
Verifying the Option Type with Rely–Guarantee Reasoning
James Yoo

jmsy@cs.washington.edu

University of Washington

Seattle, Washington, USA

Michael D. Ernst

mernst@cs.washington.edu

University of Washington

Seattle, Washington, USA

René Just

rjust@cs.washington.edu

University of Washington

Seattle, Washington, USA

ABSTRACT
Many programming languages include an implementation of the

option type, which encodes the absence or presence of values. Incor-
rect use of the option type results in run-time errors, and unstylistic
use results in unnecessary code. Researchers and practitioners have

tried to mitigate the pitfalls of the option type, but have yet to

evaluate tools for enforcing correctness and good style.

To address problems of correctness, we developed two modular

verifiers that cooperate via a novel form of rely–guarantee reason-

ing; together, they verify use of the option type. We implemented

them in the Optional Checker, an open-source static verifier. The

Optional Checker is the first verifier for the option type based on a

sound theory — that is, it issues a compile-time guarantee of the

absence of run-time errors related to misuse of the option type.

We then conducted the first mechanized study of tools that aim to

prevent run-time errors related to the option type. We compared

the performance of the Optional Checker, SpotBugs, Error Prone,

and IntelliJ IDEA over 1M non-comment, non-blank lines of code.

The Optional Checker found 13 previously-undiscovered bugs (a

superset of those found by all other tools) and had the highest

precision at 93%.

To address problems of style, we conducted a literature review

of best practices for the option type. We discovered widely varying

opinions about proper style. We implemented linting rules in the

Optional Checker and discovered hundreds of violations of the

style recommended by Oracle, including in 11% of JDK files that

use Optional. Some of these were objectively bad code, and others

reflected different styles.

KEYWORDS
Pluggable type systems, static analysis, option type, rely–guarantee

reasoning

1 INTRODUCTION
An option value is either present (containing a value) or absent
(not containing a value). This concept appears in most modern

programming languages. Option values go by many names, such as

Some/None in OCaml, Rust, and Scala, or Just/Nothing in Haskell.

It is an error to access an absent option value. Languages take two

approaches regarding such errors.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10.

https://doi.org/10.1145/3691620.3695036

Some languages require programmers to check the presence of

every option value before accessing it. In Haskell, the canonical

way to access an option value (Maybe) is via pattern matching, with

present (Just) and absent (Nothing) cases. Here is example code

from Pandoc [29], a markup language processor:

escaped :: CSVOptions -> Parser Char
escaped opts =
case csvEscape opts of
Nothing ->
case csvQuote opts of
Nothing -> mzero
Just q -> try $ char q >> char q

Just c -> try $ char c >> noneOf "\r\n"

Significant boilerplate code is required (i.e., the nested pattern-

matching structure), even if the programmer knows the Maybe

value is Just (and not Nothing). Other functional programming

languages are similar to Haskell, including Agda [4], Coq [54],

Elm [26], F# [79], Idris [22], OCaml [67], Standard ML [80], and

Zig [1]. These languages provide escape hatches that program-

mers can use to avoid pattern-matching, but they are considered

non-idiomatic and may crash at run time.

Other languages, such as C++ [55], Java [2], Nim [84], Rust [106],

Scala [64], and Swift [8], avoid boilerplate code by not forcing

a program to check for the presence of an option value before

unwrapping it. To avoid run-time errors, the programmer must

ensure that only present option values are accessed. Such reasoning

is complex, tedious, and easy to overlook. When applied naively, it

results in an explosion of unreachable boilerplate code.

This paper presents a way to get the best of both worlds: a

compile-time guarantee of safety without boilerplate or awkward

code, such as the need for eta-expansion [85]. We have developed

two modular verifiers that cooperate via a novel form of rely–

guarantee reasoning [59] to provide a compile-time guarantee that

no absent option value is ever accessed. We have implemented

our type systems in the Optional Checker, an open-source formal

verification tool and linter for the Java Optional type. While our

experiments target Java code, the type systems and findings are

broadly applicable.

In addition to the need to avoid run-time errors, the option type

is subject to style rules (section 3.2) that encourage best practices.

It is burdensome for programmers to remember these rules. The

Optional Checker automatically checks these rules. If the Optional

Checker issues no warnings, the program follows best practice

in use of the Optional type. We used this feature of the Optional

Checker to evaluate the extent to which the Java programming

community accepts and follows the style guidelines.

We evaluated the Optional Checker on over 1M non-comment,

non-blank lines of code. The Optional Checker uncovered 13 previ-

ously unknown defects, 7 of which have been patched to-date.

Additionally, we evaluated the Optional Checker against three

1

https://doi.org/10.1145/3691620.3695036

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA James Yoo, Michael D. Ernst, and René Just

other tools that warn about misuse of Optional: SpotBugs,Error

Prone [41], and the IntelliJ IDEA IDE [58]. The Optional Checker is

more precise than the other tools (i.e., it issues fewer false positive

warnings), despite being the only sound tool (i.e., it detects all pos-

sible NoSuchElementExceptions resulting from accessing an absent

Optional value).

Our primary contributions are:

• A literature review of style guidelines regarding the use of

option types, focusing on the Java Optional type (section 3).

• Two modular, sound type systems that cooperate via a novel

form of rely–guarantee reasoning (section 4).

• An open-source implementation, the Optional Checker. It is a

verifier that certifies the absence of NoSuchElementExceptions.
It is also a linter that enforces style guidelines (section 5).

• An experimental evaluation of correctness. It compares tools

that detect errors related to the use of option types (section 7).

• An empirical investigation of style: how programmers use the

Java Optional type in practice (section 8).

The empirical studies use over 1M non-comment, non-blank

lines of open-source code (section 6).

2 BACKGROUND
2.1 The Java Optional Type
An instance of Java’s Optional type is a wrapper object that may be

absent (representing a null value) or present (representing a non-

null value). Accessing an absent Optional value at run time results

in a NoSuchElementException. A search on GitHub for “Optional”

“NoSuchElementException” yielded 2,830 results, illustrating that it

is an important and common issue.

The Optional class defines three constructors:

• empty() for creating an absent Optional.

• of(T value) for creating a present Optional containing the

given non-null value.

• ofNullable(T value) for creating an Optional that is absent if

the value is null, otherwise is present with the given value.

The parameter type T is a generic type argument.

Optional defines methods to check for the presence of an Op-

tional and to access the wrapped value:

• isPresent() returns true if and only if the Optional is present.

• get() returns the wrapped value if the Optional is present, or

throws a NoSuchElementException if the Optional is absent.

The Optional API also includes 12 other methods that use get()

and isPresent() internally, such as orElseThrow().

If a programmer is unsure whether an instance of Optional is

present, the code should check before attempting to unwrap its

value. (Most of Optional’s methods do this internally.) Consider the

following code from Smithy [108], a domain-specific language for

defining client–server interfaces.

Optional<OperationShape> untagApi = ...
if (untagApi.isPresent()) {

untagApiVerified = verifyUntagApi(untagApi.get(), ...);
}

The expression untagApi.get() is executed only if the call to is-

Present() returns true.

2.2 Optional vs. null
In a typical usage scenario, a programmer might refactor a codebase

to replace a nullable value with an instance of Optional. However,

this translation does not eliminate any potential errors without

additional programmer effort. Every NullPointerException is refac-

tored into a NoSuchElementException, which crashes the program

just the same. Our verification tool, the Optional Checker, guaran-

tees that no NoSuchElementException is introduced.

The designers of Optional acknowledge that Optional is inher-

ently no more or less safe than null. The key motivation for Op-

tional was to prevent programmers from forgetting to handle all

possible cases [88]. Use of references “makes it disturbingly easy to

simply forget” null checks [9, 45], but the designers believed that

the extra syntax required by Optional makes developers less likely

to forget that two cases exist. The designers did not consider the

use of a tool, like the Optional Checker, to prevent programmers

from forgetting [93].

In languages such as C++, Java, Nim, Rust, Scala, and Swift, an

Optional reference can be null. Every use of Optional has the pos-

sibility of throwing both NoSuchElementException and NullPoint-

erException. This is ironic, given that the goal of Optional is to

avoid NullPointerExceptions. However, tools already exist to pre-

vent null-pointer dereferences [10, 13, 34, 91, 97, 116], and a user

could use one of those tools along with the Optional Checker to

prevent both types of exception. Therefore, NullPointerExceptions

are out of scope for this paper.

2.3 Pluggable Type-Checking in Java
Type-checking is a static verification technique that is just as pow-

erful as abstract interpretation or dataflow analysis [24]. Type-

checking is a specify-and-verify technique: the programmer writes

a specification of code behaviour, and a tool verifies that the code

satisfies the specification. Pluggable type-checking [12] permits a

programmer to choose which type systems are run on a program.

Pluggable type-checking is widely adopted in industry, with usage

documented at Amazon [61, 62, 126], Google [107], Meta [98], and

Uber [10].

A type qualifier [37] refines a type, restricting its possible run-

time values. Consider the declaration String myRegex;. A standard

Java compiler will admit both myRegex = "[0-9]" and myRegex =

"[0". The latter assignment is a defect that might lead to a crash or

other misbehaviour later in the program. To prevent such defects,

a programmer might instead write @Regex String myRegex; [113],

where “@Regex String” is a type comprising a type qualifier @Regex

and a Java basetype String. The @Regex type qualifier refines the

type of the String type into one that represents fewer values: the set

of valid regular expressions. The type @Regex String is a subtype

of String.

A Java compiler plug-in can enforce the semantics of the @Regex

type system. For example, the plug-in would forbid the second as-

signment in “String s = ...; @Regex String myRegex = s;”. As

another example, the formal parameter of Pattern.compile() has

declared type @Regex String, and so the plug-in would issue a warn-

ing at the call Pattern.compile("[0").

2

Verifying the Option Type with Rely–Guarantee Reasoning ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

If the regex plug-in discovers no violations of the type system,

then the programmer has a compile-time guarantee that the pro-

gram is free from run-time errors stemming from improper use of

regular expressions.

Our implementation, the Optional Checker, is a verification tool

for the Optional type. Its soundness statement is: if a program type-

checks, then the program will never access an empty instance of

the option type. Section 4.1.6 contains a proof.

3 GOOD STYLE WITH THE OPTIONAL TYPE
We performed a literature review via the snowball methodology.

We started with searches for “optional” “Java” and created more

searches that add “advice”, “style”, “guideline”. We examined the

first 1000 hits for each of these searches, and also followed relevant

citations in the hits. We retained only documents that contain

substantive original text supporting its guidelines. This yielded

over 40 results (fig. 1).

Oracle provided no official usage advice about Optional when it

was introduced in Java 8 [2]. Four and a half years later, the Java 11

documentation [88] for Optional stated, “Optional is primarily in-

tended for use as a method return type where there is a clear need to

represent ‘no result,’ and where using null is likely to cause errors.”

By that time, developers and researchers had developed many,

often conflicting, opinions about the effective use of Optional. In

fig. 1, for nearly every guideline, there is a different author who ar-

gues for the exact opposite! We conclude that there is no consensus

on the best way to use Optional, and quite a few authors (including

of code in the JDK, see section 8.2) use Optional differently than

its authors do.

One problem with Oracle’s guideline is inconsistency: it recom-

mends Optional only for a fewmethod return types, but null pointer

exceptions are harmful everywhere. Therefore, many authors pro-

pose expanding use of Optional. This viewpoint is also clear in

practice (section 8). Another problem with Oracle’s guideline is

vagueness, with words like “primarily” and “likely”.

We speculate that another reason for the discrepancies is that

some authors prefer a more procedural programming style, and oth-

ers prefer a more functional style. This could explain the conflicting

advice about calling methods in the Optional class.

3.1 Specialized Operations for Option Types
Introducing specialized syntax and operations for option types is

one way to address the trade-off between safety and boilerplate

code. Examples include the methods noted in section 2.1 and, more

generally, monadic operators that return option values via compos-

able “pipelines”. These pipelines defer all presence checking to the

end of a computation, so that it only has to be done once. Here is

an example in Scala:

val optReport = for {
user <- getOptUser(id)
_ <- authUser(user)
transactionId <- performTransaction(user)

} yield generateReport(transactionId)

This sort of code makes problems harder to localize, because an

absent value that appears at the end of the pipeline might have

Absolutism:
Never use Optional [32, 47]

Use Optional everywhere, instead of null [92]

Null:
Don’t use null for an Optional variable or return value

[15, 42, 57, 63, 66, 70, 88, 89, 111, 114, 119, 124]

Don’t check an Optional against null [89]

The content of a present (non-absent) Optional must be non-null [88]

Return values:
Use Optional for all return types [87, 110]

Use Optional only for return types that might be null [9, 70, 88, 122]

Use Optional for return types in public APIs [19, 20, 72, 88]

Don’t use Optional for return types [15, 115]

Getters:
Don’t use Optional for getters [87]

Use Optional only for getters [63]

Formal parameters:
Don’t use Optional for parameters

[9, 15, 42, 56, 57, 63, 66, 68, 70, 73, 81, 87–89, 95, 96, 111, 120–122]

Permit Optional for parameters [123]

Use Optional for all parameters [110]

Fields:
Don’t use Optional for fields

[19, 20, 56, 57, 63, 66, 68, 70, 81, 88, 95, 96, 120–122]

Use Optional for all fields [110]

Permit Optional for fields [35, 123]

Collections:
Don’t use Collection<Optional<T>> [66, 68, 70, 73, 88, 89]

Don’t use Optional<Collection<T>> [15, 57, 63, 66, 70, 87, 89, 120]

Collection<Optional<T>> is permissible [101]

Don’t use Optional<Optional<T>> [42, 70]

Methods in the Optional class:
Never call isPresent() before get() [15, 66, 73, 96, 119]

Always call isPresent() before get() [57, 89, 111]

Don’t use get() [70, 95, 119]

Don’t use isPresent() [20, 57, 70]

Use get() only if the Optional is known to be present [66, 70, 96]

Don’t use orElse() [66, 89, 119]

Don’t use map() if the value is unused, use ifPresent() instead [42]

Local computations:
Don’t create and consume an Optional locally [19, 66, 70, 122]

Equality and identity:
Don’t use identity operations: ==, synchronization, etc. [42, 66, 81, 120]

Don’t use equals() or hashCode() on Optional [124]

Use equals() and hashCode() on Optional [42, 66]

Figure 1: Style guidance about use of Java’s Optional type.

been generated anywhere within — in this case, within any of

getOptUser(id), authUser(user), or performTransaction(user).

3.2 Marks’ Style Rules
We implemented style rule checking in the Optional Checker. We

chose to check the style rules proposed by Stuart Marks [70], a

widely-respected authority on the Java Optional type who worked

on its design and implementation and has given many talks about

its idiomatic use [71]. Moreover, his rules cover the largest set of

categories in fig. 1, making it the single best set of style rules to

implement.

(1) Never, ever, use null for an Optional variable or return value.

(2) Never use Optional.get() unless you can prove that the Op-

tional is present.

(3) Prefer alternative APIs over Optional.isPresent() and Option-

al.get().

3

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA James Yoo, Michael D. Ernst, and René Just

(4) It’s generally a bad idea to create an Optional for the specific

purpose of chaining methods from it to get a value.

(5) If an Optional chain has a nested Optional chain, or has an

intermediate result of Optional<Optional<T>>, it’s probably too

complex.

(6) Avoid using Optional in (a) collections, (b) method parameters,

and (c) fields.

(7) Don’t use an Optional to wrap any collection type (List, Set,

Map).

The Optional Checker checks these guidelines (they can be disabled

individually) and it can be extended to enforce other guidelines.

Here are notes on these guidelines:

(1) The Optional Checker performs a best-effort check of this prop-

erty. For a guarantee of no NullPointerExceptions, the program-

mer should use a specialized nullness-checking tool [10, 13, 34,

91, 97, 116].

(2) This is not a style rule. It is the correctness property that guar-

antees that no use of Optional causes NoSuchElementException.

(3) Marks prefers other APIs in the Optional class. An example is

o.orElse(default), which evaluates to o’s value if present, and

otherwise evaluates to the given value default. Another exam-

ple is o.map(fn), which evaluates to absent if o is absent, and

otherwise is equivalent to Optional.ofNullable(fn(o.get())).

But Marks notes that sometimes, use of get() and isPresent()

is the best choice.

(4) Creating then consuming an Optional is both more verbose

and more expensive (in time and space) than using the original

nullable value.

(5) Prefer simple, straightforward, readable code.

(6) Collection<Optional T> should be just Collection<T>: don’t

put absent Optionals in a collection. Fields are generally pri-

vate and used within a limited scope, where their uses can be

locally checked and Optional provides limited benefit. Optional

in method parameters imposes unnecessary clutter and over-

head on every caller and on the method body. Use of references

rather than Optional requires the user to check for null, but

forgetting a null check in the method body is unlikely, since

the method’s contract is stated in its documentation.

(7) Use an empty collection to represent the absence of values.

4 VERIFYING CORRECT USE OF OPTIONAL
To verify correct use of the option type, we designed two modular

type systems cooperating via partial rely–guarantee reasoning.

Section 4.1 presents a type system for modelling present option

values, and section 4.2 presents a type system for modelling non-

empty collections. These type systems cooperate via a novel form

of rely–guarantee reasoning [59], described in section 4.3.

The type systems are fully specified by the type hierarchies given

in this paper. Both are instantiations of qualifier-based type systems.

Section 4.1.6 gives a proof of soundness.

We chose to create two simple type systems plus an interaction

mechanism. It would be possible to create a single monolithic anal-

ysis, but that would be much harder to write and understand. The

current design enforces separation of concerns and permits reuse

and recombination of both the type systems and the composition

mechanism.

4.1 A Type System for Option Values

@MaybePresent

@Present

Figure 2: The type hierarchy for possibly-present data.

The Optional type system (fig. 2) contains these type qualifiers:

• @MaybePresent: the top type, which denotes a possibly-present

instance of Optional. This type includes absent Optional val-

ues, present Optional values, and null. This is the default type

(that is, @MaybePresent Optional is equivalent to unqualified

Optional), so programmers need not explicitly write it.

• @Present: denotes a definitely-present instance of Optional. The

type also includes the null value. Section 2.2 discussed how to

handle the possibility of NullPointerExceptions.

4.1.1 Explicitly-written @Present type qualifiers. A programmer

can write the type @Present Optional. In most cases, doing so is

poor style. If an Optional value is known to be present, then it is

better style to use the non-null value instead.

However, writing @Present can be necessary when interfacing

with existing code that uses the Optional type. An example, which

we observedmultiple times in our experiments, is when a superclass

specifies a method as returning @MaybePresent Optional but some

subclasses override the method to return @Present Optional.

4.1.2 Method Specifications. The Optional Checker differs from
ordinary type systems in that it supports method pre- and post-

conditions. Its annotations are more like a specification language
than merely a type system. Its method specifications (which are

all soundly checked, not trusted) are implemented as annotations

parameterized by Java expressions, and include:

• @RequiresPresent: the method contract requires that the given

expression evaluates to a present Optional on method entry.

• @EnsuresPresent: if the method terminates successfully, the

given expression evaluates to a present Optional.

• @EnsuresPresentIf: a conditional method postcondition specifi-

cation stating that the presence or absence of some expression

depends on the return value of the annotated method.

@MaybePresent

@Absent @Present

⊥

4.1.3 No Representation for Absent Option
Values. The type qualifier hierarchies in

figs. 2 and 3 lack an @Absent qualifier, as

shown at right. A reason is that the typ-

ing rules for @Absent would be identical

to those of @MaybePresent and @Unknown-

NonEmpty: operations that lead to exceptions

(e.g., get()) would still be forbidden.

4.1.4 Flow-Sensitive Type Refinement. The Optional Checker is

unlike a traditional type system (but like a dataflow analysis or

abstract interpretation [5, 6, 25, 60]) in that an expression’s type is

flow-sensitive. An expression may have different types on different

lines of code. Declarations are respected: the refined type is always

equal to or a subtype of its declared type.

4

Verifying the Option Type with Rely–Guarantee Reasoning ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

4.1.5 Lambda Expressions. Standard flow-sensitive type refine-

ment for conditional statements (section 4.1.4) is insufficient for

some features of Optional. Consider the method ifPresent(Consum-

er action). (Method ifPresentOrElse() is similar.) In the expres-

sion opt.ifPresent(f), if opt is present, the function f is called

on the value that is wrapped by opt. Within the body of f, two

facts are true: opt is present, and the argument to f is a non-null

non-optional value.

This feature also enhances other verifiers beyond the Optional

Checker. Consider Jodd’s method StringUtil.ifNotNull() [28].

This method takes a function as an argument. If the function is

called, then (1) the value passed to the function is non-null, and

(2) some other argument to the method is non-null. This is now

expressible, improving the precision of nullness checking [91].

4.1.6 Soundness Considerations. We present a proof sketch of the

soundness of our type system for option values, which we imple-

ment via the Optional Checker.

Theorem. If a program type-checks under the Optional Checker’s

type system, then the program will not throw a run-time exception

that results from accessing an empty instance of the option type.

Proofs of progress and preservation in our type system can be

adapted from prior work on qualifier-based type systems [17, 37–

39, 127], but we provide a proof sketch here. Assume the type-

checker issues no error.

(1) From the assumption, the run-time type of every expression is

a subtype of (or equal to) its compile-time type.

(2) The compile-time type of the receiver of get() is @Present.

(3) By (1) and (2), every value that any receiver of get() evaluates

to is present; it is never absent.

(4) Since get() is never invoked on an absent value, get() never

throws a NoSuchElementException.

A proof sketch for our type system for non-empty containers (sec-

tion 4.2) follows the same structure, with its qualifiers replacing

that of the type system for option values.

We have no proof of soundness for our implementation. Its

trusted computing base includes the following. (1) The implementa-

tion of the Optional Checker and the JDK annotations. These were

written by one author and reviewed by two additional authors.

(2) The implementation of the Checker Framework, which is used

in production at many companies. (3) Code used by the Checker

Framework, such as javac and the JDK implementation.

4.2 A Type System for Non-Empty Containers

@UnknownNonEmpty

@NonEmpty

Figure 3: The type hierarchy for container types.

The Non-Empty type system (fig. 3) models containers (e.g., lists,

sets, maps, iterators, streams) that may or may not be empty. Its

type qualifiers consist of:

• @UnknownNonEmpty: the top type, which denotes a container value

that may or may not contain elements. This is the default type,

so programmers need not explicitly write it.

• @NonEmpty: denotes a container value that definitely contains at

least one element.

Many aspects of this type system mirror those of the Optional

type system. It recognizes that new ArrayList() and List.of() cre-

ate an empty collection, but List.of(1, 2, 3) creates a non-empty

collection. Methods such as add() are annotated with the @Ensures-

NonEmpty method specification, so after calling lst.add(x), lst is

@NonEmpty. It accounts for side effects through local aliases.

Additional features, such asmethod specifications (e.g., @Ensures-

NonEmpty) exist for the Non-Empty type system, mirroring those

described for the Optional type system in section 4.1.2.

The Non-Empty type system is effective; a verifier implementing

the type system detected two previously-unknown defects [133,

134] resulting in run-time exceptions in plume-util [33], a project

comprising 11K non-comment, non-blank lines of code and 5K

NCNB lines of tests.

4.3 Partial Rely–Guarantee Reasoning
As described so far, the Optional verifier issues a false positive warn-

ing for some programs. As an example, the Stream.max() method

returns an Optional value that is present if and only if the stream is

non-empty. Therefore, the following call to Optional.get() is safe:

List<Integer> numbers = List.of(1, 2, 3);
Optional<Integer> maximum = numbers.stream()

.max(Integer::compareTo);
maximum.get() // False positive warning: `maximum` is @MaybePresent

The verifier issues a false positive warning because the return

type of Stream.max() is conservatively inferred as @MaybePresent,

because in general max() might return an absent value.

By relying on information from Non-Empty types, the Optional

verifier can determine that the type of maximum is @Present. The

relied-upon information must itself be verified (guaranteed), which
happens when the Non-Empty type system runs. This separation

of concerns enables modular verification and is the heart of rely–

guarantee reasoning.

In typical formulations ofmodular verification and rely–guarantee

reasoning, each verifier is run on the full program. That is imprac-

tical for the Optional Checker. Forcing the user to verify the whole

program with respect to non-emptiness would impose significant

costs and many false positives, since some code’s container behav-

ior is inherently subtle. Our insight is that it is enough to verify

only the non-empty properties that are relied upon by the Optional

verifier.

In our partial rely–guarantee approach, the Optional verifier

depends only on explicitly-written @NonEmpty type qualifiers. The

Non-Empty verifier verifies that all of those explicit type qualifiers

are correct: at run time, the value is never empty. For example, the

programmer may write:

@NonEmpty List<Integer> numbers = List.of(1, 2, 3);
Optional<Integer> maximum = numbers.stream()

.max(Integer::compareTo);
maximum.get(); // Legal: `maximum` is @Present

The annotations from the Non-Empty type system are machine-

checked, as are the annotations from the Optional type system. It is

impossible for a programmer to annotate an empty container with

@NonEmpty in a well-typed program.

5

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA James Yoo, Michael D. Ernst, and René Just

Algorithm 1 Collecting methods to verify under the Non-Empty

type system.

1: global variables
2: Callers // Mapping from methods to their callers

3:

4: procedure MethodsForNonEmptyVerification(𝐶𝐹𝐺)

5: ToVerify = ∅
6: for𝑚 ∈ 𝐶𝐹𝐺.𝑚𝑒𝑡ℎ𝑜𝑑𝑠 do
7: if HasNonEmptyPrecondition(𝑚) then
8: ToVerify← ToVerify ∪ {𝑚} ∪ Callers[𝑚]
9: else if HasNonEmptyAnnotation(𝑚) then
10: ToVerify← ToVerify ∪ {𝑚}
11: return ToVerify

Algorithm 2 Helper methods for algorithm 1.

1: procedure HasNonEmptyPrecondition(𝑚)

2: return𝑚 is annotated with @RequiresNonEmpty or

3: any of𝑚’s formals is annotated with @NonEmpty

4: procedure HasNonEmptyPostcondition(𝑚)

5: return m’s return type is annotated with @NonEmpty or

6: m is annotated with @EnsuresNonEmpty or

7: @EnsuresNonEmptyIf

8: procedure HasNonEmptyAnnotation(𝑚)

9: return HasNonEmptyPrecondition(𝑚) or

10: HasNonEmptyPostcondition(𝑚) or

11: any of𝑚’s local variables is annotated

12: with @NonEmpty

Our approach may be viewed as a type of demand-driven analy-

sis [30, 104], though it does not need the back-and-forth associated

with most demand-driven analysis: each verifier runs just once.

4.3.1 Pseudocode. Algorithm 1 describes the process by which

methods are collected to be verified under the Non-Empty type

system. The set ToVerify comprises methods that should be ver-

ified with the Non-Empty verifier system due to the presence of

explicitly-written annotations from the Non-Empty type system

(lines 7 and 9).

The callers of methods that explicitly depend on the Non-Empty

type system are also verified. Consider the code below:

// Generate a non-empty random sequence of numbers
@NonEmpty List<Integer> randomSequence() { ... }

int getRandomNumber() {
return randomSequence().stream().findAny().get(); // Legal

}

findAny() returns any element of a stream; it will return a present

Optional value when invoked on a non-empty stream. The method

getRandomNumber() does not explicitly declare a dependence on the

Non-Empty type system. However, it must be checked in order to

establish the relationship between the presence (or absence) of the

Optional value returned by findAny() and the stream on which it

is invoked.

5 IMPLEMENTATION
The Optional Checker is a static analysis tool for Java’s Optional

type that enforces correctness (section 5.1) and style (section 5.2).

It is a:

• Verifier, which provides a compile-time guarantee that a pro-

gram will not throw NoSuchElementException as a result of mis-

use of the Optional type. This is achieved via our type systems

that cooperate via rely–guarantee reasoning (section 4).

• Linter, which warns about violations of style rules [70] regard-

ing the use of the Optional type. This is achieved via pattern-

matching on the AST of a Java program and type analysis.

The Optional Checker comprises 1,276 non-comment non-blank

lines of code, 1,263 lines of comments, 1,499 lines of tests, 24 an-

notations in the JDK (4 copies of the 6 annotations in fig. 4), and

124 annotations on JavaParser, of which 112 are on overrides of its

getParentNode() method. We consider the idiosyncratic design in

JavaParser to be poor style.

To use the Optional Checker, a programmer runs the Java com-

piler with an additional -processor command line flag, e.g., javac

-processor optional Main.java. Warnings and errors emitted by

the Optional Checker are displayed identically to those emitted by

a standard Java compiler. Errors indicate cases where a run-time

error might be thrown, and warnings indicate style rule violations.

5.1 Enforcing Correctness
To enforce correctness (i.e., ensure the absence of NoSuchElement-

Exception at run-time), the Optional Checker relies on annotations

from the Optional type system written in the JDK.

public final class Optional<T> {
public static <T> @Present Optional<T> of(T value);

public T get(@Present Optional<T> this);

@EnsuresPresentIf(result = true, expression = "this")
public boolean isPresent();

@EnsuresPresentIf(result = false, expression = "this")
public boolean isEmpty();

public T orElseThrow(@Present Optional<T> this);

@EnsuresPresent("this")
public T orElseThrow(Supplier exceptionSupplier);

}

Figure 4: The specification of Java’s java.util.Optional class. Other
methods in the class need no annotations.

Figure 4 shows the complete specification of the JDK’s Option-

al class. It requires only 6 annotations. Classes OptionalDouble,

OptionalInt, and OptionalLong have identical annotations.

The Optional Checker needs no special-case typing rules to

enforce the correctness property, which is ensured by a formal

parameter annotation on get(). Ordinary subtyping issues an er-

ror at each possibly-erroneous call site. An advantage of using

annotations is that any other method can be specified and checked.

The only annotations we have not yet discussed are those on

orElseThrow (). The zero-argument version throws NoSuchElement-

Exception if its receiver (this) is absent. Method orElseThrow ()

has the identical specification in the JDK (and therefore the same

annotations for the Optional Checker) as get(), and either can be

6

Verifying the Option Type with Rely–Guarantee Reasoning ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

implemented as a call to the other. Tool behavior should not depend

on which of these two equivalent methods a programmer calls.

By contrast, the one-argument overload orElseThrow(Supplier)

does not have @Present on its receiver type. The programmer ex-

plicitly throws an arbitrary exception after checking whether the

element is absent. Whatever exception is thrown is intended by the

programmer; it is not unexpected or an error.

The @EnsuresPresent("this") postcondition on orElseThrow(

Supplier) indicates that, if the method completes normally, then

the receiver is guaranteed to be present.

5.2 Enforcing Good Style
In enforcing good style, the Optional Checker mechanizes Marks’

style rules (section 3.2) as automated linting rules that are applied

to source code. Programmers can enable/disable individual linting

rules.

5.2.1 Optional should never be null. Style rule #1 (section 3.2)

forbids use of null for an Optional variable or return value. The

Optional Checker enforces this by detecting pseudo-assignments

whose right-hand side is the literal null and whose left-hand side

has Optional type. This is a local, best-effort analysis.

The Optional Checker does not forbid every expression of @Null-

able type on the right-hand side, because application invariantsmay

guarantee that the value is non-null at run time, and the Optional

Checker would issue too many false positive warnings. For a full

guarantee, a user can run a nullness-checking tool [10, 13, 34, 91,

97, 116].

The Optional Checker interprets the rule to also forbid compar-

ing an Optional to the literal null with == or !=, since the outcome

of such a test is (or at least should be!) predictable at compile time.

5.2.2 Forbidding code patterns. Style rules #3, #4, and part of #5

forbid certain code patterns. The Optional Checker enforces these

rules by pattern-matching over the AST (abstract syntax tree) of

the code.

For example, rule #4 discourages “creat[ing] an Optional for

the specific purpose of chaining methods from it to get a value.”

The Optional Checker raises a warning whenever there is a chain

of method calls of the form creation propagation∗ elimination. The
creationmethods are empty(), of(), and ofNullable(). The propaga-

tion methods are filter(), flatMap(), map(), and or(). The elimina-

tion methods are hashCode(), ifPresent(), ifPresentOrElse(), is-

Empty(), isPresent(), toString(), get(), isEmpty(), orElse(), or-

ElseGet(), orElseThrow(), and methods defined by the Object class.

5.2.3 Forbidding Compound Types. Parts of style rules #5, #6, and
#7 forbid certain compound types, such as Optional<Optional<T>>,

Optional<Collection<T>>, and Collection<Optional<T>>. Such

types can arise in two ways. The first way is when programmers

write them explicitly; this is easy to check for using a simple type

analysis.

The second way is as the type of an intermediate result within an

expression. Detecting these is more difficult. Java’s type inference

algorithm [46], which computes generic type arguments, produces

Optional<? extends Object> as the type of the expression Option-

al.of(Optional.of("hello")). This encompasses all the type con-

texts in which the expression can be legally used. As a result of this

fact, it is not possible to utilize a type-based analysis [90] that first

resolves the type of every expression and then utilizes those types.

Although the expression Optional.of(Optional.of("hello"))

has type Optional<? extends Object>, the subexpression Option-

al.of("hello") has type Optional<String>. Therefore, our anal-

ysis decomposes expressions then composes the types of their

subexpressions to find the most specific type of the expression,

as opposed to the most general type that a Java compiler com-

putes. (We implemented this as an extension to the Checker

Framework, making it available to other type systems.) This

yields Optional<Optional<String>> for Optional.of(Optional.of(

"hello")), enabling the Optional Checker to warn about this and

other code that creates values of forbidden types.

6 EVALUATION: SUBJECT PROGRAMS
Our experiments use 27 real-world Java programs totalling over

1M non-comment, non-blank lines of code (The subject programs

are listed in the supplementary material.) We obtained our dataset

by querying GitHub via Sourcegraph [112]. We used 4 patterns

in our query: “import java.util.Optional;”, “java.util.Option-

al<”, “Optional.ofNullable(”, “.get()”, and limited the output to

10k results. We queried GitHub twice using these patterns, resulting

in a total of 349 programs.

We reduced the dataset, retaining only programs that

(1) have at least ten stars on GitHub, indicating that there is a

community of users,

(2) had a commit made to the primary development branch (i.e.,

main or master) within the last six months, so that our bug

reports and patches are less likely to be ignored,

(3) use the Gradle [48] or Maven [7] build system, making it easier

to run the Optional Checker, and

(4) compile under Java 11, which is currently the version of Java

with the highest adoption rate [103].

resulting in 129 programs from which we arbitrarily selected 27. We

did not cherry-pick examples: whenever we considered a program,

we put it permanently in our dataset and did not remove it. One

program failed to compile with SpotBugs and two failed to compile

with Error Prone. We manually inspected source code for the bug

patterns relevant to the Optional type in these cases.

7 EVALUATION: CORRECTNESS
Our evaluation of the Optional Checker’s efficacy in verifying cor-

rect use of the option type aims to answer the following research

questions:

RQ1 How does the Optional Checker compare to other tools that

aim to prevent run-time errors related to the optional type?

RQ2 How much effort is required to use the Optional Checker?

Our methodology for our evaluation of correctness is described

in section 7.1. The Optional Checker discovered 13 previously-

unknown real-world defects (section 7.2) of which 7 have been

patched to-date. Section 7.3 discusses false positive warnings raised

by the Optional Checker. Section 7.4 compares 4 tools: SpotBugs

[115], Error Prone [41], IntelliJ IDEA [58], and the Optional Checker.

7

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA James Yoo, Michael D. Ernst, and René Just

7.1 Methodology
Our experimental procedure uses the same two-step iterative pro-

cess that a programmer would use to verify a legacy program.

Repeatedly:

(1) Run the Optional Checker, which emits compile-time errors for

Optional operations that may throw a NoSuchElementException,

such as an invocation of get() on a possibly-absent Optional

value.

(2) Address the Optional Checker’s error messages in one of 3

ways. If the error indicates a defect, fix it. If the error stems

from insufficient information provided to the Optional Checker,

write additional machine-checked specifications. If the error

is a false positive (e.g., application invariants guarantee the

presence of an Optional value), suppress the error.

When a defect could be fixed without major architectural changes,

we submitted a patch. Otherwise, we submitted a bug report.

We performed a trivial refactoring in one subject program [23].

We changed “spec” to “help.commandSpec()” to accommodate a

method that used a local variable, which cannot appear in a method

precondition:

@RequiresNonEmpty("#1.commandSpec().subcommands()")
private TextTable createTextTable(CommandLine.Help help) {
CommandSpec spec = help.commandSpec();
...

- int commandLength = maxLength(spec.subcommands(), ...);
+ int commandLength = maxLength(help.commandSpec().subcommands(), ...

7.2 Real-World Errors
7.2.1 File system operations. JavaPackager [40] is a plugin for

Maven and Gradle that packages Java applications into native

Windows, macOS, or Linux applications. The Optional Checker

detected two defects, both with a root cause relating to file system

operations. The maintainer accepted our patches for both of these

defects [130, 132].

...

* @return Found file or null if nothing matches

*/
public static File findFirstFile(File searchFolder, String regex) {

return Arrays.asList(searchFolder
.listFiles((dir, name) -> Pattern.matches(regex, name)))
.stream()
.map(f -> new File(f.getName()))
.findFirst()
.get(); // Error if no file name matches `regex`.

}

In the above code, a NoSuchElementException will be thrown at the

call to get() if no file has a name that matches the regular expres-

sion. There is also a mismatch between the method specification

and the implementation. Our patch was to modify the code to match

the specification. We replaced “get()” by “orElse(null)”.

The second error is an illegal call to get() on the result of a

file system operation [130]. The code incorrectly assumes that the

operation always succeeds, so the Optional result is never absent.

Our patch replaced the use of get() with methods that are safe to

use on a possibly-absent Optional, such as ifPresent(consumer).

7.2.2 Variable capture. riot [102] is a command-line utility to ac-

cess Redis data stores. the Optional Checker issued an error for this

call to get():

public Function<Map<String, Object>, String> build() {
if (fields.isEmpty()) {
if (prefix.isPresent()) {

return m -> prefix.get();
}

prefix is a private Optional field. If prefix is present, then a call

to build returns a function m -> prefix.get(), which references

the prefix field and which the client may store in a variable. The

client may then call themethod prefix(null), which sets the prefix

field to an absent Optional. Finally, the client may call the stored

function, which will crash at the expression prefix.get(). IntelliJ

unsoundly missed this defect. The maintainers updated the lambda

expression to no longer capture the prefix field.

7.2.3 Empty Sequences and Streams. A Java Stream [3] represents

a sequence of elements. Aggregate operations on a Stream return

an Optional value that is absent if the stream is empty. Consider

the code below from Spring Cloud Deployer Kubernetes [18]:

Stream<...> conditionsStream = Stream.of(conditions);
Boolean allConditionsMet = conditionsStream
.reduce((x, y) -> x.and(y))
.get()

The array conditions is a field that is set by the constructor; al-

though the constructor has package-private access, there exists a

public method that passes its arguments through to the constructor.

Therefore, a client can create an object with an zero-length array

for conditions, leading to an empty Stream conditionsStream, an

absent Optional returned by reduce(), and a crash at get().

7.2.4 Incorrect guard. pcgen [94] is an RPG character generator.

The Optional Checker issued an error for this code:

if (current.isEmpty() || !current.equals(newRegion)) {
...
fireDataFacetChangeEvent(id, newRegion.get().toString(), ...);

}

The true path in this conditional statement may be exercised when

newRegion is absent and not equal to current. In this case, new-

Region.get() crashes. Our patch for this defect was to replace the

call to get() on newRegionwithin the conditional to a call to ifPres-

ent(supplier), which provides safe access to the value of newRegion.

The maintainers accepted our patch for this defect [131].

7.2.5 Failure to check. The other 8 defects (3 in chunky and pcgen,

1 in hivemq and jib) are simple failures to check the result of a call

to a method that we confirmed could return an absent Optional.

The defect is unconditionally unwrapping the returned Optional.

We have submitted patches [128, 129] to correct the 3 defects in

chunky, which have been accepted by the maintainers. We have

opened an issue in the repository for hivemq, and plan to open

other issues or submit patches for the remaining defects.

7.3 False Positives
Like every sound tool, the Optional Checker sometimes reports

false positive errors. It reported 1 in our experiments.

8

Verifying the Option Type with Rely–Guarantee Reasoning ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

7.3.1 Call Sequencing. In pcgen, the Optional Checker reported a

real latent defect that currently does not cause a failure. We marked

this as a false positive report.

The methods in pcgen’s GroupFunction class are not invoked

directly. Rather, they are placed in a list, and then the program

iterates over the list executing them one by one. In all the lists

that are created, evaluate() (which accesses an Optional<Format-

Manager> value) is never called except after allowArgs() (which sets

the value to present).

The Optional Checker cannot reason about this complex control

flow. (And, there is a latent bug: a future maintainer could make a

list with evaluate() first.)

IntelliJ does not issue a warning. This is due to unsoundness, not

cleverness: IntelliJ also does not issue a warning if a list is made

with the methods in the wrong order.

7.4 Comparison With Other Tools
We evaluated the Optional Checker against other 3 tools that warn

about misuse of the Java Option type. Each of them is widely used

in industry [52, 53, 118].

SpotBugs [51, 115] and Error Prone [41] are rule-based static ana-

lyzers that include rules to mitigate misuse of the option type. Rule-

based static analyzers apply sets of pre-defined lexical rules against

a program. These rules may express simple syntactic patterns such

as the maximum length of a line in a program, to more complicated

patterns, such as ensuring methods are called in a specific sequence.

For example, SpotBugs’ NP_OPTIONAL_RETURN_NULL rule [69] forbids

null returns for methods with an Optional return type. Error Prone

includes 8 rules, or, bug patterns [43], regarding the use of the option
type. Most pertain to style, but the OptionalNotPresent bug pat-

tern warns programmers from accessing the value of an Optional

instance if it is explicitly known to be empty (e.g., an invocation

of get() immediately after a call to isEmpty() that returns true).

Also like the Optional Checker, it is built on top of the Checker

Framework’s Dataflow Framework [27].

SpotBugs and Error Prone report specific cases matching the

lexical rules or bug patterns they employ with high confidence.

However, rule-based approaches often suffer in cases where ad-

ditional precision may be derived from dataflow information and

type inference, which may be difficult or impossible to encode in

a set of static lexical rules that match solely on the syntax of a

program. Additionally, SpotBugs and Error Prone are bug detectors;

their goal is not to verify the absence of errors, but to balance error

reduction with the rate of false positives.

The IntelliJ IDEA IDE [58] is the dominant Java integrated devel-

opment environment [118]. Version 2023.3 contains 9 inspections

related to Optional [117]. These inspections cover all of the best

practices of section 3.2. When enabled, failed checks are presented

inline in the editor as warnings and do not cause compilation fail-

ures. (By contrast, the Optional Checker and Error Prone can both

halt compilation, though each can be configured to issue only warn-

ings.) Some of the Optional analyses are disabled by default, but

we enabled them all for our experiments.

Table 1 reports the tools’ performance.

7.4.1 Annotations as Checked Specifications. TheOptional Checker
enables programmers to specify information about the presence of

Table 1: Defects reported by 4 static analysis tools. Annos is the
number of machine-verified annotations we wrote as a specification
in programs.

Tool

True

positives

False

positives

Preci-

sion

Recall Annos

SpotBugs 0 0 n/a 0% 0

Error Prone 0 0 n/a 0% 0

IntelliJ IDEA 11 5 69% 85% 0

Optional Checker 13 1 93% 100% 6

Optional values. For example, IntelliJ issued a false positive warning

at a call to the method getLocalScopeName in pcgen [94]:

@Override
public Optional<String> getLocalScopeName() {
return Optional.of("PC.STAT");

}

This method is an override of a base method that returns an absent

Optional, as in section 4.1.1. A single annotation to the signature

of the overridden method informs the Optional Checker of its spec-

ification:

public @Present Optional<String> getLocalScopeName()

Running the Optional Checker guarantees that the method body

satisfies the specification. These checked specifications are relied

upon by the Optional Checker to establish facts about the presence

of Optional values at call sites.

7.4.2 Soundness. SpotBugs does not provide a guarantee of sound-
ness and does not analyze byte-code for illegal instances of get().

It detects cases where a null value is returned from a method that

is marked to return an Optional<T>, which violates style rule #1.

Error Prone only issues errors for cases where it is certain that a

NoSuchElementException will be thrown, such as in the code below

from its catalogue of bug patterns [44]:

if (!o.isPresent()) {
return o.get(); // this will throw a NoSuchElementException

}

IntelliJ is the tool in our evaluation that came closest to detecting

the same defects that the Optional Checker found. However, it is

not sound. Four unsoundnesses are variable capture (section 7.2.2),

call sequencing (section 7.3.1), not warning when orElseThrow() is

invoked on a possibly-present Optional (section 5.1), and, in jib, a

sequence of operations with Future and Optional.

IntelliJ’s unsoundness was previously unknown, and would not

have been known without building a sound tool. IntelliJ’s precision

was also unknown. The Optional Checker’s higher precision is

a qualitative, not just quantitative, difference. Only the Optional

Checker meets usability guidelines proposed by Google [107] that

require 90% precision.

8 EVALUATION: STYLE
This section compares the style guidelines of section 3.2 with Java

practice as exemplified by the subject programs of section 6.

RQ3 To what extent do real-world Java programs adhere to style

rules regarding the Optional type?

9

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA James Yoo, Michael D. Ernst, and René Just

Table 2: Style violations related to the Java Optional type; section 3.2
provides a description for each table header. Rule #2 is a violation of
correctness, which appears in table 1.

1 3 4 5 6.a 6.b 6.c 7

SpotBugs 1 n/a n/a n/a n/a n/a n/a n/a

Error Prone 0 1 1 1 n/a n/a n/a n/a

IntelliJ IDEA 3 14 2 11 30 61 102 n/a

Optional Checker 7 6 43 1 22 93 67 0

Section 8.1 describes our methodology Table 2 overviews of our

results, which are discussed in section 8.2.

8.1 Methodology
Similar to our investigation of correctness, we ran 4 tools (Spot-

Bugs [115], Error Prone [41], IntelliJ IDEA [58], and the Optional

Checker) on our dataset of subject programs from section 6, and we

examined their style warnings. This study provides a view, across

over over 1M, of how programmers use the Optional type and

whether they violates style guidelines.

The goal of this section is not to compare or criticize the tools.

The tools may interpret the rules slightly differently. The corre-

spondence between tool output and style rules is approximate; for

instance, IntelliJ has inspections that apply to both Optional and

Stream, which cannot be disabled separately. Furthermore, the tools

are all open-source and can be tweaked to produce exactly the same

diagnostic output as one another.

8.2 Results
Violations of rule #3, “Prefer alternative APIs over Optional.is-

Present() and Optional.get(),” were likely due to programmers

who were unfamiliar with the Optional API or who preferred a

procedural to a functional programming style. Both Optional and

functional programming take a bit of getting used to.

Rule #4, “It’s generally a bad idea to create an Optional for the

specific purpose of chaining methods from it to get a value,” was

often exuberantly violated. A single expression would create an Op-

tional, call Optionalmethods, and then call get(). We hypothesize

that programmers enjoyed the fluent APIs that emulate a functional

programming style. Newcomers to a feature are also known to

overuse it. A simple violation of rule #4 is:

dfcl = Optional.ofNullable(dfcl).orElse(new
DataFacetChangeListener[0]);

// Simpler version:
if (dfcl == null) {
dfcl = new DataFacetChangeListener[0];

}

Further examples appear in the supplementary material.

We observed a similar (over-)use of streams, with them being

created from a list, manipulated, and turned back into a list when

a list method would be simpler and more efficient. In other cases,

use of Stream helps to clarify and simplify code.

Violations of rule #6, “Avoid using Optional in (a) collections, (b)

method parameters, and (c) fields”, were by far the most frequent.

They come from programmers who wish to take advantage of Op-

tional in more parts of their code than just some return statements,

as noted in section 3.2. Eight classes in the JDK’s base module

violate Oracle’s guidelines by using Optional for formal parameters,

usually for multiple methods. This is 11% of the 72 files that use

Optional. The base JDK module also violates other style guidelines:

it contains Optional local variables that not related to any return

statement, and uses of get() without a check.

8.3 Optional Fields and Parameters
hollow [82] is a library developed by Netflix with the goal of rapidly

providing consumer objects with read-only access to in-memory

datasets from a single producer object. the Optional Checker emit-

ted 7 warnings, mostly due to fields of Optional type.

In one instance [83], field Optional<Boolean> isPinned;was read

in the code below via the getter isPinned():

if (requestedVersionInfo.isPinned() == null || ...) {
return;

}
if (!(requestedVersionInfo.isPinned().isPresent() && ...) {

return;
}
boolean isPinned = requestedVersionInfo.isPinned().get();
...

This is a safe use of the Optional type in that it will not throw a

run-time exception. However, it exemplifies the complexity intro-

duced by the use of an optional value. After 3 levels of indirection

(i.e., a nullness check, a presence check, and a call to get()), the

programmer finally has safe access to the wrapped Boolean value.

9 LIMITATIONS AND THREATS TO VALIDITY
The Optional Checker can only issue guarantees for the source code

that it has access to at compile-time. This excludes unannotated

libraries, including native libraries.

The Optional Checker itself may have defects; that is, our imple-

mentation of the Optional Checker might be buggy. Our extensive

test suite (larger than the implementation, see section 5) mitigates

this threat.

In order to count errors and style violations, our experimental in-

frastructure used Java’s @SuppressWarnings annotation. Our counts

may be undercounts because Java only permits @SuppressWarnings

on declarations — not statements or expressions. Sometimes one

@SuppressWarnings encompassed a section of code with (say) mul-

tiple errors, but we counted it only once because of the single

@SuppressWarnings annotation.

Our results undercount the benefit of the Optional Checker,

because we used it on programs after a large amount of implemen-

tation and testing had occurred. Many defects that the Optional

Checker would have discovered have already been detected and

patched. Use of formal verification tools earlier in the software

development cycle is more beneficial.

A field study is needed to determine whether programmers find

the Optional Checker beneficial.

9.1 Beyond Java
We chose Java because most tools that aim to prevent misuse of

the option type are written for Java. This enables us to compare

our work to other tools. There is an abundance of high-quality

open-source subject programs written in Java.

If our subject programs are not representative, then our results

will not generalize to other Java programs. If Java programs use

10

Verifying the Option Type with Rely–Guarantee Reasoning ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Optional differently than in other programming languages, then

our results will not generalize to other languages.

Our approach — type systems and partial rely–guarantee rea-

soning — is equally applicable to other statically-typed languages.

The syntax would be different. For example, C# and C++ would use

attributes where Java uses annotations. Any language could use

stylized comments.

For a dynamically-typed language like Python, users could use

the Mypy static type checker [99], or the Optional Checker could

be rewritten (retaining the same semantics) as an abstract interpre-

tation rather than a type system.

For any language, specifications must be written for the option

type, analogous to our JDK annotations.

10 RELATEDWORK
10.1 Optional Typing vs. the Optional Type
This paper is about verifying use of the type named Optional, and

not about optional typing. In the literature, “optional typing” most

oftenmeans “pluggable typing” [12] or “soft typing” [16]. (Adding to

potential confusion, our implementation uses pluggable type quali-

fiers, such as @Present.) In that nomenclature, an optional type is

one that may ormay not be written, such as types in TypeScript [11],

or in any dynamically-typed languages such as JavaScript [125],

Python [100], Ruby [21], or Racket [36]. A natural outgrowth of

optional typing is gradual typing [109], in which programmers

write more and more types as development proceeds.

10.2 Inferring Specifications for the Option
Type

Infer [76] is a static analysis tool for Java, C/C++, and Objective-C,

which runs in production at Meta. Infer employs an incremen-

tal static analysis that augments separation logic [105] with bi-

abduction [14], which enables a mechanism by which specifications

are able to be inferred from unannotated source code. This enables

Infer to scale to large programs without the need for programmer

intervention (e.g., additional type annotations). Infer also makes

use of Pulse; a compositional bug-catching analyzer [65] that uses

incorrectness logic [86] to support additional checks beyond those

that are provided by its standard analysis.

Like the Optional Checker, Infer aims to guarantee the absence of

run-time crashes resulting from the access of empty option values.

The OPTIONAL_EMPTY_ACCESS [77] and OPTIONAL_EMPTY_ACCESS_LA-

TENT [78] issue types (provided by its static analysis based on in-

correctness logic) attempt to prevent the access of empty option

values. However, neither of these issue types is implemented for

Java.

Unlike the Optional Checker, Infer does not lint a program to

detect unstylistic use of the option type; programmers must run

another tool in addition to Infer to obtain confidence that their use

of the option type does not violate style guidelines.

Infer is unsound by design [75], which was a deliberate trade-off

in order to maximize the value given to developers over soundness

or completeness concerns. Additionally, Infer is non-deterministic,

rooted in its analysis of mutually-recursive functions and further

exacerbated when executed in parallel [74]. This leads to inconsis-

tencies in defect detection, with defects being discovered in one

run but not another.

10.3 Frameworks
CodeQL is a framework for developing static analysis tools, much

like the Checker Framework. We were unable to find an Optional

analysis written in CodeQL.

Jqual [49] is another framework— a translation of Cqual [37] into

Java — that is implemented as a plug-in for the Eclipse development

environment [31]. It has been extended from type checking to type

inference [50]. We were unable to find an Optional analysis written

for Jqual or Cqual. Jqual lacks important features such as flow-

sensitivity [38] object-sensitivity, generics, method polymorphism,

inner classes, etc.

11 CONCLUSION
This paper investigated the real-world use of the option type, fo-

cusing on the problems of correctness and style.
To address problems of correctness, we developed the Optional

and Non-Empty type systems that cooperate via a novel form of

rely–guarantee reasoning. Together, they verify use of the option

type. We implemented them in the Optional Checker, an open-

source static verifier that is the first verifier for the option type

based on a sound theory. The Optional Checker achieved a precision

of 93%—higher than any other tool.

To address problems of style, we conducted a large-scale, mech-

anized study of the Optional Checker and prior tools on over 1M

lines of open-source code.We also notedwhichwidely-promulgated

style guidelines are most often flouted by Java programmers: those

relating to local creation and consumption of a single Optional

value, and those relating to use of Optional at locations other than

method return types.

DATA AVAILABILITY
To support open science, our implementation, experimental scripts,

annotated programs, and results are available at https://zenodo.org/

doi/10.5281/zenodo.11522277.

ACKNOWLEDGMENTS
We thank Martin Kellogg and the anonymous reviewers for their

comments. This research was supported in part by DARPA contract

FA8750-20-C-0226.

REFERENCES
[1] 2024. Zig Language Reference. https://ziglang.org/documentation/master/

#Optionals

[2] Java Platform Standard Ed. 8. 2014. Optional (Java Platform SE 8). https:

//docs.oracle.com/javase/8/docs/api/java/util/Optional.html. The Java Platform

documentation for the Optional type.

[3] Java Platform Standard Ed. 8. 2014. Stream (Java Platform SE 8). https://docs.

oracle.com/javase/8/docs/api/java/util/stream/Stream.html. The Java Platform

documentation for the Stream type.

[4] The Agda Team. 2024. Language Reference - Agda 2.6.4.3 documentation. https:

//agda.readthedocs.io/en/v2.6.4.3/language/index.html

[5] F.E. Allen and J. Schwartz. 1974. Determining the Data Relationships in a Col-
lection of Procedures. IBM Research Report RC 4989 (22125). IBM T.J. Watson

Research Center.

[6] Frances E. Allen. 1974. Interprocedural Data Flow Analysis. In IFIP 1974: Pro-
ceedings of the 6th IFIP Congress. Stockholm, Sweden, 398–402.

11

https://zenodo.org/doi/10.5281/zenodo.11522277
https://zenodo.org/doi/10.5281/zenodo.11522277
https://ziglang.org/documentation/master/#Optionals
https://ziglang.org/documentation/master/#Optionals
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://agda.readthedocs.io/en/v2.6.4.3/language/index.html
https://agda.readthedocs.io/en/v2.6.4.3/language/index.html

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA James Yoo, Michael D. Ernst, and René Just

[7] Apache Software Foundation. 2023. Maven - Welcome to Apache Maven. https:

//maven.apache.org/index.html. Accessed 2023.

[8] Apple Inc. 2023. Optional. https://developer.apple.com/documentation/swift/

optional. Accessed 2023.

[9] Baeldung. 2020. Guide To Java 8 Optional. https://www.baeldung.com/java-

optional.

[10] Subarno Banerjee, Lazaro Clapp, andManu Sridharan. 2019. NullAway: Practical

type-based null safety for Java. In ESEC/FSE 2019: The ACM 27th joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). Tallinn, Estonia, 740–750.

[11] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding Type-

Script. In Proceedings of the 28th European Conference on ECOOP 2014 — Object-
Oriented Programming - Volume 8586. Springer-Verlag, Berlin, Heidelberg, 257–
281. https://doi.org/10.1007/978-3-662-44202-9_11

[12] Gilad Bracha. 2004. Pluggable type systems. In RDL 2004: Workshop on Revival
of Dynamic Languages. Vancouver, BC, Canada.

[13] Dan Brotherston, Werner Dietl, and Ondřej Lhoták. 2017. Granullar: Gradual

nullable types for Java. In CC 2017: 26th International Conference on Compiler
Construction. Austin, TX, USA, 87–97.

[14] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. 2009.

Compositional shape analysis by means of bi-abduction. In Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’09).

[15] Noel Rodríguez Calle. 2023. Java Optional and best practices. https:

//refactorizando.com/en/java-optional-and-best-practices/.

[16] Robert Cartwright and Mike Fagan. 1991. Soft Typing. In PLDI ’91: Proceedings
of the SIGPLAN ’91 Conference on Programming Language Design and Implemen-
tation. Toronto, ON, Canada, 278–292.

[17] Brian Chin, ShaneMarkstrum, and ToddMillstein. 2005. Semantic type qualifiers.

In PLDI 2005: Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation. Chicago, IL, USA, 85–95.

[18] Spring Cloud. 2023. resolve. https://github.com/spring-cloud/spring-cloud-

deployer-kubernetes/blob/0b84199d17788e1d05e5f3bab5df91ff0863b1e3/

src/main/java/org/springframework/cloud/deployer/spi/kubernetes/

PredicateRunningPhaseDeploymentStateResolver.java#L48. Accessed

2023.

[19] Stephen Colebourne. 2015. Java SE 8 Optional, a pragmatic approach. https:

//blog.joda.org/2015/08/java-se-8-optional-pragmatic-approach.html.

[20] Stephen Colebourne. 2017. Java SE 8 Best Practices: A personal viewpoint. In

Jfokus Developers Conference. Jfokus, Stokholm, Sweden. https://www.jfokus.

se/jfokus17/preso/Java-SE-8-best-practices.pdf.

[21] Ruby Community. 2024. Ruby Core Reference. (2024). https://ruby-doc.org/3.2.

2/

[22] The Idris Community. 2020. Language Reference - Idris 1.3.3 documentation.
https://docs.idris-lang.org/en/latest/reference/index.html

[23] Picocli Contributors. 2024. Picocli: a mighty tiny command line interface. https://

github.com/remkop/picocli/blob/b03121b07eafaa094f634a09109f77df4b9cb4c0/

picocli-examples/src/main/java/picocli/examples/customhelp/GroupingDemo.

java#L101-L111. Accessed 2024.

[24] Patrick Cousot. 1997. Types as abstract interpretations. In POPL ’97: Proceed-
ings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. Paris, France, 316–331.

[25] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or approximation

of fixpoints. In POPL ’77: Proceedings of the Fourth Annual ACM Symposium on
Principles of Programming Languages. Los Angeles, CA, 238–252.

[26] Evan Czaplicki. 2023. Maybe - core 1.0.5. https://package.elm-lang.org/packages/

elm/core/latest/Maybe. Accessed 2023.

[27] Dataflow framework 2023. A Dataflow Framework for Java. https://

checkerframework.org/manual/checker-framework-dataflow-manual.pdf. Ac-

cessed 2023.

[28] Jodd Developers. 2023. StringUtil - Jodd Util. https://util.jodd.org/utilitites/

stringutil. Accessed 2023.

[29] Pandoc Developers. 2023. Pandoc: The universal markup

converter. https://github.com/felixonmars/pandoc/blob/

0134b6332323f3230fb174ebf3bc85c1520228b2/src/Text/Pandoc/CSV.hs#L67C1-

L75C1. Accessed 2023.

[30] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. 1995. Demand-driven

Computation of Interprocedural Data Flow. In Proceedings of the 22nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’95).

[31] Eclipse [n.d.]. Eclipse Project. http://www.eclipse.org/. http://www.eclipse.org/

[32] Michael D. Ernst. 2022. Nothing is better than the Optional type. Really. Nothing

is better. Java Magazine (Dec. 2022).
[33] Michael D. Ernst. 2024. plume-util. https://github.com/plume-lib/plume-util.

Accessed 2024.

[34] Inc. Facebook. 2019. Infer : Eradicate. https://fbinfer.com/docs/checker-

eradicate/.

[35] FasterXML, LLC. 2020. Jackson Project Home @github. https://github.com/

FasterXML/jackson.

[36] Matthew Flatt and PLT. 2024. The Racket Reference (8.13 ed.). https://docs.racket-
lang.org/reference/

[37] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A theory of

type qualifiers. In PLDI ’99: Proceedings of the ACM SIGPLAN ’99 Conference on
Programming Language Design and Implementation. Atlanta, GA, USA, 192–203.
https://doi.org/10.1145/301618.301665

[38] Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken. 2006. Flow-

insensitive type qualifiers. ACM TOPLAS 28, 6 (Nov. 2006), 1035–1087.
[39] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-sensitive type

qualifiers. In PLDI 2002: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation. Berlin, Germany, 1–12.

[40] fvarrui. 2023. fvarrui/JavaPackager. https://github.com/fvarrui/JavaPackager.

Accessed 2023.

[41] Google. 2018. Error Prone. https://errorprone.info/.

[42] Google. 2023. Bug Patterns. https://errorprone.info/bugpatterns.

[43] Inc. Google. 2023. Error Prone Bug Patterns. https://errorprone.info/bugpattern.

Accessed 2023.

[44] Inc. Google. 2023. OptionalNotPresent. https://errorprone.info/bugpattern/

OptionalNotPresent. Accessed 2023.

[45] Google Corporation. 2015. Using and avoiding null. https://github.com/google/

guava/wiki/UsingAndAvoidingNullExplained.

[46] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith,

and Gavin Bierman. 2023. Java SE Specifications. https://docs.oracle.com/javase/

specs/jls/se21/jls21.pdf. , 789-819 pages. Accessed 2023.

[47] W. Brian Gourlie. 2015. Java 8’s new Optional type is worthless. https://medium.

com/@bgourlie/java-8-s-new-optional-type-is-worthless-448a00fa672d.

[48] Gradle Inc. 2023. Gradle. https://gradle.org. Accessed 2023.

[49] David Greenfieldboyce and Jeffrey S. Foster. 2005. Type qualifiers for Java.

http://www.cs.umd.edu/Grad/scholarlypapers/papers/greenfiledboyce.pdf.

[50] David Greenfieldboyce and Jeffrey S. Foster. 2007. Type qualifier inference for

Java. In OOPSLA 2007, Object-Oriented Programming Systems, Languages, and
Applications. Montreal, Canada, 321–336.

[51] David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In OOPSLA
Companion: Companion to Object-Oriented Programming Systems, Languages,
and Applications. Vancouver, BC, Canada, 132–136.

[52] Sonatype Inc. 2024. Maven Central: com.google.code.findbugs. https://central.

sonatype.com/namespace/com.google.code.findbugs. Accessed 2024-08-11.

[53] Sonatype Inc. 2024. Maven Central: error_prone_annotations.

https://central.sonatype.com/artifact/com.google.errorprone/error_prone_

annotations/versions. Accessed 2024-08-11.

[54] INRIA 2023. Standard Library | The Coq Proof Assistant. https://coq.inria.fr/

doc/V8.17.1/stdlib/Coq.Init.Datatypes.html#option. Accessed 2023.

[55] ISO. 2012. ISO/IEC 14882:2011 Information technology — Programming languages
— C++. International Organization for Standardization.

[56] Java Developer Central. 2019. A Complete Guide to Java Optional. https:

//javadevcentral.com/a-complete-guide-to-java-optional.

[57] JetBrains. 2020. List of Java inspections. https://www.jetbrains.com/help/idea/

2020.1/list-of-java-inspections.html.

[58] JetBrains. 2023. IntelliJ IDEA - the leading Java and Kotlin IDE. https://www.

jetbrains.com/idea/. Accessed 2023.

[59] Cliff B. Jones. 1983. Tentative steps toward a development method for interfering

programs. 5, 4 (Oct. 1983), 596–619.

[60] John B. Kam and Jeffrey D. Ullman. 1976. Global data flow analysis and iterative

algorithms. JACM 23, 1 (Jan. 1976), 158–171.

[61] Martin Kellogg, Manli Ran, Manu Sridharan, Martin Schäf, and Michael D. Ernst.

2020. Verifying Object Construction. In ICSE 2020, Proceedings of the 42nd
International Conference on Software Engineering. Seoul, Korea, 1447–1458.

[62] Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst. 2020. Con-

tinuous compliance. In ASE 2020: Proceedings of the 35th Annual International
Conference on Automated Software Engineering. Melbourne, Australia, 511–523.

[63] Semyon Kirekov. 2020. Java Optional is not so obvious. https://levelup.

gitconnected.com/java-optional-is-not-so-obvious-263d9559dd41.

[64] LAMP/EPFL. 2023. Option. https://dotty.epfl.ch/api/scala/Option.html. Accessed

2023.

[65] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and

Peter W. O’Hearn. 2022. Finding real bugs in big programs with incorrectness

logic. Proc. ACM Program. Lang. (2022).
[66] Anghel Leonard. 2018. 26 Reasons Why Using Optional Correctly Is Not Op-

tional. Dzone.com (Nov. 2018).

[67] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,

KC Sivaramakrishnan, and Jérôme Vouillon. 2023. OCaml library: Option.

https://v2.ocaml.org/api/type_Option.html. Accessed 2023.

[68] Przemyslaw Magda. 2017. Optional Anti-Patterns. Dzone.com (July 2017).

https://dzone.com/articles/optional-anti-patterns.

[69] SpotBugs Maintainers. 2024. Bug descriptions – spotbugs 4.8.6 documentation.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-

12

https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://developer.apple.com/documentation/swift/optional
https://developer.apple.com/documentation/swift/optional
https://www.baeldung.com/java-optional
https://www.baeldung.com/java-optional
https://doi.org/10.1007/978-3-662-44202-9_11
https://refactorizando.com/en/java-optional-and-best-practices/
https://refactorizando.com/en/java-optional-and-best-practices/
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/0b84199d17788e1d05e5f3bab5df91ff0863b1e3/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/PredicateRunningPhaseDeploymentStateResolver.java#L48
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/0b84199d17788e1d05e5f3bab5df91ff0863b1e3/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/PredicateRunningPhaseDeploymentStateResolver.java#L48
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/0b84199d17788e1d05e5f3bab5df91ff0863b1e3/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/PredicateRunningPhaseDeploymentStateResolver.java#L48
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/0b84199d17788e1d05e5f3bab5df91ff0863b1e3/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/PredicateRunningPhaseDeploymentStateResolver.java#L48
https://blog.joda.org/2015/08/java-se-8-optional-pragmatic-approach.html
https://blog.joda.org/2015/08/java-se-8-optional-pragmatic-approach.html
https://www.jfokus.se/jfokus17/preso/Java-SE-8-best-practices.pdf
https://www.jfokus.se/jfokus17/preso/Java-SE-8-best-practices.pdf
https://ruby-doc.org/3.2.2/
https://ruby-doc.org/3.2.2/
https://docs.idris-lang.org/en/latest/reference/index.html
https://github.com/remkop/picocli/blob/b03121b07eafaa094f634a09109f77df4b9cb4c0/picocli-examples/src/main/java/picocli/examples/customhelp/GroupingDemo.java#L101-L111
https://github.com/remkop/picocli/blob/b03121b07eafaa094f634a09109f77df4b9cb4c0/picocli-examples/src/main/java/picocli/examples/customhelp/GroupingDemo.java#L101-L111
https://github.com/remkop/picocli/blob/b03121b07eafaa094f634a09109f77df4b9cb4c0/picocli-examples/src/main/java/picocli/examples/customhelp/GroupingDemo.java#L101-L111
https://github.com/remkop/picocli/blob/b03121b07eafaa094f634a09109f77df4b9cb4c0/picocli-examples/src/main/java/picocli/examples/customhelp/GroupingDemo.java#L101-L111
https://package.elm-lang.org/packages/elm/core/latest/Maybe
https://package.elm-lang.org/packages/elm/core/latest/Maybe
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://util.jodd.org/utilitites/stringutil
https://util.jodd.org/utilitites/stringutil
https://github.com/felixonmars/pandoc/blob/0134b6332323f3230fb174ebf3bc85c1520228b2/src/Text/Pandoc/CSV.hs#L67C1-L75C1
https://github.com/felixonmars/pandoc/blob/0134b6332323f3230fb174ebf3bc85c1520228b2/src/Text/Pandoc/CSV.hs#L67C1-L75C1
https://github.com/felixonmars/pandoc/blob/0134b6332323f3230fb174ebf3bc85c1520228b2/src/Text/Pandoc/CSV.hs#L67C1-L75C1
http://www.eclipse.org/
http://www.eclipse.org/
https://github.com/plume-lib/plume-util
https://fbinfer.com/docs/checker-eradicate/
https://fbinfer.com/docs/checker-eradicate/
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://docs.racket-lang.org/reference/
https://docs.racket-lang.org/reference/
https://doi.org/10.1145/301618.301665
https://github.com/fvarrui/JavaPackager
https://errorprone.info/
https://errorprone.info/bugpatterns
https://errorprone.info/bugpattern
https://errorprone.info/bugpattern/OptionalNotPresent
https://errorprone.info/bugpattern/OptionalNotPresent
https://github.com/google/guava/wiki/UsingAndAvoidingNullExplained
https://github.com/google/guava/wiki/UsingAndAvoidingNullExplained
https://docs.oracle.com/javase/specs/jls/se21/jls21.pdf
https://docs.oracle.com/javase/specs/jls/se21/jls21.pdf
https://medium.com/@bgourlie/java-8-s-new-optional-type-is-worthless-448a00fa672d
https://medium.com/@bgourlie/java-8-s-new-optional-type-is-worthless-448a00fa672d
https://gradle.org
http://www.cs.umd.edu/Grad/scholarlypapers/papers/greenfiledboyce.pdf
https://central.sonatype.com/namespace/com.google.code.findbugs
https://central.sonatype.com/namespace/com.google.code.findbugs
https://central.sonatype.com/artifact/com.google.errorprone/error_prone_annotations/versions
https://central.sonatype.com/artifact/com.google.errorprone/error_prone_annotations/versions
https://coq.inria.fr/doc/V8.17.1/stdlib/Coq.Init.Datatypes.html#option
https://coq.inria.fr/doc/V8.17.1/stdlib/Coq.Init.Datatypes.html#option
https://javadevcentral.com/a-complete-guide-to-java-optional
https://javadevcentral.com/a-complete-guide-to-java-optional
https://www.jetbrains.com/help/idea/2020.1/list-of-java-inspections.html
https://www.jetbrains.com/help/idea/2020.1/list-of-java-inspections.html
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://levelup.gitconnected.com/java-optional-is-not-so-obvious-263d9559dd41
https://levelup.gitconnected.com/java-optional-is-not-so-obvious-263d9559dd41
https://dotty.epfl.ch/api/scala/Option.html
https://v2.ocaml.org/api/type_Option.html
https://dzone.com/articles/optional-anti-patterns
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-with-optional-return-type-returns-explicit-null-np-optional-return-null
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-with-optional-return-type-returns-explicit-null-np-optional-return-null

Verifying the Option Type with Rely–Guarantee Reasoning ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

with-optional-return-type-returns-explicit-null-np-optional-return-null.

Documentation for SpotBugs’ rule to prevent null returns for option values.

[70] Stuart Marks. 2016. Optional: The mother of all bikesheds. In vJUG24. https:
//stuartmarks.wordpress.com/2016/09/27/vjug24-session-on-optional/.

[71] Stuart Marks. 2017. Optional - The Mother of All Bikesheds. https://www.

youtube.com/watch?v=Ej0sss6cq14. Accessed 2024-08-20.

[72] Stuart Marks and Brian Goetz. 2015. API Design with Java 8 Lambda and

Streams. In JavaOne 2015. Oracle Corporation, San Francisco, CA, USA.

[73] Mervyn McCreight. 2019. A look at the Optional datatype in Java and some

anti-patterns when using it. freeCodeCamp https://www.freecodecamp.org/

news/optional-in-java-and-anti-patterns-using-it-7d87038362ba/.

[74] Meta. 2024. facebook/infer: Issue #1110. https://github.com/facebook/infer/

issues/1110. Accessed 2024-08-18.

[75] Meta. 2024. facebook/infer: Issue #427. https://github.com/facebook/infer/

issues/427#issuecomment-240687267. Accessed 2024-08-18.

[76] Meta. 2024. Infer. https://fbinfer.com. Accessed 2024-08-18.

[77] Meta. 2024. Infer: OPTIONAL_EMPTY_ACCESS. https://fbinfer.com/docs/all-

issue-types/#optional_empty_access. Accessed 2024-08-18.

[78] Meta. 2024. Infer: OPTIONAL_EMPTY_ACCESS_LATENT. https://fbinfer.com/

docs/all-issue-types/#optional_empty_access. Accessed 2024-08-18.

[79] Microsoft Corp. 2023. Options - F# | Microsoft Learn. https://learn.microsoft.

com/en-us/dotnet/fsharp/language-reference/options. Accessed 2023.

[80] Robin Milner, Mads Tofte, and Robert Harper. 1990. The Definition of Standard
ML.

[81] Hopewell Mutanda. 2019. Java 8 Optional Usage and Best Practices. Dzone.com
(July 2019). https://dzone.com/articles/java-8-optional-usage-and-best-

practices.

[82] Netflix. 2023. netflix/hollow. https://github.com/Netflix/hollow. Accessed 2023.

[83] Netflix. 2023. versionDetected. https://github.com/Netflix/hollow/blob/

5ee483170e2902dc694a47ceeb4dc7a4a901d284/hollow/src/main/java/com/

netflix/hollow/api/consumer/metrics/AbstractRefreshMetricsListener.java#

L82. Accessed 2023.

[84] Nim Developers. 2024. std/options. https://nim-lang.org/docs/options.html

[85] nLab authors. 2023. eta-conversion. https://ncatlab.org/nlab/show/eta-

conversion. Revision 14.

[86] Peter W. O’Hearn. 2019. Incorrectness logic. Proc. ACM Program. Lang. (2019).
[87] Daniel Olszewski. 2018. Java 8 Optional best practices and wrong usage. http:

//dolszewski.com/java/java-8-optional-use-cases/.

[88] Oracle Corporation. 2018. Class Optional<T>. https://docs.oracle.com/en/java/

javase/11/docs/api/java.base/java/util/Optional.html.

[89] Indrek Ots. 2019. Misusing Java’s Optional type. https://blog.indrek.io/articles/

misusing-java-optional/.

[90] Jens Palsberg. 2001. Type-based analysis and applications. In PASTE 2001:
ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE’01). Snowbird, Utah, USA, 20–27.

[91] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and

Michael D. Ernst. 2008. Practical pluggable types for Java. In ISSTA 2008, Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis.
Seattle, WA, USA, 201–212. https://doi.org/10.1145/1390630.1390656

[92] Nicolai Parlog. 2022. Where to use Optional — Inside Java Newscast #19. https:

//nipafx.dev/inside-java-newscast-19/.

[93] Nicolai Parlog. 2023. The Design of Optional. https://nipafx.dev/design-java-

optional/. Accessed 2023.

[94] PCGen. 2023. PCGen/pcgen. https://github.com/PCGen/pcgen/blob/

4c001b3526e3e5deef49c23750e563c578d4f2ed/code/src/java/pcgen/rules/

persistence/DynamicLoader.java#L97C1-L101C4. Accessed 2023.

[95] Perforce JRebel Labs. 2020. Java 8 Best Practices Cheat Sheet. https://www.

jrebel.com/resources/java-8-best-practices.

[96] Manh Phan. 2019. Best practice for Optional in Java. https://ducmanhphan.

github.io/2019-12-06-Best-practice-for-Optional-in-Java/.

[97] Artem Pianykh, Ilya Zorin, and Dmitry Lyubarskiy. 2022. Retrofitting null-safety

onto Java at Meta. https://engineering.fb.com/2022/11/22/developer-tools/meta-

java-nullsafe/.

[98] Artem Pianykh, Ilya Zorin, and Dmitry Lyubarskiy. 2022. Retrofitting null-safety

onto Java at Meta. https://engineering.fb.com/2022/11/22/developer-tools/meta-

java-nullsafe/. Accessed 2024-08-20.

[99] The Mypy Project. 2014. mypy - Optional Static Typing for Python. https:

//mypy-lang.org. Accessed 2024-08-20.

[100] Python Software Foundation. 2024. The Python Language Reference (Python
3.12.3 ed.). https://docs.python.org/3/reference/index.html

[101] A N M Bazlur Rahman. 2023. Optional in Java: A Swiss Army knife for han-

dling nulls and improving code quality. https://foojay.io/today/author/bazlur-

rahman/.

[102] redis developer. 2023. redis-developer/riot. https://github.com/redis-

developer/riot/blob/e831410a93613059d614c1692877db2faccb9598/core/riot-

core/src/main/java/com/redis/riot/core/convert/IdConverterBuilder.java#L46-

L50. Accessed 2023.

[103] New Relic. 2023. 2023 State of the Java Ecosystem. https://newrelic.com/

resources/report/2023-state-of-the-java-ecosystem#most-used-java-versions.

Accessed 2023.

[104] Thomas Reps. 1994. Solving demand versions of interprocedural analysis prob-

lems. In Compiler Construction. Springer Berlin Heidelberg, 389–403.

[105] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures.

In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. 55–74.
https://doi.org/10.1109/LICS.2002.1029817

[106] Rust Foundation. 2023. std::option - Rust. https://doc.rust-lang.org/std/option/

index.html. Accessed 2023.

[107] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and

Ciera Jaspan. 2018. Lessons from building static analysis tools at Google. CACM
61, 4 (Mar. 2018), 58–66.

[108] Amazon Web Services. 2023. smithy-lang/smithy. https://github.com/smithy-

lang/smithy/blob/309862e54cd5582b3e3456845cf9e6c9fd873a4d/smithy-

aws-traits/src/main/java/software/amazon/smithy/aws/traits/tagging/

TaggableResourceValidator.java#L125-L128. Accessed 2023.

[109] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages.

In SFP 2006: Workshop on Scheme and Functional Programming (SFP). Portland,
OR, USA, 81–92.

[110] Volodymyr Sobotovych. 2022. Using java.util.Optional everywhere. To be or not

to be? https://wheleph.gitlab.io/posts/2022-07-09-using-optional-everywhere/.

[111] SonarSource S.A. 2020. Java static code analysis: Unique rules to find Bugs,

Vulnerabilities, Security Hotspots, and Code Smells in your Java code. https:

//rules.sonarsource.com/java/.

[112] Sourcegraph. 2023. Sourcegraph Search. https://sourcegraph.com/search. Ac-

cessed 2023.

[113] Eric Spishak, Werner Dietl, and Michael D. Ernst. 2012. A type system for

regular expressions. In FTfJP: 14th Workshop on Formal Techniques for Java-like
Programs. Beijing, China, 20–26.

[114] SpotBugs Community. 2021. Bug descriptions - spotbugs 4.8.2 documentation.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-

with-optional-return-type-returns-explicit-null-np-optional-return-null.

[115] SpotBugs maintainers. [n.d.]. SpotBugs. https://github.com/spotbugs/spotbugs.

SpotBugs source code repository.

[116] F. Spoto. 2010. The Nullness Analyser of Julia. In LPAR 2010: Proceedings of the
16th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning. Dakar, Senegal, 405–424.

[117] JetBrains s.r.o. 2023. IntelliJ IDEA 2023.3 List of Java inspections. https://www.

jetbrains.com/help/idea/list-of-java-inspections.html. Accessed 2023.

[118] Stack Overflow. 2023. Stack Overflow Developer Survey 2023. https://survey.

stackoverflow.co/2023/#most-popular-technologies-new-collab-tools. Ac-

cessed 2023.

[119] Mohamed Taman. 2020. 12 recipes for using the Optional class as it’s meant to

be used. Java Magazine (June 2020). https://blogs.oracle.com/javamagazine/

post/12-recipes-for-using-the-optional-class-as-its-meant-to-be-used.

[120] Mohamed Taman. 2020. The Java Optional class: 11 more recipes

for preventing null pointer exceptions. Java Magazine (July 2020).

https://blogs.oracle.com/javamagazine/post/12-recipes-for-using-the-

optional-class-as-its-meant-to-be-used.

[121] The Bored Dev. 2020. Please stop the Java Optional mess! (How To Use Optional

in Java). https://theboreddev.com/please-stop-the-java-optional-mess/.

[122] Emanuel Trandafir. 2022. 4 reasons why you should use Java Optional — or

not? https://medium.com/javarevisited/4-reasons-why-you-should-use-java-

optional-or-not-4e44d51a9645.

[123] VMware Tanzu. 2023. Spring Home. https://spring.io/.

[124] Ben Weidig. 2019. Better null-handling with Java Optionals. https://belief-

driven-design.com/better-null-handling-with-java-optionals-da974529bae/.

[125] Allen Wirfs-Brock and Brendan Eich. 2020. JavaScript: The First 20 Years.

Proc. ACM Program. Lang. 4, HOPL, Article 77 (jun 2020), 189 pages. https:

//doi.org/10.1145/3386327

[126] Chad Woolf, Byron Cook, and Tom McAndrew. 2019. AWS re: Inforce 2019:

Automate Compliance Verification on AWS Using Provable Security (GRC301).

https://www.youtube.com/watch?v=BbXK_-b3DTk. Accessed 2024-08-20.

[127] Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type

Soundness. Information and Computation 115 (1994), 38–94.

[128] James Yoo. 2023. Avoid possibility of crash for GeneralTab.java and Plug-

inManagerController.java. https://github.com/chunky-dev/chunky/pull/1678.

Accessed 2024-09-07.

[129] James Yoo. 2023. Fix for possible crash in SceneChooserController.java. https:

//github.com/chunky-dev/chunky/pull/1677. Accessed 2024-09-07.

[130] James Yoo. 2023. Prevent run-time exception when image mounting fails.

https://github.com/fvarrui/JavaPackager/pull/379. Accessed 2024-09-01.

[131] James Yoo. 2023. Prevent run-time exception when region update occurs. https:

//github.com/PCGen/pcgen/pull/7009. Accessed 2024-09-07.

[132] James Yoo. 2023. Update FileUtils#findFirstFile to conform to specifications.

https://github.com/fvarrui/JavaPackager/pull/376. Accessed 2024-09-01.

13

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-with-optional-return-type-returns-explicit-null-np-optional-return-null
https://stuartmarks.wordpress.com/2016/09/27/vjug24-session-on-optional/
https://stuartmarks.wordpress.com/2016/09/27/vjug24-session-on-optional/
https://www.youtube.com/watch?v=Ej0sss6cq14
https://www.youtube.com/watch?v=Ej0sss6cq14
https://www.freecodecamp.org/news/optional-in-java-and-anti-patterns-using-it-7d87038362ba/
https://www.freecodecamp.org/news/optional-in-java-and-anti-patterns-using-it-7d87038362ba/
https://github.com/facebook/infer/issues/1110
https://github.com/facebook/infer/issues/1110
https://github.com/facebook/infer/issues/427#issuecomment-240687267
https://github.com/facebook/infer/issues/427#issuecomment-240687267
https://fbinfer.com
https://fbinfer.com/docs/all-issue-types/#optional_empty_access
https://fbinfer.com/docs/all-issue-types/#optional_empty_access
https://fbinfer.com/docs/all-issue-types/#optional_empty_access
https://fbinfer.com/docs/all-issue-types/#optional_empty_access
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://dzone.com/articles/java-8-optional-usage-and-best-practices
https://dzone.com/articles/java-8-optional-usage-and-best-practices
https://github.com/Netflix/hollow
https://github.com/Netflix/hollow/blob/5ee483170e2902dc694a47ceeb4dc7a4a901d284/hollow/src/main/java/com/netflix/hollow/api/consumer/metrics/AbstractRefreshMetricsListener.java#L82
https://github.com/Netflix/hollow/blob/5ee483170e2902dc694a47ceeb4dc7a4a901d284/hollow/src/main/java/com/netflix/hollow/api/consumer/metrics/AbstractRefreshMetricsListener.java#L82
https://github.com/Netflix/hollow/blob/5ee483170e2902dc694a47ceeb4dc7a4a901d284/hollow/src/main/java/com/netflix/hollow/api/consumer/metrics/AbstractRefreshMetricsListener.java#L82
https://github.com/Netflix/hollow/blob/5ee483170e2902dc694a47ceeb4dc7a4a901d284/hollow/src/main/java/com/netflix/hollow/api/consumer/metrics/AbstractRefreshMetricsListener.java#L82
https://nim-lang.org/docs/options.html
https://ncatlab.org/nlab/show/eta-conversion
https://ncatlab.org/nlab/show/eta-conversion
https://ncatlab.org/nlab/revision/eta-conversion/14
http://dolszewski.com/java/java-8-optional-use-cases/
http://dolszewski.com/java/java-8-optional-use-cases/
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Optional.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Optional.html
https://blog.indrek.io/articles/misusing-java-optional/
https://blog.indrek.io/articles/misusing-java-optional/
https://doi.org/10.1145/1390630.1390656
https://nipafx.dev/inside-java-newscast-19/
https://nipafx.dev/inside-java-newscast-19/
https://nipafx.dev/design-java-optional/
https://nipafx.dev/design-java-optional/
https://github.com/PCGen/pcgen/blob/4c001b3526e3e5deef49c23750e563c578d4f2ed/code/src/java/pcgen/rules/persistence/DynamicLoader.java#L97C1-L101C4
https://github.com/PCGen/pcgen/blob/4c001b3526e3e5deef49c23750e563c578d4f2ed/code/src/java/pcgen/rules/persistence/DynamicLoader.java#L97C1-L101C4
https://github.com/PCGen/pcgen/blob/4c001b3526e3e5deef49c23750e563c578d4f2ed/code/src/java/pcgen/rules/persistence/DynamicLoader.java#L97C1-L101C4
https://www.jrebel.com/resources/java-8-best-practices
https://www.jrebel.com/resources/java-8-best-practices
https://ducmanhphan.github.io/2019-12-06-Best-practice-for-Optional-in-Java/
https://ducmanhphan.github.io/2019-12-06-Best-practice-for-Optional-in-Java/
https://engineering.fb.com/2022/11/22/developer-tools/meta-java-nullsafe/
https://engineering.fb.com/2022/11/22/developer-tools/meta-java-nullsafe/
https://engineering.fb.com/2022/11/22/developer-tools/meta-java-nullsafe/
https://engineering.fb.com/2022/11/22/developer-tools/meta-java-nullsafe/
https://mypy-lang.org
https://mypy-lang.org
https://docs.python.org/3/reference/index.html
https://foojay.io/today/author/bazlur-rahman/
https://foojay.io/today/author/bazlur-rahman/
https://github.com/redis-developer/riot/blob/e831410a93613059d614c1692877db2faccb9598/core/riot-core/src/main/java/com/redis/riot/core/convert/IdConverterBuilder.java#L46-L50
https://github.com/redis-developer/riot/blob/e831410a93613059d614c1692877db2faccb9598/core/riot-core/src/main/java/com/redis/riot/core/convert/IdConverterBuilder.java#L46-L50
https://github.com/redis-developer/riot/blob/e831410a93613059d614c1692877db2faccb9598/core/riot-core/src/main/java/com/redis/riot/core/convert/IdConverterBuilder.java#L46-L50
https://github.com/redis-developer/riot/blob/e831410a93613059d614c1692877db2faccb9598/core/riot-core/src/main/java/com/redis/riot/core/convert/IdConverterBuilder.java#L46-L50
https://newrelic.com/resources/report/2023-state-of-the-java-ecosystem#most-used-java-versions
https://newrelic.com/resources/report/2023-state-of-the-java-ecosystem#most-used-java-versions
https://doi.org/10.1109/LICS.2002.1029817
https://doc.rust-lang.org/std/option/index.html
https://doc.rust-lang.org/std/option/index.html
https://github.com/smithy-lang/smithy/blob/309862e54cd5582b3e3456845cf9e6c9fd873a4d/smithy-aws-traits/src/main/java/software/amazon/smithy/aws/traits/tagging/TaggableResourceValidator.java#L125-L128
https://github.com/smithy-lang/smithy/blob/309862e54cd5582b3e3456845cf9e6c9fd873a4d/smithy-aws-traits/src/main/java/software/amazon/smithy/aws/traits/tagging/TaggableResourceValidator.java#L125-L128
https://github.com/smithy-lang/smithy/blob/309862e54cd5582b3e3456845cf9e6c9fd873a4d/smithy-aws-traits/src/main/java/software/amazon/smithy/aws/traits/tagging/TaggableResourceValidator.java#L125-L128
https://github.com/smithy-lang/smithy/blob/309862e54cd5582b3e3456845cf9e6c9fd873a4d/smithy-aws-traits/src/main/java/software/amazon/smithy/aws/traits/tagging/TaggableResourceValidator.java#L125-L128
https://wheleph.gitlab.io/posts/2022-07-09-using-optional-everywhere/
https://rules.sonarsource.com/java/
https://rules.sonarsource.com/java/
https://sourcegraph.com/search
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-with-optional-return-type-returns-explicit-null-np-optional-return-null
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-with-optional-return-type-returns-explicit-null-np-optional-return-null
https://github.com/spotbugs/spotbugs
https://www.jetbrains.com/help/idea/list-of-java-inspections.html
https://www.jetbrains.com/help/idea/list-of-java-inspections.html
https://survey.stackoverflow.co/2023/#most-popular-technologies-new-collab-tools
https://survey.stackoverflow.co/2023/#most-popular-technologies-new-collab-tools
https://blogs.oracle.com/javamagazine/post/12-recipes-for-using-the-optional-class-as-its-meant-to-be-used
https://blogs.oracle.com/javamagazine/post/12-recipes-for-using-the-optional-class-as-its-meant-to-be-used
https://blogs.oracle.com/javamagazine/post/12-recipes-for-using-the-optional-class-as-its-meant-to-be-used
https://blogs.oracle.com/javamagazine/post/12-recipes-for-using-the-optional-class-as-its-meant-to-be-used
https://theboreddev.com/please-stop-the-java-optional-mess/
https://medium.com/javarevisited/4-reasons-why-you-should-use-java-optional-or-not-4e44d51a9645
https://medium.com/javarevisited/4-reasons-why-you-should-use-java-optional-or-not-4e44d51a9645
https://spring.io/
https://belief-driven-design.com/better-null-handling-with-java-optionals-da974529bae/
https://belief-driven-design.com/better-null-handling-with-java-optionals-da974529bae/
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://www.youtube.com/watch?v=BbXK_-b3DTk
https://github.com/chunky-dev/chunky/pull/1678
https://github.com/chunky-dev/chunky/pull/1677
https://github.com/chunky-dev/chunky/pull/1677
https://github.com/fvarrui/JavaPackager/pull/379
https://github.com/PCGen/pcgen/pull/7009
https://github.com/PCGen/pcgen/pull/7009
https://github.com/fvarrui/JavaPackager/pull/376

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA James Yoo, Michael D. Ernst, and René Just

[133] James Yoo. 2024. Avoid NoSuchElementException in Math-

Plume.modulusStrictInt. https://github.com/plume-lib/plume-util/pull/371.

Accessed 2024-09-07.

[134] James Yoo. 2024. Avoid NoSuchElementException in Math-

Plume.modulusStrictLong. https://github.com/plume-lib/plume-util/pull/368.

Accessed 2024-09-07.

14

https://github.com/plume-lib/plume-util/pull/371
https://github.com/plume-lib/plume-util/pull/368

	Abstract
	1 introduction
	2 Background
	2.1 The Java Optional Type
	2.2 Optional vs. null
	2.3 Pluggable Type-Checking in Java

	3 Good Style with the Optional Type
	3.1 Specialized Operations for Option Types
	3.2 Marks' Style Rules

	4 Verifying Correct Use of Optional
	4.1 A Type System for Option Values
	4.2 A Type System for Non-Empty Containers
	4.3 Partial Rely–Guarantee Reasoning

	5 Implementation
	5.1 Enforcing Correctness
	5.2 Enforcing Good Style

	6 Evaluation: Subject Programs
	7 Evaluation: Correctness
	7.1 Methodology
	7.2 Real-World Errors
	7.3 False Positives
	7.4 Comparison With Other Tools

	8 Evaluation: Style
	8.1 Methodology
	8.2 Results
	8.3 Optional Fields and Parameters

	9 Limitations and Threats to Validity
	9.1 Beyond Java

	10 Related Work
	10.1 Optional Typing vs. the Optional Type
	10.2 Inferring Specifications for the Option Type
	10.3 Frameworks

	11 Conclusion
	References

