns in Dwyer et al. [7]. In practice, we found these
invariants to be sufficient for capturing key temporal properties of
systems whose logs we’ve considered. The trace graph in Figure 3
yields 16 such invariants. One example is auth failed 6→ guest login.

2.3 Synoptic models and the initial model
A Synoptic model is a partition graph of the trace graph. Given a

partitioning of the original vertices with each partition containing
event instances of the same event type, each vertex in the model
represents one partition. A directed edge between two vertices
indicates that there is a pair of event instances in the corresponding
partitions that are adjacent with respect to the total order relation in at
least one of the input traces. This model makes minimal assumptions
about the underlying process that produced the logged events [9].

An important property of a Synoptic model is that each trace in the
input log is accepted by a model constructed from the corresponding
event instances (a trace maps to a valid path in the model). However,
a Synoptic model is also generative: it may accept traces that were
not present in the log.

Synoptic’s core algorithm (BisimH) starts with an initial model in
which there is one partition per event type containing all the event
instances of that type. This is the most compact or abstract model.
Figure 4(a) shows the initial model for the trace graph in Figure 3.
BisimH then refines the initial graph until it satisfies all the invariants
mined from the trace graph.
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Figure 4: (a) Initial mode and (b) final model for the trace graph in
Figure 3. Edge labels indicate transition probabilities. Note how the
login attempt node in (a) is refined in (b).
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Figure 5: A path through the initial model in Figure 4(a) that violates
the mined auth failed 6→ guest login invariant.

2.4 Refining models to satisfy invariants
BisimH attempts to pick a minimal sequence of partition refine-

ments (i.e., splits), to produce a smallest graph satisfying the mined
invariants. This problem is NP-hard [5] so BisimH uses heuristics to
produce a result that is good in practice.

BisimH performs refinement as long as some mined invariant is
not satisfied by all paths in the model. It uses a model checker to
check if a model satisfies a mined invariant. The checker produces a
counterexample path when the model does not satisfy an invariant.
For example, the invariant auth failed 6→ guest login mined from
the trace graph in Figure 3 is not satisfied by the initial model in
Figure 4(a). Figure 5 shows the corresponding counterexample path.

Having identified a set of counterexamples that violate the mined
invariants, BisimH follows the counterexample guided abstraction
refinement approach [5] to identify a set of candidate partitions,
for each of which there exists a split that removes at least one of
the counterexamples. BisimH finds these partitions heuristically by
tracing each counterexample, simultaneously in the initial traces
and in the model. In the traces, only a prefix of the counterexample
path will be present. BisimH finds the longest such prefix, and the
last partition of this prefix in the model becomes a candidate for
refinement — this partition allows a spurious transition in the model
creating the counterexample path. The candidate partition is refined
to eliminate the spurious transition. For example, to eliminate the
counterexample path in Figure 5 from the model in Figure 4(a), the
context set partition is split into the set of events that can and cannot
reach any events in the guest login partition. Figure 4(b) shows the
resulting refined model.

2.5 Compacting the model with coarsening
The BisimH algorithm may end up refining more than is necessary.

When this happens, the model will contain partitions that can be
merged without violating the satisfied invariants. After refinement,
BisimH merges such partitions using kTail-equivalence [4] (k=0).
The resulting merged model is locally minimal: merging any two
partitions will violate some invariant. In the running example, no
coarsening is necessary. Figure 4(b) is the final model.

3. Synoptic design
We designed Synoptic as a public web service that can be accessed

with a browser, and also as a stand-alone application that can be
downloaded to and run on a user’s personal computer (both are avail-
able at http://synoptic.googlecode.com). These two approaches
provide different trade-offs, and we support both for greater user
flexibility.

Synoptic web service. A web service allows us to transparently
update the code and to improve the user’s experience without requir-
ing users to download a new software version. Another important
benefit is that we can transparently parallelize many of the Synoptic
algorithms on the back-end, thus providing users with better perfor-
mance than if Synoptic were to run on a single machine. Users can
also more easily share Synoptic output with others (e.g., by sharing
a URL). We also provide users with the option of downloading and
running a Synoptic web service instance of their own.

Logs can be uploaded to the service as files. Or, if the developer
is using log4j or log4net, the stream of logged messages can be
directed to the web service using a TCP socket. The second option
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Figure 6: Screenshot of the Synoptic tool desktop application show-
ing the final model in Figure 4(b).

is preferable when the final log is too large for local storage, or if the
logs are generated by and must be collected from multiple machines.

Synoptic desktop application. One drawback of a web service
is the latency associated with uploading large logs — the user may
want a quick analysis of a log that is local. Users with proprietary
logs likely also cannot use a public web service. For these reasons,
Synoptic is also available as a platform-independent desktop appli-
cation. It can be used from a command line or from within a GUI
(see screenshot in Figure 6). However, the Synoptic’s web service
includes more features than the desktop version.

Next, we detail how a user interacts with Synoptic.

4. Synoptic workflow
Synoptic’s workflow targets effective support of log exploration

through the lens of the generated model. The workflow aims to
simplify the task of log parsing, so that users can spend most of their
time analyzing the derived models. This section describes how logs
are parsed, and some of the model analyses that Synoptic supports.

4.1 Extracting event instance triplets
Synoptic uses regular expressions [1] to extract event instance

triplets from log lines the user considers relevant (see Section 2.1).
Division into executions. A single log file may record multiple

executions of a system. Synoptic provides the user with two methods
for breaking up a log into executions. The user may provide delimiter
regular expressions, in which case an execution is a contiguous set
of log lines between two matched delimiters. The user may also
specify some number of mapping regular expressions, in which case
fields parsed from the log line are mapped to some trace id. Lines
mapping to a trace with the same id are interpreted as belonging
to the same execution. For example, the traces in Figure 3 use the
Succeeded authorizing... line as a delimiter.

Event abstraction. Users provide regular expressions to match
log lines of interest. These regular expressions must all define a
capturing group named TYPE, which indicates the abstract event-type
that will be associated with the log line. This group’s value may be
a hard-coded string, a concatenation of multiple groups parsed from
the log line, or a combination of the two.

Ordering events in an execution. To mine temporal event invari-
ants from executions, events in an execution must be totally ordered.
Users may specify the value to use for ordering as a built-in regular
expression capturing group (e.g., FTIME for a float-based ordering),
or use the order implicit in the log file line numbers.

4.2 Invariant selection
Synoptic mines three types of temporal invariants (Section 2) to

guide refinement. The choice of invariants is important because they

http://synoptic.googlecode.com


constrain the executions a derived model may generate. By default,
Synoptic uses all of the mined invariants. However, users may know
that some invariants are false because the logs do not sufficiently
represent possible system behavior. Synoptic assumes that the user
knows more about the system than is present in the log and allows
users to mark some of the mined invariants as false so that Synoptic
does not use them to over-fit the model to the log.

4.3 Model exploration
Synoptic presents users with interactive models. Users can tweak

and explore them in pursuit of goals ranging from a more complete
understanding of their system to identifying the source of unex-
pected behavior. A number of features are available to aid users in
manipulating the models for these purposes.

4.3.1 Matching abstract and concrete information
The user can select a partition in the model and view the log lines

that correspond to this partition (Figure 6). This is useful when the
user wants to unpack the partition and identify the set of events that
were actually logged at this point. The user can use this information
to browse to a specific line in the log file that contains the interesting
event. This operation is a kind of drilling down, mapping abstract
information in the model to concrete events in the log.

Synoptic models are generative — they may accept traces that
are not present in the input log. A user may want to know if a trace
accepted by the model was observed in the log or not. For example,
to a user, a generated trace may resemble buggy behavior, and the
user may want to know whether the behavior actually occurred (if
so, the system contains a bug). If a generated trace is invalid, it
indicates that the input log is incomplete. This may lead the user to
expand the test suite to invalidate an overfitted temporal invariant,
which both improves the test suite and allows Synoptic to exclude
the invalid generated path from the model.

To help users distinguish these two kinds of traces, users may
select multiple partitions and consider the set of concrete traces that
pass through the selected partitions. Synoptic either lists all the
observed traces that pass through these partitions or lets the user
know that the selected sub-trace was not observed. For example, the
user may select the left most login attempt node, along with auth
failed and authorized nodes in the model in Figure 6, and find out
that there is indeed an observed trace that passes through these nodes
(Trace 2 in Figure 3). This more advanced capability proved to be of
particular use to developers in practice. It helped them understand
unexpected paths in the model by exposing the associated concrete
traces from the input log.

4.3.2 Filtering rare and common behavior
Sometimes Synoptic-generated models are large and contain more

information than is necessary. For example, a developer may be
interested in a section of the model when seeking to pinpoint a
rarely-occurring behavior. To support this use-case, Synoptic allows
the developer to filter out high/low probability edges from her view
of the model. More generally, the user may be interested in high/low
probability traces admitted by the model. Synoptic lets the user
select a start and end node, and specify the maximum/minimum path
probability to use for hiding all paths between the two nodes that
have a path probability outside of the desired range.

4.3.3 Comparing models
A common use-case for Synoptic models is to study how the

models change with different log inputs. Log inputs may differ
because of additional executions in the log, a change to the mined
set of invariants, a modification to the codebase, or because of added
or removed logging statements.

Synoptic displays two models side by side and highlights their
differences. These may be topological (e.g., the node count is dif-
ferent), or statistical (e.g., the transition probability of certain edges
may have increased/decreased). By studying model differences, de-
velopers can check whether system behavior is the same or different
— either over different traces or different system settings.

5. Related work
Numerous log analysis tools exist; however, we know of no freely-

available tool to extract finite state machine models from console
logs. A popular tool choice in the enterprise is Splunk2, which
supports various analyses and understands many common log for-
mats. Splunk’s main advantage is the scalability of its analyses
due to MapReduce [6]. Popular tools that are similar to Splunk are
Sawmill3 and AWStats4. Synoptic supports log exploration, which
is a more general goal than what is targeted by tools that have a
tighter focus, such as Sisyphus5, which targets anomaly detection.

Due to space constraints, we only briefly summarize related work
that deals with specification mining. We introduced the basic BisimH
algorithm in a workshop paper [9], and provided a rigorous evalu-
ation of the approach, as well as positioned it among related work,
in [3]. Perracotta [10] mines and visualizes temporal properties of
event traces, and has been used to study program evolution. Unlike
Synoptic, Perracotta does not use the mined temporal properties
to infer a model of the system. The kTail algorithm [4], used ex-
tensively in related work (e.g., [2]), takes a finite state model and
produces a more compact one by recursively merging states whose
root subgraphs are identical up to a depth of k. Lo et al. [8] augment
the kTail algorithm with temporal properties mined from execution
traces to guide state merging while ensuring that the final model sat-
isfies temporal constraints. Synoptic produces similar high-precision
models while leveraging refinement, as opposed to coarsening, to
greatly increase the efficiency and scalability of the approach.
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