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Abstract
Formally verifying a program requires significant skill not
only because of complex interactions between program sub-
components, but also because of deficiencies in current ver-
ification interfaces. These skill barriers make verification
economically unattractive by preventing the use of less-
skilled (less-expensive) workers and distributed workflows
(i.e., crowdsourcing).

This paper presents VeriWeb, a web-based IDE for verifi-
cation that decomposes the task of writing verifiable spec-
ifications into manageable subproblems. To overcome the
information loss caused by task decomposition, and to re-
duce the skill required to verify a program, VeriWeb incor-
porates several innovative user interface features: drag and
drop condition construction, concrete counterexamples, and
specification inlining.

To evaluate VeriWeb, we performed three experiments.
First, we show that VeriWeb lowers the time and monetary
cost of verification by performing a comparative study of
VeriWeb and a traditional tool using 14 paid subjects con-
tracted hourly from Exhedra Solution’s vWorker online mar-
ketplace. Second, we demonstrate the dearth and insuffi-
ciency of current ad-hoc labor marketplaces for verification
by recruiting workers from Amazon’s Mechanical Turk to
perform verification with VeriWeb. Finally, we characterize
the minimal communication overhead incurred when Veri-
Web is used collaboratively by observing two pairs of de-
velopers each use the tool simultaneously to verify a single
program.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

Keywords program verification, human factors, crowd-
sourcing
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1. Introduction
Ideally, in a well-modularized program, it would be possi-
ble to perform software engineering tasks on each module
locally. Nonetheless, some software engineering tasks re-
quire, or benefit from, a global view. For example, it is diffi-
cult to decompose the task of writing method contracts (for-
mal specifications) into independent subproblems because a
change to one method contract may require changes to others
as a result of interdependencies between program elements
— a method’s contract may depend on the contracts for other
methods it calls. Likewise, the task of writing an application
or object specification would likely benefit from considering
multiple object and methods specifications simultaneously.
Attempting to decompose tasks like these results in infor-
mation (context) loss, the severity of which depends on the
quality of the program’s design and documentation; incom-
plete information leads to confusion, mistakes, and wasted or
duplicated effort. For writing and verifying formal specifica-
tions, the difficulty is exacerbated by the complexity and in-
accessibility of current verification interfaces. Coupled with
a high cost of labor (the average developer in the United
States earns $90,170 per year [35]), the result is that the time
and money costs of verification outweigh the benefits for the
general software development community.

Tools and techniques that enable less-skilled workers to
perform verification would make formally establishing cor-
rectness more economically attractive. To the extent that
such tools decompose the problem, the tools would further
improve the economics of verification by enabling parallel
and distributed workflows (e.g., crowdsourcing to workers
in a global marketplace).

VeriWeb Verification Interface This paper presents Veri-
Web, a tool for creating verifiable Java Modeling Language
(JML) [6, 22] specifications for existing programs by lever-
aging the “crowd,” a (potentially distributed) set of workers
solving problems via web client. Figure 1 shows a partial
example of a method contract, expressed in JML.

VeriWeb decomposes the larger task of writing a verifi-
able program specification into smaller subtasks: creating
one method’s preconditions and postconditions. To compen-
sate for the effects of decomposition and to lower the tool’s
skill requirement, VeriWeb includes several novel interface



c l a s s Queue {
i n t /∗ @ s p e c p u b l i c ∗ / c u r r e n t S i z e ;
/∗ @ i n v a r i a n t c u r r e n t S i z e >= 0; ∗ /
. . .

/∗@ r e q u i r e s x != n u l l ;
@ e n s u r e s c u r r e n t S i z e == \ o l d ( c u r r e n t S i z e ) + 1;
@ e x s u r e s ( R u n t i m e E x c e p t i o n ) . . . ∗ /

p u b l i c vo id enqueue ( O b j e c t x )
throws Run t imeExcep t ion {
. . .

}
}

Figure 1. An example partial Java Modeling Language
(JML) contract for the enqueue method of a queue. “Re-
quires” clauses state properties that must hold when the
method is called. “Ensures” clauses state properties that
must hold when the method exits normally. “Exsures”
clauses state properties that must hold when the method
throws the declared exception. “Invariants” state properties
that must hold whenever an object is visible, e.g., after a
constructor or a public method call. A tool such as ESC/-
Java2 [9] can verify that the program meets the specification,
and that no unexpected exceptions (e.g., NullPointerExcep-
tion) will be thrown.

features: drag and drop contract construction, concrete coun-
terexamples, contract inlining, and context clues. VeriWeb
additionally includes contract suggestions inferred from dy-
namic traces. VeriWeb can be viewed as an IDE for verifi-
cation, where the combined effect of the features is greater
than the sum of the individual parts.

By enabling the use of less-skilled labor for verifying an
existing program, VeriWeb admits the following workflow
for skilled feature developers:

1. The skilled developer writes a program or feature.

2. The skilled developer (optionally) writes a partial JML
specification of the program or feature.

3. The skilled developer submits the program and partial
specification to VeriWeb, which utilizes the “crowd” to
complete a verifiable JML specification.

Extended Static Checking Internally, VeriWeb uses ESC/-
Java2 [9] to perform Extended Static Checking [4, 7, 13, 14,
19, 24] of the program against the generated specification.
Extended Static Checking is a verification approach that can
be viewed as a front-end or user interface to an automated
theorem prover [11, 12, 27]. The user writes a specification
consisting of method preconditions, method postconditions,
and object invariants. (Figure 1 shows a partial example of a
method contract, expressed in the Java Modeling Language
(JML) [6, 22].) The extended static checker converts both
the specification and the program code into logical formu-
las, passes the combined formulas to the theorem prover, and
reports to the user whether or not the program satisfies the
specification. If not (that is, the verification attempt failed),

the user revises the specifications or the code using the feed-
back from the checker, and then tries again.

One example verification task is to prove that a program
will never throw an unexpected null pointer exception, re-
gardless of input. If a public method unconditionally deref-
erences a parameter, then the property is true only if the
method is never called with null as an argument. The user
can express this requirement by writing a method precon-
dition that the parameter cannot be null. ESC/Java2 would
then be able to prove that the method cannot throw an unex-
pected null pointer exception. However, the addition of the
precondition introduces the requirement that the correspond-
ing argument at each call site is non-null. In the end, ESC/-
Java2 verifies that all the user-written contracts are mutually
consistent, that the user-written contracts are consistent with
the code, and that there are no null pointer exceptions. Note
that, while this is partial verification, and not verification of
full functional correctness, any requisite functional proper-
ties (e.g., data value properties) are verified en passant.

VeriWeb Use Case VeriWeb is targeted at the verification
of domain-independent and expert-specified properties in
existing client code. VeriWeb is not targeted at the discovery
of new application-specific properties, verification of full
functional correctness, the verification of library code, or the
development of new programs.

VeriWeb focuses on client code rather than library code.
We have observed that library code use is cross-cutting,
whereas client code is more lightly coupled. Furthermore,
the specifications of library code are complicated, in order to
support general use — consider the C++ Standard Template
Library. By contrast, the specifications for client code are
relatively simpler, and the specifications required to show
the absence of unexpected exceptions in client code are even
simpler. Therefore, there is ample opportunity to reduce the
cost of partial formal verification by focusing on client code.

Since VeriWeb operates by having users solve method
subtasks, the tool is unlikely to uncover complex object in-
variants and global application properties. VeriWeb is better-
suited to verifying language properties (e.g., that the pro-
gram will never deference a null pointer) and localized ap-
plication properties. This use case is aligned with the under-
lying tool ESC/Java2 [9], as well as similar techniques such
as Microsoft’s Code Contracts [8].

Evaluation To measure the time and monetary cost of ver-
ification, we performed a comparative study in which work-
ers from Exhedra Solutions’s vWorker [37] labor market-
place performed verification with ESC/Java2, either through
its Eclipse interface or through VeriWeb. To understand the
potential for using ad-hoc crowdsourced labor for verifica-
tion, we recruited workers from Amazon’s Mechanical Turk
to use VeriWeb. To understand the overhead incurred when
performing verification collaboratively with VeriWeb, we
observed undergraduate students using the tool to collabo-
ratively verify a small program.



Figure 2. VeriWeb client interface showing a “write preconditions” subproblem. Top: information bar linking to instructions,
FAQ, and messages about the problem (Section 2.2.4). Left: the drag and drop interface for writing conditions (Section 2.1.3).
Right Top: ESC/Java2 warning locations are underlined in red in the source code view, and the warnings are shown at the
top right. Lower right: source code view. Javadoc is available for code highlighted in blue. To view the documentation and
warnings, the user simply hovers their mouse over the underlined code. The user has toggled the inline specifications (Section
2.2.3) for method isEmpty.

Contributions This paper makes 3 primary contributions:

1. We present novel verification interface features to address
the challenges of decomposition and a distributed work-
force. VeriWeb, a browser-based tool for program verifi-
cation, incorporates these features.

2. We quantitatively characterize the time and monetary
costs of verification.

3. We identify and describe challenges and threats to valid-
ity that are unique to studying verification in a global and
collaborative setting.

The paper proceeds as follows. Section 2 describes Veri-
Web’s design principles and implementation. Section 3
poses three primary research questions. Section 4 quantifies
the monetary cost of verification when contracting semi-
skilled labor on an hourly basis. Section 5 explores the use
of ad-hoc labor from Amazon’s Mechanical Turk for per-
forming verification. Section 6 characterizes the overhead
incurred when performing collaborative verification with
VeriWeb. Section 7 discusses the results. Finally, Section 8
presents related work, and Section 9 concludes.

2. VeriWeb
We created VeriWeb, a tool for verifying Java programs.
Internally, VeriWeb uses the ESC/Java2 verification tool.1

1 Other verification tools exist, such as Microsoft’s Code Contracts [8]. We
originally wanted to use Code Contracts for this research, but ESC/Java2
can statically reason about array properties that Code Contracts cannot.

VeriWeb decomposes the task of verification into subprob-
lems that users solve in a web interface (Figure 2). A
live demo is available at the VeriWeb project page http:
//www.cs.washington.edu/homes/tws/veriweb/. We
designed VeriWeb around two major principles: active guid-
ance (Section 2.1) and explanations in context (Section 2.2).

2.1 Active Guidance
Active guidance — encouraging users to reason in a certain
way, or restricting their set of actions — is aimed at aid-
ing reasoning and preventing time-wasting mistakes. Veri-
Web guides users between subproblems by choosing the next
subproblem for users (Section 2.1.1) and within a subprob-
lem by making suggestions (Section 2.1.2) and preventing
syntax errors (Section 2.1.3).

2.1.1 Guided Decomposition
VeriWeb guides the user through the verification task by
asking the user to solve 4 types of subproblems:

1. Select method preconditions from a list

2. Write method preconditions

3. Write method postconditions (that are true when the
method exits normally)

4. Write method exceptional postconditions

ESC/Java2 has its own disadvantages: it only fully supports the Java 1.4
specification (Java 5 was released in 2004), and it can be unsound.



VeriWeb offers the selection and writing of preconditions
as separate problems not just because this focuses the user
on the most relevant task at any moment, but also because
they require different modes of reasoning. Selecting precon-
ditions from a list of possibilities suggested by VeriWeb re-
quires forward reasoning, to determine whether an error will
occur. Writing preconditions is a more difficult task that re-
quires backward reasoning from an error to determine the
weakest precondition that will prevent it.

Active Subproblems A subproblem is active if it requires
work from a user. There are three reasons that a subproblem
may be active:

1. The subproblem is the cause of an ESC/Java2 warning. If
there is a warning within a method body, the precondition
set is considered to be the cause.

2. A user has identified the subproblem as being the cause of
an error elsewhere. For example, an unverifiable postcon-
dition might be caused by a too-weak precondition or by
a too-weak postcondition on a callee method. Likewise
for ESC/Java2 warnings occurring within the method
body.

3. Every postcondition problem is initially marked as active.
Users can often quickly write a few obvious postcondi-
tions (e.g., about the return value for a boolean method),
and we found that doing so can substantially speed the
verification process.

As long as any subproblems are active, the user is presented
with an active subproblem to solve. When no subproblem is
active, the program has been verified.

Subproblem dependencies VeriWeb computes dependen-
cies among subproblems and stores these as a directed de-
pendence graph that exhibits the same high-level structure as
the call graph. Subproblem P1 depends on subproblem P2 if
a change in the solution to P2 may invalidate the solution to
P1. This property is independent of whether subproblem P1

has actually been solved yet.
Whenever a user changes the solution to a subproblem,

VeriWeb activates some or all of the subproblems that de-
pend on it (Figure 3):

• If a precondition is strengthened, VeriWeb activates the
precondition subproblems for the method’s callers.

• If a precondition is weakened, VeriWeb activates the
postcondition subproblems for the method.

• If a postcondition is weakened, VeriWeb naively activates
all problems for the method’s callers.

In each of these situations, VeriWeb re-checks each subprob-
lem and only activates subproblems for which an error oc-
curs. If no error occurs, then no additional work is required
and VeriWeb does not require the user to re-visit the sub-
problem.

Figure 3. Intra- and intermethod depends-on graph for a
method B that calls a method A. When a contract clause is
weakened, subproblems with “weaken” edges leading to the
contract are activated. For example, if the ensures clause for
method A was weakened to \result > 4, both the precon-
dition and postcondition problems for method B would be
activated. When a contract clause is strengthened, subprob-
lems with a “strengthen” edge leading to the contract are
activated. For example, if a new precondition x < 3 is added
to method A, the precondition subproblems for method B
would be activated to ensure the call to method A uses a
valid x value.

Note that these basic rules capture more complex rela-
tionships between properties via composition. For example,
according to the second activation rule, if a method’s precon-
ditions are weakened, VeriWeb will activate the postcondi-
tion problem for that method. If the change causes the post-
condition set to be weakened, then VeriWeb will activate all
the problems for the method’s callers according to the third
activation rule.

The leaves of the active subproblem graph — those nodes
that are active and have no active children — are the set of
subproblems that can be productively assigned to workers. In
fact, VeriWeb can assign these subproblems to be solved in
parallel by different workers. When assigning a subproblem,
VeriWeb gives preference to users who have already worked
on a subproblem, and to users who have marked that a
specification was incorrect.

Collaborative Use To support multiple users working si-
multaneously, VeriWeb currently just naively performs syn-
chronization on an entire project. Each user keeps a local
view of the master project specification; the local view is
updated whenever the user requests a new subproblem.

When a user submits a solution to a subproblem P1, Veri-
Web checks whether the solution invalidates the assumptions
of any other subproblem P2 currently being worked on. Veri-
Web lets the other worker continue working on P2. However,
when the worker submits P2, VeriWeb records the clauses in
the solution for future use, but does not modify the master
specification.

Recursion The current implementation of VeriWeb only
supports single-method recursion. It is straightforward to
extend VeriWeb to mutually recursive methods: make a tree



of the (possibly degenerate) strongly connected components
(SCCs), and arbitrarily choose one method from each SCC
that is a leaf. Once the user solves this subproblem, the SCC
is either broken or is smaller.

Object Invariants Object invariants require non-modular
reasoning about all public methods in a class, which is at
odds with VeriWeb’s decomposition into subproblems. Veri-
Web does not display object invariants nor give the user the
opportunity to write object invariants directly.

VeriWeb does, however, compute and utilize object in-
variants by lifting conditions that appear as preconditions
and postconditions for all the public methods for the type.
The tool expedites object invariant discovery in the follow-
ing ways:

• Any precondition that refers to object state is automat-
ically checked as a (potential) postcondition for the
method. (Section 2.1.2 discusses how VeriWeb suggests
and checks potential contracts.)

• Any method invariant — a clause in both a method’s
pre- and postconditions — is automatically suggested in
precondition selection problems for other public methods
in the class, and is automatically checked as a (potential)
postcondition for other public methods.

• When a clause has been established as a method invariant
for at least half of the non-pure public methods in the
class (those methods annotated as not mutating state),
the interface prompts the user to indicate whether or not
the clause is an object invariant; if the user agrees, the
condition is added as a precondition to the other methods
and subproblems are activated as previously described.

This scheme for handling object invariants is far from per-
fect; non-trivial object invariants should by written directly
by the feature developer.

2.1.2 Contract Suggestions
Writing contracts from scratch is difficult, especially for
users unfamiliar with the specification language. VeriWeb
generates, and presents to users, a suggested set of possible
clauses. Users can often complete their task just by selecting
clauses; in other cases, users can select some clauses and
write others.

Contract suggestions convey two kinds of benefits. First,
it is much faster, and requires less creativity, to select clauses
rather than writing them from scratch. Second, the inferred
clauses serve as a model when writing new contracts: they
can both illustrate the syntax in which clauses are written
and, even when slightly incorrect, can inspire users to write
similar clauses. We have observed all of these benefits.

VeriWeb makes suggestions for both pre- and postcondi-
tions; however, the list of subproblem types (Section 2.1.1)
includes “select preconditions” but not “select postcondi-
tions” because VeriWeb automatically performs all postcon-

Figure 4. Subfragment highlighting, shown here in the drag
and drop interface, helps users read and understand clauses.

dition “selection.” When postcondition problems are pre-
sented to the user, VeriWeb queries ESC/Java2 regarding
each suggested postcondition, displays them all, and indi-
cates which ones are verifiable and which ones are not veri-
fiable; the user may hide the unverifiable ones.

There are multiple ways to generate suggested clauses.
The current VeriWeb implementation uses Daikon [16, 17]
to dynamically infer likely clauses from execution traces.
Because the suggested clauses generalize observed execu-
tions, they may not be true; even if true, they may be be-
yond ESC/Java2’s ability to verify them. However, Nimmer
and Ernst [28] found that (1) users annotating programs are
not encumbered by false inferred clauses, and (2) for two of
their three subject programs, including inferred clauses had
a statistically significant positive correlation with successful
verification.

2.1.3 Drag and Drop Contracts
We observed that many users wasted time attempting to
write invalid clauses — clauses that were either syntacti-
cally or semantically incorrect. For example, some users at-
tempted to write facts about local variables in a method’s
preconditions. To guide users in writing expressions, we de-
veloped a drag and drop interface to allow users to construct
clauses from a pool of starter “fragments.” Invalid fragments,
such as the \result and \old fragments when writing pre-
conditions, are not available. Fragments have holes where
other fragments can be inserted or removed. Contracts dis-
played in documentation can be added to the drag and drop
interface by clicking on a button next to the contract.

Large contracts and fragments, especially those involving
complex constructs such as universal quantification, are dif-
ficult for humans to read. VeriWeb’s subfragment highlight-
ing (shown in Figure 4) enables users to better understand
the subexpression groups. Additionally, the highlighting in-
dicates the subfragment that will be removed when the user
clicks and drags. Subexpression highlighting is also enabled
for contracts displayed in other parts of the interface.

2.2 Explanations in Context
Program verification tools tend to be inscrutable. After a ver-
ification failure, it can be difficult for users to understand the
tool’s internal state or reasoning steps, and to know what
changes would permit a specification to be verified. Users
are often frustrated as they try to form and maintain their
own mental model of what the tool knows and/or can prove.
VeriWeb offers clues to make this work easier or to elim-
inate it entirely. VeriWeb explains the relationship of ele-
ments within a subproblem with concrete counterexamples
(Section 2.2.1) and tool tips (Section 2.2.2), and between



Figure 5. VeriWeb clauses are “executed” over a dynamic
trace. If the clause is falsified by the trace, the parameter
and field values before and after the call are displayed in an
expandable tree grid.

subproblems with contract inlining (Section 2.2.3) and in-
termethod dependency information (Section 2.2.4).

2.2.1 Concrete Counterexamples
A typical program verification tool indicates that a given
clause is either provable or unprovable. Given an unprov-
able clause, a user does not know whether the contract is
false, the clause is true but beyond the reasoning abilities
of the verification tool, or the clause would be provable if
other parts of the specification were improved. We observed
users spending significant amounts of time fruitlessly at-
tempting to prove false clauses. To eliminate this wasted
effort, VeriWeb presents the user with concrete counterex-
amples for clauses that are demonstrably false with respect
to a set of real executions (e.g., from running the test-suite).
VeriWeb does not currently generate concrete executions or
tests; these are provided by the feature developer.

VeriWeb displays the counterexample information in two
ways. First, when the user hovers the mouse pointer over
a subexpression of the clause, a tooltip shows the value
of that subexpression. Second, the user can explore all the
parameter and return values via an expandable tree grid (see
Figure 5). Expanding the grid shows the fields of each object.

Our run-time checking currently has two limitations:
First, no testing is done of conditions in exceptional postcon-
ditions (because our trace generator does not handle excep-
tional exits). Second, expressions involving universal quan-
tification can be tested only if the quantified-over variable
has explicit lower and upper bounds.

2.2.2 Task-specific Tooltips
Contextual help messages are weaved into the interface. For
example, in the drag and drop interface, hovering the mouse
over a hole in a \forall expression shows what type of
expression should be placed there (e.g., a predicate to bound
the quantified variable).

Other examples of contextual help messages include tips
shown between problems (while the next problem is load-
ing), FAQ links displayed above and below interface ele-
ments, and additional tooltips.

Figure 6. Contract inlining: contracts for a method are
aligned with the method in the source code. Users can
toggle the display of unproven postconditions. Inlining the
specs for multiple methods can help to identify “information
gaps.”

2.2.3 Contract Inlining
When verifying a program, information about the absence
of knowledge (e.g., “Why doesn’t the tool have enough in-
formation to prove this postcondition?”) can be as important
as information about what the tool does know. To help users
locate “information gaps” between method calls, VeriWeb
offers contract inlining in the source view. Contract inlining
displays a method’s contracts around a method call in the
source code: the preconditions are above, the postconditions
are below, and everything is horizontally aligned with the
method call. An example is shown in Figure 6. The inlined
contracts currently provide two pieces of additional infor-
mation: (1) the set of preconditions that are not met at the
call site and (2) a user-toggleable list of unproven (potential)
postconditions for the callee method.

Initially, no contracts are inlined; the user can display as
many or as few as desired. Contract inlining even works for
source lines with multiple method calls: the inlined contracts
are displayed from outside to inside in the order that the
calls appear on the line (i.e., horizontally aligned with the
corresponding call). Contracts can be verbose and might
clutter the display, but we hypothesize that users only need
to inline contracts for 2–3 methods at a time (to visualize
the information gaps). Therefore, our approach should scale
even to methods that make many method calls.

2.2.4 Intermethod Dependency Information
Postcondition Dependencies We observed that it is diffi-
cult for new users to form and maintain a mental model
about what the verifier knows after a method call. One ram-
ification of this is that the users do not realize that warnings
in a method may be caused by deficient postconditions for
the method’s callees. Contract inlining (Section 2.2.3) ad-
dresses this problem. To further address it, when VeriWeb
displays verifier warnings, it also lists the methods that are
called before the warning and indicates that the user may
need to refine the postconditions of those methods. While
data flow analyses could be utilized to make this informa-
tion more precise, pilot tests showed that users still found
these messages helpful.



Information Transfer Because methods depend on one
another, some information must transfer between subprob-
lems. In VeriWeb, when a user assigns blame (e.g., marking
that a callee’s postconditions are too weak), the user is asked
to explain the problem either in English or pseudo-code.

Relevant messages from other subproblems are displayed
with the current subproblem. The user completing the newly
created task can mark whether or not the comment was help-
ful. If the user indicates that the comment was not helpful,
the user is prompted to explain why they did not find the
comment helpful. In the future, we plan to use this feature
to automate the handling of payments when deploying Veri-
Web on an ad-hoc marketplace such as Mechanical Turk [1].

3. Research Questions
To validate the VeriWeb tool, as well as the general poten-
tial for crowdsourced program verification, we posed three
research questions:

RQ 1. What is the cost (time and money) of program verifi-
cation?

To answer this question, we performed a comparative study
of VeriWeb and the ESC/Java2 plugin for Eclipse (Sec-
tion 4). The subjects were 14 programmers recruited from
Exhedra’s vWorker labor marketplace. We found that the
VeriWeb workers took both less time and money on average
than the Eclipse workers for the subject program. Addition-
ally, we found that worker progress with VeriWeb was more
consistent than with Eclipse, which was characterized by
work toward incorrect solutions and oscillations around lo-
cal optima.

RQ 2. Can ad-hoc labor be used to crowdsource program
verification?

To explore this question, we recruited workers from Ama-
zon’s Mechanical Turk at varying pay levels to complete
VeriWeb subproblems (Section 5). We found the labor pool
to be very shallow; additionally, the expected pay was not
competitive with that of hourly contracted workers (c.f. Sec-
tion 4). The preliminary results suggest that current ad-hoc
labor marketplaces are not well-suited for verification.

RQ 3. How does decomposition and communication over-
head affect the performance of collaborative verification?

To characterize the overhead, we observed two pairs of com-
puter science undergraduates each using VeriWeb to col-
laboratively verify a small program (Section 6). We found
that, for each pair, VeriWeb generally isolated one partici-
pant from the other — for one pair, neither participant ob-
served any communication from the other. Additionally, the
observations highlighted that while collaboration can speed
verification by enabling users to address a root cause in par-
allel, a single poor-performing user can significantly derail
verification.

Pilot Studies During the development of VeriWeb, we per-
formed pilot studies similar to the first study above. These
studies were performed with both hourly contracted workers
and more than 40 computer science undergraduate students.

4. The Cost of Program Verification
Creating a cost- and time- effective tool requires solving
an optimization problem [31]. Though the problem involves
many complicated factors, an approximation consists of only
two complementary questions:

RQ 1.1. Given a fixed amount of money, how “much” veri-
fication can you buy?

RQ 1.2. Given a fixed amount of time, how “much” verifi-
cation can you buy?

In this section, we begin to quantitatively answer both of
these questions by contracting workers on Exhedra Solu-
tions’s vWorker [37] marketplace to verify a small project
StackAr, which we consider to be of moderate difficulty
based on prior work [28].

vWorker Labor Marketplace The vWorker [37] market-
place boasts a global workforce of over 320,000 registered
workers, over 150,000 registered employers, and 1,500 –
2,500 projects in open bidding at any given time. Employ-
ers typically post small to medium business projects ($50 –
$1000), including design and programming jobs, for work-
ers to bid on in an open auction (invite-only auctions are also
possible). The employer then selects a worker(s) to work on
the project. For its role as a matchmaker and arbiter, vWorker
takes a 7.5% – 15% cut from worker pay. Several sites offer
services similar to vWorker. We chose vWorker due to the
first author’s positive experience with the service in the past.

4.1 Experimental Design
We posted a project with the headline “Write Java program
specifications” on vWorker. The project posting had users
place hourly bids for up to 6 hours of work and stated that
we would accept multiple bids. We placed no restrictions
on the workers. (vWorker lets you accept bids only from
workers in developed countries, or mandate that the worker
use a webcam so that you can monitor their work.)

Subject Program We used the StackAr program [39], an
implementation of an array-based stack, from a previous
study of program verification [28]. The program consists of
a data type (library class) paired with a test program that
throws run-time exceptions if certain correctness properties
do not hold. For example, the client checks that a call to
isEmpty() returns true for a new stack.

The StackAr class has 8 methods, consisting of 49
NCNB lines of code. The client class consists of 79 NCNB
lines of code. Using ESC/Java2, 23 JML annotations are
necessary to show that the data type and client suffer no
unexpected run-time exceptions.



We added clauses and annotations asserting the types
of the objects and arrays so that we did not have to teach
the participants the type syntax of JML (these clauses were
trivial, and were automatically inferred by Daikon).

The Daikon-inferred clauses, which were offered to
both VeriWeb and Eclipse users (see below), came from
Nimmer’s client code, which used the library in realistic
ways [28]. By contrast, VeriWeb’s counterexamples came
from the included ADT clients, which are (rather impover-
ished) example uses. As a result, the VeriWeb counterexam-
ples did not add any additional information beyond what the
Eclipse users could learn by inspecting the included ADT
clients.

Treatments We used the ESC/Java2 plugin for Eclipse 3.52

as the “standard” user interface. VeriWeb suggests possible
clauses inferred by Daikon, so to level the playing field, we
inserted those same the inferred specifications in the subject
programs used by Eclipse. Both interfaces were hosted on
a group of Rackspace Cloud server instances (Eclipse was
served via Windows terminal services). Progress in Eclipse
was logged by recording each text edit, and recording when
the user invoked ESC/Java2 to check the project.

Participants We received 26 official bids ranging from
$6/hour to $110/hour (Mean: $21.8/hour; Median: $14.5).
For the experiment, we accepted the 18 bids in the $6/hour
– $22/hour range and split the participants into treatment
groups to produce roughly equivalent rate distributions.
Complete bid data, including worker country, can be found
on the project website.3

Worker Skill We expected that assigning the groups based
on requested pay would result in groups with similar pro-
gramming skill distributions. We asked each worker both
their programming and Java experience.4 Figure 7 shows
that workers’ bids do not correlate with experience, plac-
ing into doubt our initial assumption that requested pay is a
viable proxy for skill.

Instructions Each worker was given a web link to a de-
scription of JML [6, 22] contract syntax and instructions for
how to run their respective tool. Workers were instructed to
spend approximately 1 hour on a warm-up tutorial. Upon
completing the tutorial, they were given a quiz about JML
specifications and their tool to ensure comprehension. For
each worker’s initial quiz attempt, we provided a list of ques-
tions answered incorrectly, references to the sections con-
taining the answers to the questions, and had the workers
correct their answers before continuing with the main task.
Aside from one worker, all of the workers answered at least
one question incorrectly on their initial quiz attempt. 9 out of

2 http://secure.ucd.ie/products/opensource/ESCJava2/
3 http://www.cs.washington.edu/homes/tws/veriweb/
4 We asked for this information after the experiment. Asking before might
have given workers a motivation to lie, in order to obtain a higher wage.
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Figure 7. Requested hourly pay (bid) versus programming
experience reported upon completion of the project. Work-
ers’ bids were not an accurate proxy for programming expe-
rience.

the 14 workers finishing the project reported spending longer
than an hour on the warmup. A deadline of one week was
given for the project; though this deadline was not enforced,
it may have contributed to the 4 workers who did not com-
plete the project.

Edit Distance Performance Metric The number of warn-
ings reported by ESC/Java2 is not an accurate measure of
progress, as one incorrect annotation can mask other warn-
ings. Therefore, we instead use edit distance, the minimal
number of additions and removals of top-level JML annota-
tions that yields a known verifiable solution. This is a lower
bound on the amount of work required to complete the spec-
ification task. (Actually, we use a modified version of the
metric that accounts for the differences between the tools.
See the Appendix.)

A verification problem has many possible (legal) solu-
tions. The target solution set included solutions from [28],
our pilot studies, and the solutions discovered during the
study themselves. Whenever a solution included an object
invariant, we added another solution in which the object in-
variant was explicitly listed as method conditions. The edit
distance is the distance from a worker’s current version of
the program, to the nearest of any of these legal solutions.

To efficiently calculate distance to verifiable specifica-
tions, we wrote a tool to normalize the specifications and
perform a textual comparison. The normalization rewrites
constant subexpressions and inequalities, uses De Morgan’s
law to split conjunctions (e.g., P ==> Q && R is split into
P ==> Q and P ==> R), etc.

4.2 Results
8 VeriWeb workers and 6 Eclipse workers completed the
project; the other workers (3 Eclipse workers, and 1 VeriWeb
worker) would not comment on why they dropped out of the
project. Figure 8 shows the distance to the nearest verifiable
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Figure 8. Top: progress as a function of time. Bottom: progress as a function of money spent. Data series (line) coloring is
consistent between the graphs, e.g., the darkest lines in both Eclipse graphs both correspond to the same worker.

solution for the workers as both a function of time and
money spent. The graphs illustrate three salient features.

First, on average, the VeriWeb workers completed the
project faster and for less money than the workers using
Eclipse. However, the relatively small number of workers in
the study prevented the rejection of both the null-hypothesis
that the completion time distributions are the same and
the null-hypothesis that the money spent distributions are
the same (the one-tailed Mann-Whitney U-test p-values are
0.0985 and 0.0694, respectively). If the Eclipse worker with
14 years of programming experience — an American who
only charged $9/hr — is excluded from the sample, the dif-
ferences are both significant (one-tailed p-values of 0.0202
and 0.0116, respectively). The variance in completion time
is smaller for VeriWeb. This is promising because one main
goal of VeriWeb is to commoditize verification, and low vari-
ance (predictability) and commoditization go hand in hand.
However, the null-hypothesis that the variances are equal
cannot be rejected when using the non-parametric Brown-
Forsythe Levene-type test (p-value is 0.0725).

Second, the VeriWeb workflow is characterized by con-
tinual progress with intermittent back-tracking. By contrast,
the Eclipse workflow is characterized both by work toward

incorrect solutions and by oscillations around local minima.
As with the reduced variation in completion time, this is en-
couraging with respect to commoditization.

Third, while the total cost of verification is linearly corre-
lated with total time for Eclipse (r = 0.946), the correlation
is lower for VeriWeb (r = 0.694) indicating that different
workers should be chosen whether you are optimizing for
time or money.

4.2.1 Effects of Skill
Figure 9 shows the time taken to complete the task given the
workers’ hourly rates and reported programming experience.
As previously noted, the rate is likely not a good proxy
for skill, as it was not correlated with worker experience.
Multiple factors may confound the relationship between bids
and skill.

• Variations in the cost of living and exchange rates be-
tween countries, and within countries, may cause the as-
sumption to be violated if the geography of the work-
force is diverse. We adjusted the bids based on an OECD
report on purchasing power parity [30], but this still did
not account for the differences (due to intranational bid
variation).
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Figure 9. Left: time to complete the task as a function of hourly wage. Bubble size indicates the worker’s relative programming
experience. Right: time to complete the task as a function of the worker’s self-reported programming experience. Bubble size
indicates the worker’s relative hourly wage. There is no relationship between wage and productivity for either tool — this is
likely explained by the absence of a relationship between requested hourly wage and programmer experience (see Figure 7).

• vWorker employs a worker rating system. Workers with
higher ratings may demand a premium; skilled workers
with a short work history may proffer a low bid in order
to establish a good rating.

4.2.2 Feature Usage
The 14 successful workers took a short survey about their
tool’s specific features.

Suggested Conditions Contrary to what we found in pilot
studies, the VeriWeb users only found the suggested condi-
tions moderately helpful (mean of 3 5/8 on a 5-point Likert
item), due the to inclusion of incorrect or irrelevant condi-
tions. One user also felt that some of the conditions took
too much effort to understand. The Eclipse workers found
the suggested conditions more helpful (mean of 4 1/3 on a
5-point Likert item).

Drag and Drop Interface Three of the users preferred the
drag and drop interface, four users preferred the text inter-
face, and one user used both depending on the complexity
of the condition (preferring it for complex conditions). As
expected, the drag and drop interface was preferred for not
having to worry about incorrect syntax; text entry was pre-
ferred for speed.

Contract Inlining All of the VeriWeb users reported using
the toggle-able contract inlining to solve the task (however
two users’ responses indicate that they misunderstood the
feature to which the question was referring). Users reported
using the feature to (1) remember conditions for methods
that had already been visited, (2) identify missing postcon-
ditions, (3) view multiple method specifications simultane-
ously, and (4) understand unexpected exceptions.

Counterexamples VeriWeb generated concrete counterex-
amples for 4 of the 24 inferred clauses provided to the

workers. While VeriWeb also prevented users from writing
additional clauses that violated the trace, Eclipse did not
— the successful Eclipse workers introduced an additional
26, 13, 9, 9, 3, and 1 falsifiable clauses when working on
StackAr. The distribution of these clauses’ lifetimes were
highly skewed with a mean of 34 minutes, and a median of
just 2 minutes. Unsurprisingly, the Eclipse user who intro-
duced 26 falsifiable clauses took the longest to complete the
task. For 2 of the users, the number of falsifiable precon-
ditions met or exceeded the number of falsifiable postcon-
ditions introduced. Falsifiable preconditions are especially
harmful because users “propagate” the false preconditions
to the method’s callers.

VeriWeb provided counterexamples to each of the work-
ers, however only four of the eight workers reported be-
ing aided by counterexamples. One user reported using the
feedback to identify an off-by-one error. Another user re-
ported using the feedback to identify a missing condition for
a callee.

4.3 Discussion
Feature evaluation Directly measuring the effect of each
VeriWeb feature on performance would have required an in-
tractably large number of subjects. The survey responses and
quantitative results indicate that each of the features con-
tributed to the usability of VeriWeb. Feature usage metrics
suggested that certain features, especially concrete coun-
terexamples, are good first candidates for individual evalu-
ation.

Threats to Validity Due to the small study size and single
subject program, the performance characteristics observed
may not generalize. In particular, the following caveats ap-
ply:



• VeriWeb’s speed is bounded by ESC/Java2’s speed, and
ESC/Java2 does not scale.

• The subject program is array-based, whereas much Java
code is collection-based. We opted to not use a subject
program with collections because the ESC/Java2 specifi-
cations for collections are fragile (often resulting in un-
soundness) and significantly slow the checker.

More general threats to validity are discussed in Section 7.3.

5. Verification with Ad-hoc Labor
In this section, we explore the (lack of) ad-hoc verification
labor supply on Amazon’s Mechanical Turk marketplace [1]
for performing VeriWeb subproblems.

5.1 Mechanical Turk Labor Marketplace
Amazon’s Mechanical Turk [1] is an online marketplace
where employers can post human intelligence tasks (HITs)
to be solved by a global ad-hoc workforce. HITs are typi-
cally small tasks that are easy for a human to perform but
difficult to automate. Common tasks include image labeling,
preference surveys, and audio transcription.

5.2 Experimental Design
For our experiment, we created a batch of 50 HITs with the
title “Answer questions about Java methods” and description
“Describe what must be true when a method is called and
after it runs.” Each HIT required the worker to complete
at least three VeriWeb subproblems (guaranteeing that each
worker solved at least one precondition problem); workers
could complete additional subproblems within the HIT for
additional pay.

Subject Program The subject program was the array-
based stack, StackAr, previously described in Section 4. To
provide a consistent VeriWeb experience for each worker,
each worker worked on their own copy of the project. Work-
ers did not work collaboratively with other users. The sub-
problems presented to a worker followed the methodology
described in Section 2.1.1.

Variable Pay Mechanical Turk permits requesters to em-
bed external websites within a HIT, informing the website
whether the HIT is in preview mode, or has been accepted
by the worker. We used this information to allow the workers
to try using VeriWeb before accepting the HIT.

Typical HITs pay a fixed rate, however, the service offers
the ability to pay a bonus for good work. Combined with the
preview feature, we use this functionality to randomly pay
a different rate to each worker (between $0.15 and $0.35 a
subproblem). We set the static pay rate of the HIT to $0.00
and appended the phrase “BONUS PER QUESTION” to the
HIT title and description. The preview screen for the HIT
informed each worker the amount that they would be paid
for solving each subproblem. Browser sessions were used to
ensure that each worker only saw a single price, even when

previewing the HIT multiple times. The VeriWeb interface
was modified to display the amount of money the worker
had earned so far in the top information bar.

Learning Curve VeriWeb’s steep learning curve relative
to other tasks on Mechanical Turk is a major obstacle. We
opted to not provide a formal tutorial, instead relying on
VeriWeb’s contextual help (see Section 2.2.2); additionally,
the first subproblem was chosen to be trivially easy — a “se-
lect requires” problem consisting of a single choice sufficient
to eliminate all warnings — to encourage acceptance.

5.3 Results and Discussion
Ideally, the results of the experiment would enable the cre-
ation of a labor supply curve: the number of subproblems
solved vs. pay (per subproblem). However, worker response
was unenthusiastic — fewer than 10 workers accepted the
HIT over the course of 3 days. Workers required at least
$0.25 per subproblem to complete any subproblems. No Me-
chanical Turk worker completed more than 5 subproblems,
indicating that the rate would have to be further increased
to account for problem difficulty. We elected not to perform
the study again with higher rates, as the effective hourly rate
would not have been competitive with the hourly rate for
workers contracted via vWorker (see Section 4).

Threats to Validity In addition to a possible lack of gen-
eralizability due to the use of the single subject program
StackAr, the following three factors likely affected the ob-
served result:

• The absence of a fixed price for the HIT reduces views
of the HIT by workers who search for HITs by payment
range.

• The HIT is unique and unusual. Workers are unlikely to
“invest” in learning to perform a HIT if they perceive
the opportunity to perform similar tasks in the future is
low. Conversely, the novelty of the HIT may attract some
workers that would not normally work on the HIT.

• Labor supply may vary throughout the week. However,
allowing a HIT to run for a whole week would be sub-
optimal — as the HIT ages, its position in the “latest
HIT” list lowers, decreasing the chance that it will be
seen by a worker.

Despite these threats to validity, it is clear that VeriWeb
(or the presentation of VeriWeb) is insufficient to address
the ease-of-use and profitability demands of the Amazon
Mechanical Turk labor pool.

6. Overhead of Collaborative Verification
Since VeriWeb decomposes the task of writing a verifiable
specification into subtasks, multiple workers can work on
the task simultaneously. For programs with limited coupling
(modulo library code), workers can largely work in parallel.
To characterize the overhead incurred when workers work on
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Figure 10. Method dependency graph for the subject program in the collaborative study (Section 6). The queue data type
classes are shown in gray, the client classes are shown in white. The program has many methods for which the subproblems
can be performed in parallel. For example, once the QueueAr(int) subproblems are solved, workers can simultaneously work
on the subproblems for isFull(), makeEmpty(), and isEmpty().

interdependent subtasks, we observed five computer science
undergraduate students using VeriWeb to individually and
collaboratively verify a queue data type and client class.

6.1 Experimental Design
Participants The study participants were computer science
undergraduate students at the University of Washington with
3–5 years programming experience. Use of undergraduates
was intended to emulate the use of semi-skilled workers.

Treatments We observed three treatments. For each treat-
ment, the participants first (individually) performed a tuto-
rial, and then verified the subject program.

• Treatment 1: a single user performed the tutorial, took
and received feedback on a comprehension quiz, and then
verified the subject program.

• Treatment 2: two users each individually performed the
tutorial, and then collaboratively verified the subject pro-
gram without the assistance of dynamic counterexam-
ples.

• Treatment 3: two users each individually performed the
tutorial, individually took and received feedback on a
comprehension quiz, and then collaboratively verified the
subject program.

Treatment 2 was performed before the other treatments. The
lack of dynamic counterexamples for Treatment 2 was due to
a tool setup error. The quiz from the study in Section 4 was
added in light of the Treatment 2 results (see Section 6.2)
— we wanted to separate the effects of learning and tool
comprehension from the effects of collaboration.

Subject Program We used the QueueAr program [39], an
implementation of an array-based queue, which was also
used in a previous study of program verification [28]. Like
StackAr in the comparative study (Section 4), the program
consists of a data type (library class) paired with a test pro-
gram that throws a run-time exception if certain correct-
ness properties do not hold. Figure 10 shows the dependency
graph for the subject program; we selected this subject pro-

gram because it exhibits a small amount of parallelism suit-
able for the number of workers in the study.

6.2 Results
Completion Time The individual participant (Treatment 1)
with 2.5 years of programming experience completed the
task in 52 minutes. For reference, Nimmer and Ernst had
previously reported that none of their 41 participants could
complete the task within a 60 minute period (participants
were stopped after an hour) [28].

In both Treatment 2 and Treatment 3, the participants
worked in parallel on subproblems containing warnings
caused by a single root cause — a missing exceptional post-
condition for the enqueue method. For both treatments,
these subproblems were the most difficult for the partici-
pants to solve.

The pair in Treatment 2 completed the task in 54 minutes
(wall clock time). 20 of the 54 minutes was spent assessing
the missing exceptional postcondition: one participant spent
20 minutes studying the checkConstructor method; the
other spent 10 minutes on the checkIsEmpty method. As
both participants had stalled, we asked the participants to
explain their reasoning out loud. Based on this information,
we reminded the participants how to mark a callee’s excep-
tional postconditions as insufficient. Both participants were
then able to continue.

The pair in Treatment 3 had not completed the task af-
ter 55 minutes (wall clock time), but could not continue as a
user input caused the tool to crash. One participant correctly
added an exceptional postcondition to enqueue, but this was
insufficient as the isFull method was missing a postcondi-
tion about its return value. The other participant then began
needlessly strengthening method preconditions in an attempt
to avoid the exception, ultimately triggering a combination
that caused the tool to crash.

Messages During the course of the task, neither participant
in Treatment 2 worked on a subproblem that had associated
messages from the other participant. In Treatment 3, one
of the participants worked on a problem with a message



from the other participant that consisted of two syntactically
correct JML clause suggestions. Since the tool does not
attempt to parse messages, the participant saw the message
as just an extra step to adding the missing conditions.

The lack of direct communication was a result of Veri-
Web’s rules for assigning subproblems, which prefers work-
ers with knowledge of the subproblem (see Section 2.1.1).
Additionally, for Treatment 2, the participants did not intro-
duce incorrect specifications that required multiple levels of
backtracking.

6.3 Discussion
The results highlight a major benefit of collaborative verifi-
cation with VeriWeb: workers can simultaneously work on
the same underlying issue. If one worker gets stuck, another
worker might be able to identify and solve the issue by ap-
proaching it from a different perspective. The Treatment 3
results also expose a major drawback of collaborative verifi-
cation with VeriWeb: a single worker can derail the verifica-
tion process by solving subproblems incorrectly.

For the subject program, VeriWeb’s problem preference
system performed well for presenting a consistent workflow
to the individual users. Therefore, future research on the
efficacy of the message system must still be performed, as
the opportunity for interaction increases as the number of
workers and size of the call graph increases.

Experimental Design Having the participants work side
by side conveyed the benefit of a single observer being able
to observe the workers simultaneously. Unfortunately, the
setup precludes having the participants narrate their thought
process. Additional studies should have multiple observers
observing the participants in isolation to enable narration.

Threats to Validity In addition to the threats described in
Section 4.3, the following threats to validity exist:

• The results may not scale to a larger number of workers
working simultaneously due to increased interaction.

• All of the participants were native English speakers, and
the documentation and variable names were in English.
Workers with limited ability to read / write a common
language are likely to incur greater overhead when com-
municating with other workers.

• The participants had all completed the same core com-
puter science curriculum. In practice, workers may not
have shared computer science training, or formal training
at all.

Overall, we believe the benefit of being able to simulta-
neously observe the participants in person outweighed the
threats to validity caused by our participant selection.

7. Discussion
7.1 Crowdsourced Verification in Practice
Our primary study (Section 4) explored the hourly pay
model for verification in a global marketplace. Such a model
lies in the middle of the spectrum between ad-hoc labor
marketplaces like Mechanical Turk (Section 5) where work
engagements are fleeting, and contract labor that is typical of
more traditional approaches such as outsourcing. It remains
to be seen under what conditions the different positions on
the spectrum are optimal for program verification and other
software engineering tasks.

In any case, verification and specification experience is
scarce. Therefore, for the time being, employers that opt to
use crowdsourcing must decide whether to pay a premium
for workers with formal methods experience or to “train”
new users to use the technology, as we did in the vWorker
study. The most cost-effective approach is most likely to
meet the workers half-way: building tool support to decrease
the skill demands of the task, and, at the same time, offering
targeted training to set the workers up for success.

7.2 Validity of Specifications
VeriWeb generates a specification that is sufficient to prove
the lack of runtime exceptions; the “correct” or intended
specification is unknowable without input and validation
from the feature designers. However, there are three ways
that VeriWeb can be led to the intended specification:

1. Informal documentation (Javadoc)

2. Checks in the implementation (e.g., checking of precon-
ditions and throwing an IllegalArgumentException)

3. The feature designer can write JML specifications for
high-level properties

Approaches #1 and #2 can be used by VeriWeb with no
extra effort from the feature designer. Approaches #2 and
#3 induce verification criteria that lead VeriWeb to find the
“correct” specification, while Approach #1 depends on the
workers taking cues from the documentation.

7.3 Threats to Experimental Validity
In addition to the experiment-specific threats enumerated in
Sections 4, 5, and 6, the following threats to experimental
validity apply.

Learning Effect Workers may perform better because they
acquire more experience (a “learning effect”). For the stud-
ies in Section 4 and Section 6, we employed a mandatory
warmup and quiz to mitigate the learning effect.

Program Correctness All of our subject programs are
“correct” in the sense that ESC/Java2 can verify lack of
run-time exceptions without modifying the source code. The
performance and mindset of workers likely depends on (1)
whether the program is correct, and (2) whether they believe



that the program is correct. We did not tell the vWorker and
Mechanical Turk workers that the programs were correct
or incorrect. The vWorker workers might have inferred this
from the task description. It is possible that (accurate) belief
that a program is correct might qualitatively change the way
that the workers would work.

Future research should investigate workflows for verifica-
tion when software modifications are necessary, such as for
fixing bugs or improving design. An intuitive workflow for
dealing with software bugs would be to escalate areas that
cannot be verified to software developers (possibly escalat-
ing to more-skilled program verifiers first).

Program Complexity Real programs often contain poor
design: complex control flow, long methods, undesirable
dependencies/coupling, etc. By contrast, the StackAr and
QueueAr programs used in the experiments are very sim-
ple, and lack the use of common features, such as collec-
tions. Complexity and poor design make all software en-
gineering tasks, including writing contracts, more difficult.
Well-written, simpler code will cost less to work with.

Specification Complexity General-purpose libraries, such
as the Java JDK, have extremely complicated specifications.
In our experience, the JML contracts for client code are
significantly less complicated. Just as it is not desirable to
have low-skilled workers design libraries, it is not desirable
to have low-skilled workers write specifications for libraries.

Additionally, in practice, JML specification writers sim-
plify contracts by splitting them into cases. VeriWeb cur-
rently does not support cases, so users must use implication,
which becomes unwieldy. One way to support cases in Veri-
Web would be introduce a new subproblem type that asks
the user to write (or select) the cases for a method contract.

8. Related Work
In this section, we survey related work in program verifica-
tion and crowdsourcing.

Interfaces for Traditional Verification Tools The tradi-
tional program verification literature does not focus on user
interface design, but sometimes contains it as a component.
For example, Houdini, a static contract inference tool for
ESC/Java, produces static HTML reports that contain hy-
perlinks to locations in the source code [18]. Flanagan and
Leino reported that when working with Houdini, they re-
peatedly asked questions such as “Why didn’t Houdini infer
this precondition?” They note that anecdotal evidence shows
that the presentation of the refuted annotations and the cor-
responding causes are the most important aspect of the user
interface. Unfortunately, the authors did not enumerate any
of their other questions.

Other work has focused on explicit deficiencies found
in tools. For example, Kiniry [21] augmented the output of
ESC/Java with warnings when the analysis may be either
unsound or incomplete.

Pex for Fun (http://www.pexforfun.com/) is a web-
based game designed to help students practice program-
ming [34]. Levels come in two forms: puzzles and coding
duels. Puzzles ask the user a question about a method, or
group of methods, e.g., for what input values does the pro-
gram throw an exception? In a coding duel, the user must
write a method that behaves the same as a secret implemen-
tation. The Pex tool is used to generate relevant input values;
problems can also include Code Contracts to guide Pex [3].

Usable Program Verification Microsoft Code Contracts [8]
provides language support for integrating contracts into pro-
grams in the .NET languages, as opposed to using a separate
specification language such as JML. The productized ver-
sion of the tool can statically verify some properties; other
specifications are checked at run time. Leino’s Dafny lan-
guage and verifier also aims to provide guarantees for imper-
ative languages beyond that of extended static checking [23].
It provides support for a richer set of properties, translating
Dafny code to the Boogie verification language [2] to pro-
duce the necessary conditions for a SAT solver.

There is a growing body of work on inferring contracts,
using static analysis, dynamic analysis, and a combination of
both. Independent of this work, Yi Wei et al. utilized traces to
invalidate quantified expressions generated by generalizing
contracts [38].

There is also a push to depart from the de facto delin-
eation of program, contracts, and verifier — these new ap-
proaches often adopt a “pay-as-you-go” mentality. For ex-
ample, pluggable type checking techniques [15, 29] allow
users to incrementally extend the standard type system to
check richer properties such as nullness, interning, and in-
formation tainting. In [32], Sheard et al. outline how the
same philosophy can be applied in dependently typed lan-
guages that provide language-based verification. They argue
that cognitive burden is reduced because properties fit natu-
rally into the language.

Crowdsourcing Software Engineering Despite the grow-
ing base of crowdsourcing literature, there has been little
academic exploration of crowdsourcing in software engi-
neering. The only formal crowdsourcing research of which
we are aware focused on end-user programming [33]. The
commercial sector appears to have taken greater interest. For
example, uTest is a start-up that uses crowdsourcing to pro-
vide on-demand software testing services [36].

Ad-hoc Labor Markets The creation of Mechanical Turk
in 2005 spurred crowdsourcing research by providing easy
access to a global workforce for ad-hoc tasks. As the field
matures, research is transitioning from one-off proof of con-
cept projects to crowdsourcing frameworks [25] and formal
modeling of workflows [10].

As the understanding of dynamics of the labor market
develops, tools that combine ad-hoc labor to achieve a larger
goal are possible. For example, Soylent, a word processor



backed by MTurk, introduces a Find-Fix-Verify pattern for
managing worker variance in tasks [5]. In the Find phase,
users identify parts of the document that need more work.
In the Fix phase, workers propose revisions to the parts
identified during the Find phase. Finally, in the Verify phase,
workers determine which suggestions are the best.

Economics of Ad-Hoc Crowdsourcing Horton and Chilton
[20] construct a formal model of labor supply based on
reservation wage — the wage that causes the benefit of per-
forming a task to exceed the benefits of performing other
tasks. They characterize this wage with two experiments:
(1) increasing task difficulty while keeping a workers wage
constant and (2) decreasing the wage while keeping the diffi-
culty constant. The task they used, clicking between two ver-
tical rectangles, requires little skill. The lack of skill require-
ment is commonplace among the economic crowdsourcing
literature.

Mason and Watts [26] explore the rationality of the
Mechanical Turk workplace, that is to what extent the
workspace satisfies traditional economic models in which
pay determine economic quality and quantity. To vary the
price paid to workers, they set a base rate for the HIT and use
Mechanical Turk’s preview functionality to inform workers
of an additional bonus. They find that pay has a positive re-
lationship with the quantity of work performed on a task,
but does not have a measurable effect on the quality. Fur-
thermore, they provide evidence that enjoyment, intrinsic
motivation, and other factors play a significant role in the
marketplace.

9. Conclusion
We have presented VeriWeb, a web-based tool for program
verification that incorporates novel interface features to ac-
commodate task decomposition and reduce the level of skill
required to write verifiable specifications for programs. It is
designed around the principles of active guidance and expla-
nations in context, helping its users to do the right thing and
to understand why it is the right thing.

To evaluate VeriWeb, we performed three experiments
with two small subject programs. While we found evidence
that current ad-hoc crowdsourcing marketplaces cannot sup-
port VeriWeb, we found that VeriWeb lowered the monetary
and time cost of verification when using contract workers.
Additionally, we observed that VeriWeb can be used collab-
oratively with minimal communication overhead.

Our vision is a world in which software verification
is more economically feasible, and therefore is performed
more often. A path to this vision is crowdsourcing: making
verification tasks accessible to a broad range of developers,
even those with relatively little training. Our work is one
small step along this path.
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Appendix: Edit Distance Adjustment
The edit distance metric assumes that each contract is either
present or not present. However, VeriWeb introduces a third
“state” for a contract, because VeriWeb remembers contracts
that are not currently in use but may be tried or presented to
the user in the future. This state is not relevant to the Eclipse
computation.

We adapt the edit distance metric as shown in Table 1 on
the following page. Any user-written clause that is not in the
target set counts toward the edit distance, as does any clause
that is in the target set but not in the candidate set either
as a user-written or VeriWeb-suggested clause. In general,
a VeriWeb-suggested clause is treated like a user-written
one. The exception is that a correct postcondition that has
not yet been proved by VeriWeb is not counted against the
user. Such a clause typically exists only because the user has
not proceeded to the appropriate postcondition subproblem;
when the user does, the postcondition will be automatically
added by VeriWeb without any human intervention.



A clause can be proven but “wrong” either because the
proof depends on other wrong clauses, or because the target
specification does not include that clause (another verifiable
specification, however, might include the clause).

Sensitivity to Inferred Invariants The distance metric is
sensitive to the inferred set of invariants. Let I be the in-
ferred specification with preconditions IR and postcondi-
tions IE . Let X be the nearest verifiable specification with
preconditions XR and postconditions XE . The distance for
the Eclipse user is

|X \ I|+ |I \X|

, the number of conditions that were not inferred by Daikon
plus the number of conditions that were incorrectly inferred
by Daikon. For a possibly different nearest verifiable solu-
tion X , the distance for the VeriWeb user is

|XR|+ |XE \ IE |

, the number of preconditions in the solution plus the number
of postconditions that inference failed to detect. The differ-
ence in distance is given by:

(|XR \ IR|+ |XE \ IE |+ |I \X|)− (|XR|+ |XE \ IE |)
= (|XR \ IR|+ |IR \XR|+ |IE \XE |)− |XR|

= (|I \X|+ |IR \XR|)− (|IR \XR|+ |IR ∩XR|)
= |I \X| − |IR ∩XR|

, the number of incorrectly inferred conditions less the num-
ber of correctly inferred preconditions.

Invariant source Eclipse VeriWeb
Object invariants
User-written WRONG n/a
Generalized n/a WRONG
Missing RIGHT RIGHT
Preconditions
User-written WRONG WRONG
User-selected n/a WRONG
Not user-selected n/a RIGHT
Missing RIGHT RIGHT
Postconditions
User-written WRONG WRONG
Proven n/a WRONG
Unproven n/a (none)
Missing RIGHT RIGHT

Table 1. Which clauses count toward the edit distance
metric, when comparing a candidate specification (set of
clauses) with a target specification. When considering a con-
tract clause in the candidate set, “WRONG” means to count
any clause that is not in the goal set, and “RIGHT” means to
count any clause that is in the goal set.
The Eclipse column indicates that the edit distance for

a precondition is the sum of the number of wrong user-
written clauses, plus the number of missing (but necessary,
or “RIGHT”) clauses. The VeriWeb column indicates that
the edit distance is the sum of the number of user-written and
user-selected wrong clauses, plus the number of non-user-
selected (but necessary) clauses, plus the number of missing
(but necessary) clauses.


