
Optimizing Symbolic Model
Checking for Statecharts

William Chan, Richard J. Anderson, Paul Beame, David H. Jones,

David Notkin, Senior Member, IEEE, and William E. Warner

AbstractÐSymbolic model checking based on binary decision diagrams is a powerful formal verification technique for reactive

systems. In this paper, we present various optimizations for improving the time and space efficiency of symbolic model checking for

systems specified as statecharts. We used these techniques in our analyses of the models of a collision avoidance system and a fault-

tolerant electrical power distribution (EPD) system, both used on commercial aircraft. The techniques together reduce the time and

space requirements by orders of magnitude, making feasible some analysis that was previously intractable. We also elaborate on the

results of verifying the EPD model. The analysis disclosed subtle modeling and logical flaws not found by simulation.

Index TermsÐFormal verification, symbolic model checking, binary decision diagrams, requirements specifications, statecharts,

RSML, TCAS II, partitioned transition relation, automatic abstraction, fault tolerance, avionic systems.

æ

1 INTRODUCTION

FORMAL verification based on state exploration can be

considered an extreme form of simulation or testing:

Every possible behavior of the system is checked for

correctness. Symbolic model checking [1] based on binary

decision diagrams (BDDs) [2] is an efficient state-exploration

technique for finite-state systems. It has been successful in

verifying and in detecting faults in many industry-scale

hardware systems. Its application to nontrivial software or

process-control systems is far less mature, but is increas-

ingly promising. For example, we obtained encouraging

results from applying symbolic model checking to a portion

of a preliminary version of the system requirements

specification of TCAS II, a complex system for mid-air

collision avoidance [3]. The full requirements, comprising

about 400 pages, are written in the Requirements State

Machine Language (RSML) [4], a state-machine language

based on statecharts [5]. In this article, we report on another

case study of applying symbolic model checking to a

statecharts model, that of an electrical power distribution

(EPD) system for Boeing aircraft, and describe in detail

various techniques for optimizing the analyses in these

two studies.
By representing state sets and relations implicitly as

BDDs for symbolic model checking, the sheer number of

reachable states is no longer the obstacle to analysis.
Instead, the limitation is the size of the BDDs, which
depends on the structure of the system analyzed. Consider-
able efforts at formal verification of hardware have been
focused on controlling the BDD size for typical circuits.
However, transferring this technology to new domains may
require alternative techniques and heuristics to combat the
BDD-blowup problem. In this work, we develop some
intuitions about some reasons for BDD blow-ups. We
modify the models and the model checker and use a simple
abstraction technique to improve the time and space
efficiency of the TCAS II and the EPD analyses. Experi-
mental results show orders-of-magnitude reduction in the
time and space requirements. These improvements have
made feasible some analysis that was previously intractable.

The specific techniques that we will discuss are:

. Managing forward and backward traversals to reduce
the size of the BDD generated at each search iteration.
Notably, we find that forward traversals are much
less efficient for our models than backward ones
(Section 4.4) and we further improve backward
traversals by making certain invariants (in particu-
lar, that some events are mutually exclusive) explicit
in the search (Section 4.1).

. Semantics-preserving transformation of the model to
again reduce the size of the BDDs generated. We
identify certain styles for synchronization in state-
charts that are more efficient for symbolic model
checking (Section 4.2). For statecharts not written in
these styles, we give procedures to automatically
modify their internal representations to greatly
improve the performance of their analysis. This is
achieved by transparently incorporating a so-called
microstep counter into the statecharts to take over the
synchronization (Section 4.3).

. More sophisticated conjunctive partitioning of
the transition relation and applying disjunctive

170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

. R.J. Anderson, P. Beame, and D. Notkin are with the Department of
Computer Science and Engineering, University of Washington, Box
352350, Seattle, WA 98195-2350.
E-mail: {anderson, beame, notkin}@cs.washington.edu.

. D.H. Jones and W.E. Warner are with the Boeing Company, PO Box 3707,
MS 7L-70, Seattle, WA 98124-2207.
E-mail: {david.h.jones, william.e.warner}@boeing.com.

. W. Chan was with the Department of Computer Science and Engineering,
University of Washington, Box 352350, Seattle, WA 98195-2350.

Manuscript received 15 Nov. 1999; revised 8 Apr. 2000; accepted 1 May 2000.
Recommended for acceptance by D. Garlan.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112146.

0098-5589/01/$10.00 ß 2001 IEEE

partitioning in an unusual way to reduce the size of
the intermediate BDDs at each iteration. Further
improvements were made by combining the two
techniques to obtain DNF partitioning. (Section 5.1)

. Abstraction to decrease the number of BDD variables.
Given a property to check, we perform a simple
dependency analysis to generate a reduced model
that is guaranteed to give the same results as with
the full model (Section 5.2).

. Short-circuiting to reduce the number of BDDs
generated by stopping the iterations before a fixed
point is reached (Section 5.3).

We provide experimental results showing how each of our
techniques affected the performance of the analyses.
Techniques like short-circuiting and abstraction are con-
ceptually straightforward and applicable to many systems.
Most other techniques were designed to exploit the
semantics and environmental assumptions of many state-
charts models. More specifically, our model of statecharts
responds to environment inputs by performing a macrostep,
divided into a number of microsteps synchronized by
events. Many of our techniques take advantage of the
synchrony hypothesis, which says that a macrostep is assumed
to be atomic with respect to the environment. Particularly
worth mentioning is the technique of using a microstep
counter pointed out above. The technique is intriguing,
especially because it achieved substantial time and space
improvements in our case studies even though the numbers
of state variables, reachable states, and search iterations
were all increasedÐexactly the opposite of what most
existing techniques attempt to do to tame BDD blow-ups.

Other contributions of this line of work are the case
studies themselves. Our analysis of the TCAS II model has
been described in detail elsewhere [3]. In this article, we
report on the Boeing EPD case study. Formal models have
been used increasingly in Boeing to specify and validate
functional requirements of airborne computing systems [6].
One of the modeling languages used is statecharts, thanks
to their intuitive notations, ability to scale, and the
availability of supported tools [7]. Developed for research
purposes, the statecharts studied in this work model a fault-
tolerant electrical power distribution system designed for
use on aircraft. Its purpose is to distribute electrical power
from power sources to power buses via a number of circuit
breakers while tolerating failures in the power sources and
circuit breakers. We were reasonably confident in the
correctness of the model based on simulation results, but
the model-checking analysis disclosed subtle modeling and
logical flaws. Our efforts have been directed at finding bugs
instead of verifying correctness. We give examples to argue
for early use of model checking as a debugging tool because
of the lower costs for analysis and the tendency of similar
errors to recur in various parts of the system.

The rest of the article is organized as follows: We give an
overview of statecharts and our verification approach in
Section 2. Section 3 is devoted to a brief summary of the
TCAS II case study and a more detailed report on the EPD
case study. Discussions on the optimization techniques are
divided into two sections: Section 4 focuses on the
techniques that aim at reducing the size of the BDDs

representing state sets, while Section 5 describes other
techniques. Related work is discussed in Section 6. We
conclude in Section 7 with some overall recommendations.
Preliminary results appeared elsewhere [8], [9].

2 BACKGROUND

In this section, we review the syntax and semantics of
statecharts and RSML and explain our approach to
analyzing them using symbolic model checking.

2.1 Statecharts and RSML

The statecharts language is a popular, informally defined
visual language for specifying complex reactive systems [5]
and the STATEMATE toolset implements a particular
semantics of statecharts [10]. RSML is another language
based on statecharts with slightly different syntax and
semantics [4]. We use statecharts to refer to either language
when the distinctions are immaterial to this work. They
both extend state-machine diagrams with parallelism,
superstates, and broadcast communications. For simplicity,
we discuss only a subset of their features and, in particular,
will not discuss superstates in this paper; the techniques to
be developed apply equally well to systems with super-
states. Instead, our system model consists of a finite number
of parallel local state machines with a finite set of events and
inputs interacting with a nondeterministic environment.

Fig. 1 gives a simple example with two parallel state
machines A and B. State machines are synchronized using
events. Arrows without sources indicate the initial local
states. Other arrows represent local transitions, which are
labeled with the form trig�cond�=acts, where trig is a trigger
event, cond is an optional guarding condition, and acts is a
(possibly empty) list of action events. The guarding condition
is simply a predicate on local states of other state machines
and/or inputs to the system; for example, a guarding
condition may say that machine B is in state 0 and an input
altitude is at least 1,000 meters. The general idea is that if the
trigger event occurs and the guarding condition either is
absent or evaluates to true, then the transition is enabled.

Initially, some external events, along with some inputs
from the environment, arrive, marking the beginning of a
macrostep. The events may enable some transitions as
described above. (An example of an external event might be
ªan intruder entered the airspaceº; an example of an input
from the environment might be a specific reading from an
altimeter.) A maximal set of enabled transitions, collectively
called a microstep, is takenÐthe system leaves the source

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 171

Fig. 1. A statecharts example.

local states, enters the destination local states, and generates
the action events (if any). The system is nondeterministic if
this maximal set of enabled transitions is not unique, that is,
some machine can have more than one transition enabled.
Otherwise, the system is deterministic. All events are
broadcast to the entire system, so the generated events
may enable more transitions. Unless they are regenerated
by other transitions, the events disappear after one micro-
step. The macrostep is finished when no transitions are
enabled. The semantics of RSML adopt the synchrony
hypothesis from synchronous programming languages [11]:
During a macrostep, the values of the inputs do not change
and no new external events may arrive; in other words, the
system is assumed to be infinitely faster than the environ-
ment. Fig. 2 depicts these notions. While RSML enforces the
synchrony hypothesis, STATEMATE optionally allows it.
We assume the synchrony hypothesis, which is central to
the issues and techniques discussed in this paper.

In Fig. 1, assume that w is the only external event, c is a
Boolean input, and machines A and B are in their respective
state 0. When w arrives, if the input c is false, then the
event y is generated. The macrostep is finished since no new
transitions are enabled. Instead, if c is true when w arrives,
the transitions from 0 to 1 in machines A and B are
simultaneously taken and event x is generated, completing
one microstep. Then, a second microstep starts. Notice that,
because of the synchrony hypothesis, the input c must be
true as before and the external event w cannot occur. So,
only the transition from 1 to 2 in machine B is enabled and
taken, generating event z and finishing the macrostep.

In RSML, the guarding condition is often very complex,
so it is specified separately from the diagram in a tabular
form called an AND/OR table. The guarding condition can
refer to the local state of a machine m at the end of the
previous macrostep, using the notation Prev�m�.

STATEMATE allows local transitions not guarded by
events. That is, a transition can have labels of the form
�cond�=acts. Such transitions are enabled when the system is
in the source local state and cond is true. We call these local
transitions condition-driven. Intuitively, instead of checking
the guarding condition only when triggered by an event,
condition-driven transitions continuously poll the guarding
condition. For simplicity, unless explicitly stated otherwise,
we assume the absence of condition-driven transitions.

2.2 Encoding as a Transition System

To analyze statecharts using state-exploration techniques,
we view the statecharts as a transition system �Q;R; I�,
where Q is a finite set of (global) states, R � Q�Q a total
transition relation, and I � Q a set of initial (global) states.
A state in Q is a tuple of the current local state of each state

machine, the set of events occurring, and the values of the
environmental inputs. If �q; q0� is in R, then q is a
predecessor of q0, and q0 is a successor of q. A path is an
infinite sequence of states in which each consecutive pair of
states belongs in R and a trace is a path that starts with
some initial state in I. A state is reachable if it appears on
some trace.

We symbolically encode the global state space Q of a
statecharts system by declaring a set X of state variables as
follows: For each state machine m, declare a state variable
whose range is the local states of m. For each event e,
declare a Boolean state variable. The idea is that the variable
is true if and only if the event occurs. For each input from
the environment, declare a state variable with the same
range (assumed finite). Clearly, this mapping from Q to the
valuations of the state variables is one-to-one. We will not
distinguish between a state variable and its encoded
statecharts entity (local state, event, or input) because of
their simple correspondence.

Given this encoding, the set of initial states I is
represented as

I � Vm2M m � m0 ^
V
e2Ei :e; �1�

where M is the set of state machines, m0 is the initial local
state of m, and Ei is the set of internal events. This simply
says that, initially, each machine is in its initial local state
and all the internal events do not occur, but the external
events and inputs are not constrained.

More interesting is the encoding of the transition
relation R. To illustrate the idea of the encoding, we assume
the system is deterministic for simplicity; for nondetermi-
nistic systems, we refer the reader to [3]. (The techniques in
Sections 4 and 5 are applicable to both deterministic and
nondeterministic systems.) For each state variable var 2 X,
declare a variable var0 that has the same range as var and
intuitively represents its next-state value. Let X0 be the set
of all these primed variables. We would like to define an
expression over X [X0 to specify the relation R.

For each local transition t, let src�t�, dst�t�, trig�t�,
cond�t�, and acts�t� denote its source local state, destination
local state, trigger event, guarding condition, and the set of
action events, respectively. The expression cond�t� is
defined to be true if transition t does not have a guarding
condition. Define mach�t� to be the current state of the
machine in which t is located and an expression en�t� as

en�t� � trig�t� ^mach�t� � src�t� ^ cond�t�; �2�
which represents whether transition t is enabled: It is
enabled when its trigger event occurs, the machine is in the
source state, and the guarding condition is true. For each
machine m, define microm as

microm �
V
tjmach�t��m�en�t� ! mach�t�0 � dst�t��

� �
^ �Vtjmach�t��m : en�t�� ! mach�t�0 � mach�t�
� �

;

�3�
which describes how the machine moves in a microstep.
The first conjunct directs the machine to the destination
state of an enabled transition, while the second conjunct

172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 2. Microstep, macrostep, and synchrony hypothesis.

prohibits the machine from making any state change if none
of the transitions are enabled. For each event e, define
microe as

microe �
W
tje2acts�t� en�t�

� �
$ e0; �4�

which describes whether an event is generated by a
microstep. For each input h, define microh as

microh � : stable! h0 � h; �5�
where stable indicates whether the system is stable. We
define it as

stable � Ve2E : e; �6�
where E is the set of all events. Now, we can define micro
as

micro � Vm2M microm ^
V
e2E microe ^

V
h2H microh; �7�

where H is the set of all inputs. Intuitively, the expression
encodes all the microsteps. To encode the environmental
change across macrosteps, define

env � stable! V
m2M m0 � m ^Ve2Ei : e0

� �
: �8�

When the system is stable, arbitrary external events and
inputs may be accepted. Finally, the transition relation R is
encoded as

R � micro ^ env: �9�
For RSML machines in which Prev�m� for some machine

m appears in some guarding condition, we declare an
additional state variable pm with the same range as m,
conjoin with (1) the expression pm � m0, and conjoin (9)
with the expression

�stable! p0m � m� ^ �: stable! p0m � pm�: �10�
2.3 Symbolic Model Checking

Many properties of a transition system can be expressed in
the Computation Tree Logic (CTL) [12]. Its formulas are
built from propositions (predicates over the state variables),
the usual Boolean operators, path quantifiers A (for all
paths) and E (for some path), and modalities X (next-time),
G (always), and W (weak until), among others, with every
modality immediately preceded by a path quantifier. Each
modality is evaluated over a path and, intuitively, X� means
that � holds on the path starting at the next state, G� means
that � holds everywhere on the path, �W means that �
holds everywhere before holds, and � must hold forever
if never holds. For example, the formula AG:error
asserts that none of the error states are reachable and
AG�request! A�request W response�� asserts that, once
issued, a request will persist unless a response is given.

Given a transition system and a temporal-logic formula,

the model-checking problem asks whether the transition

system satisfies the formula. If not, to provide valuable

diagnostic information, a model checker usually gives a

counterexample, a trace that falsifies the property.
The truth value of a formula can be found by searching

the state space. We define Pre : 2Q ! 2Q to be the set of

predecessors (also called the preimage) of any set S of states
under the transition relation R:

Pre�S� � fq 2 Q j 9q0 2 S: �q; q0� 2 Rg:
Consider the CTL formula AG:error the simplest kind of

temporal property and one that seems to be of common use
in practice. We can characterize the model-checking
problem for the formula in a set-theoretic manner:
Determine whether I \ Pre��E� is empty, where E is the
set of error states (states in which the proposition error
holds) and Pre��E� is the set of states that may eventually
reach an error state. More specifically, it is the least fixed
point of E [Pre�Y � or the smallest state set Y that satisfies
of the equation Y � E [Pre�Y �. The existence of the fixed
point is guaranteed by the finiteness of Q and the
monotonicity of Pre. Fig. 3 shows an iterative algorithm
for computing this fixed point. It starts with Y0 � E and
iteratively computes Yi�1 � Pre�Yi� [Yi until reaching a
fixed point. The set Yi is the set of states that may reach an
error state in at most i transitions. Note that this is
essentially a backward breadth-first search. All other CTL
formulas can be computed similarly as (possibly multiple)
fixed points [12]. In so-called ªexplicitº model checking, a
state set is represented simply by labeling individual states
in the transition system. The method is impractical for
many large systems because of the state-explosion
problem. Much more efficient for large state spaces is
symbolic model checking, in which the model checker visits
the whole set of states at the same time [1].

The main idea is to symbolically encode a state set as a
predicate over the state variables in X, in the same way we
encoded the initial global states I in (1). We can then
manipulate this predicate directly to explore the whole set
without enumerating its elements. Because we are dealing
with finite state spaces, we can make each state variable in
X Boolean by introducing (finitely many) extra state
variables. Therefore, each state set S can be encoded as a
Boolean function S�X�. The transition relation R can be
similarly encoded as a Boolean function R�X;X0�. Intersec-
tion, union, and complementation on sets, respectively,
become conjunction, disjunction, and complementation on
Boolean functions. Predecessor computation can now be
expressed as Boolean operations as well:

Pre�S� � 9X0: R�X;X0� ^ S�X0�: �11�
These Boolean functions can be represented as reduced
ordered binary decision diagrams (BDDs) [2]. Boolean
operations, satisfiability checking, and existential quantifi-
cation can be performed efficiently using BDDs, which,

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 173

Fig. 3. Algorithm for computing Pre��E�.

therefore, can be used to implement the searches described
above. BDDs are canonical, meaning that each Boolean
function has a unique BDD representation up to a chosen
variable order.

The size of the BDDs is a major bottleneck in BDD-based
algorithms. In the worst case, it can be exponential in the
number of variables. In practice, though, it is often small,
even when the set represented is large, but this depends on
the chosen variable order and the dependencies among the
variables.

3 CASE STUDIES

We carried out two case studies to investigate the
effectiveness of symbolic model checking for verifying
software models specified in statecharts or RSML. This
section briefly reviews our previous case study on an
airborne collision avoidance system and describes in more
detail another case study on an aircraft electrical power
distribution system. In both experiments, despite prior
verification efforts using other techniques, we discovered
violations of nontrivial properties using model checking.
(However, many of the analyses were intractable without
the optimizations explained in Sections 4 and 5.) We used
and modified CMU's BDD-based model checker SMV [13]
release 2.4.4 in our studies.

3.1 TCAS II

In a previous case study, we analyzed a portion of a
preliminary version of the system requirements specifica-
tion of the Traffic Alert and Collision Avoidance System II
(TCAS II). The 400-page document is written in RSML.
TCAS II is required by the US Federal Aviation Adminis-
tration on most commercial aircraft that enter US airspace.
When another aircraft intrudes into a defined volume
surrounding the TCAS-equipped aircraft, TCAS II generates
warnings and suggests possible escape maneuvers, called
resolution advisories (RAs), to the pilot. These RAs include
ªClimb,º ªDescend,º ªDo not climb more than 1,000 feet per
minute,º etc.

The complexity of the system stems from the vast
number of inputs from the pilot, altimeter readings, and
ground stations, the complicated logic for deriving RAs to
maintain a safe separation while minimizing disruption, the
needs for avoiding false alarms, etc. This complexity is
partly reflected in the RSML specification as complicated
guarding conditions, some of which occupy many pages of
description. They contain predicates of local states and of
the input variables and often involve nontrivial arithmetic
predicates. While many other researchers conservatively
abstract each arithmetic predicate as an independent
Boolean variable [14], [15], [16], we encode each bit of the
numeric inputs as a Boolean variable, resulting in more
accurate analysis at the expense of requiring more Boolean
variables. In addition, a guarding condition can refer to any
part of the system, so the interdependencies between the
BDD variables are high. These all imply relatively large
BDDs for guarding conditions. On the plus side, the control
flow of the state machines is simple by design and
concurrency among the state machines is minimal. As we
will see, some of the techniques presented later attempt to
exploit these simple synchronization patterns.

We encoded the global state space of the portion of the
specification with 227 Boolean variables, 10 of which are for
events, 55 for the local states, 134 for altitude and altitude
rates (which are integers), 22 for inputs other than altitude
and altitude rates, and six for other purposes. The size of
the state space is about 1:4� 1065. The size of the reachable
state space is at least 9:6� 1056. We checked that certain
transitions are mutually exclusive (otherwise, it would
indicate inconsistencies in the specification), a descent RA
should not be given when the aircraft is close to the ground,
two of the outputs should agree with each other, etc. Several
anomalies were discovered using model checking. The
reader is referred to [3] for details.

3.2 EPD System

In our second case study, we analyzed a statecharts model
of the electrical power distribution (EPD) system on the
Boeing 777 aircraft. Several faults of the model were
uncovered, although we were quite confident about its
correctness based on simulation results. We briefly describe
the model, discuss some results of the analysis, and suggest
how model checking could potentially be used to benefit the
model-based development processes used at Boeing.

3.2.1 General Description

The purpose of the EPD system is to distribute AC and DC
power to other airplane systems. It comprises separate
interconnected distribution systems including main AC
power, backup AC power, DC power, standby power, and
flight controls power. Electrical power is distributed from
power sources to power buses via a number of relayed
circuit breakers. Failures of the power sources or circuit
breakers are automatically detected and isolated.

Fig. 4a depicts part of the system configuration in normal
operations. The power buses l main and r main belong to
the main AC power subsystem and are normally powered
by the generators l gen and r gen, respectively. When l gen
loses its power because of either manual shutdown or
failure, the circuit breakers will be reconfigured automati-
cally to use r gen to power both l main and r main, as
illustrated in Fig. 4b. The same configuration may also
result from failures in the circuit breakers that connect l gen

174 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 4. Handling a power-source failure in the EPD model. The top is

(a) and the bottom is (b).

and l main. The system is supposed to satisfy a number of
stringent requirements, such as the resilience of the power
buses against single or multiple failures in the power
sources and/or the circuit breakers.

A circuit breaker, either open or closed at any moment, is
modeled as a two-state machine and is managed by a
controller. Fig. 5 shows a generic circuit breaker and its
controller. The transitions in the circuit-breaker state
machine are guarded by the complement of a Boolean
input f that indicates a failure, so a failed circuit breaker
does not respond to the controller. The guarding condition c
of the controller is usually a nontrivial predicate relating
inputs to the local states of other circuit breakers and the
power sources. Compared with the TCAS II specification,
though, these guarding conditions seem less complicated
and do not involve arithmetic. However, the model's
synchronization structure is not as simple as that of TCAS II.

We stress that the statecharts model was developed for
research purposes and does not represent the actual
requirements used to develop the on-board system. As
such, the model by intent did not include all the logic
necessary for a complete specification. The model was
intended as a high-level abstraction of the electrical system,
which included only the logic necessary to accomplish the
goals of a wider airplane system analysis [7]. We focus on
the portion of the statecharts that models the main and
backup AC distribution subsystems; other subsystems were
abstracted away manually. There are 33 two-state machines,
23 Boolean inputs, and 34 events. With 11 Boolean state
variables for other purposes, there are altogether 101
Boolean state variables, or about 1027 global states, of which
at least 1015 are reachable.

3.2.2 Results of Analyses

The analyses can be divided into analyses on normal
behaviors (i.e., no component failures) and fault tolerance
(single and multiple failures). Here, we report some of the
more interesting results. Although the model had been
exercised extensively in simulation, several flaws were
discovered using model checking.

Normal Operations. In normal operations, all buses in
the main and backup AC subsystems should be powered in
the stable states. We checked the formula

AG��stable ^ no-failures� ! �main ^ backup��; �12�
where no-failures is a proposition indicating the absence of
failures (each of the 17 failures is represented by an atomic
proposition), and main and backup, respectively, assert that

the main buses (l main and r main) and backup buses are
powered. Note that the formula does not simply ignore
failures; it takes into account scenarios in which failures
occur but are subsequently recovered. The formula was
evaluated true by the model checker.

Not only should the buses be powered when there are no
failures, they should be powered by different sources. We
checked the formula

AG��stable ^ no-failures� ! seperate-sources�; �13�
where the proposition seperate-sources asserts that a power
source is connected to at most one bus. This time, however,
the model checker gave a counterexample revealing a bug
in the model of the circuit breakers. In the counterexample,
r gen initially powers both l main and r main because of a
failure in the circuit breakers. Assume the failed circuit
breaker is modeled by the machine CB in Fig. 5. The
recovery of CB corresponds to the Boolean input f
changing to false. This change alone, however, cannot
trigger any local transition, as the transitions in CB are
guarded by events. So, when CB recovers, the system ends
up in a situation in which there are no failures, but r gen is
still powering both main buses, violating the formula. We
refer to this bug as B1, which we fixed by making CB go to
the local state indicated by its controller upon recovery.
With this bug fix, the formula was successfully verified.

Fault Tolerance. The main buses should in fact tolerate
one failure in the power sources or circuit breakers. We
checked the formula

AG��stable ^ at-most-1-failure� ! main�; �14�
where the proposition at-most-1-failure has the obvious
meaning. The model checker gave a counterexample that
again reveals the bug B1, although the scenario is more
complex. It involves a failure in a circuit breaker, a change
in inputs to induce a state change in its controller, the circuit
breaker's recovery, and a subsequent failure in one of the
power sources. After we fixed the bug and rechecked the
formula, the model checker gave another counterexample
that disclosed a logical flawÐone of the circuit breakers
does not respond to a failure in another circuit breaker that
it is supposed to handle, resulting in power loss to both
main buses. We refer to this bug as B2. (We have not
attempted to fix this bug in this study.)

We initially thought that the backup buses should
survive two failures. We checked this property, to which
the model checker gave a counterexample with only one of
the backup buses operating in the presence of two failures.
After carefully examining the trace and studying the
requirements document, we actually realized that the
property is not supposed to holdÐeither one, but not
necessarily both, of the backup buses should operate in that
situation. We modified the formula accordingly:

AG��stable ^ at-most-1-failures� ! at-least-1-backup�:
�15�

The model checker responded with a counterexample
exposing a logical flaw similar to B2 above. The counter-
example involves simultaneous failures of two power
sources, their subsequent recovery, and then simultaneous
failures of two circuit breakers.

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 175

Fig. 5. A circuit breaker (CB) and its controller (CTRL).

Miscellaneous. The formulas above are only concerned
with stable states. One might expect certain causality to be
maintained even in the unstable states. For example, the
formulas do not prevent the power from going off within a
macrostep before failures occur as long as the right thing
happens at the end of the macrostep. So, we evaluated
formulas such as

AG�main! A�mainW:no-failure��; �16�
which asserts that, even in the unstable states, if the main
buses are powered, then the power should persist unless a
failure occurs. Interestingly, the model checker showed
various scenarios violating such formulasÐsome situations
that we do not regard as failures can cause transient power
loss to the buses. Although this does not reflect any flaw in
the system, it is still an interesting find as the scenarios were
not obvious to us before the analysis. Such results can
provide insights into the design of the model and can reveal
design flaws in some cases.

Other properties that we verified include the impossi-
bility of having certain circuit breakers closed simulta-
neously (which would indicate some illegal system
configuration) and other sanity checks, such as the property
that if no power sources are operating, then no buses should
be powered.

3.2.3 Discussion

A major goal of the case study was to evaluate the use of
model checking as a debugger in support of requirements
validation at Boeing by providing an additional debugging
tool over and above the existing use of simulation. The use
of modeling and simulation to support requirements
validation at Boeing is described in [6]. In this process, the
written specification is developed first and then a model is
created to assist in validation of the requirements. Typi-
cally, the model is simulated and executed by providing
user-oriented inputs to the model and monitoring responses
through panel graphics that represent actual system
interfaces. Model checking could potentially help to ensure
that the model reflects other key design goals in that many
of the system properties checked in this case study are not
revealed in the operator interface.

Some flaws found during model checking might have
been found if simulation runs had been explicitly defined to
test conformance. However, the simulations would have
had to include an extensive test suite, which included cases
of intermittent failures of components to find the class of
errors found during our model checking. Model checking
appears to be particularly beneficial in helping find these
ªcorner casesº with a minimum of additional effort.

The analysis described was done several years after the
development of the model. However, it is clear to us that
use of model checking during the initial development of
the model would have detected subtle flaws before they
were repeated throughout a much larger model. For
example, the bug B1 repeats in every state machine that
models a circuit breaker and bugs similar to B2 appear in
several places. In fact, some of these flaws could be found
by focusing on the main AC subsystem and ignoring the
backup AC subsystem.

4 STATE-SET OPTIMIZATIONS

Many of the analyses in the case studies were feasible only
after we performed various optimizations. A major
bottleneck in the analyses was the size of the BDDs
representing state sets. In this section, we will see several
techniques that we used to reduce the BDD size, some-
times by orders of magnitude. Some of the techniques are
quite different from the common techniques used in
hardware verification and are perhaps even counter-
intuitive. All our TCAS II experiments were performed
on a Sun Sparc 10 with 128MB of main memory, while
other data were collected on a Sun Ultra 2 with 256 MB of
main memory. Note that the TCAS II model analyzed was
slightly different from the one examined in the initial
study [3], so the data reported there should not be directly
compared with the results in this paper.

4.1 Pruning Backward Traversals

Recall from Section 2.3 that, to evaluate the CTL formula
AG:error, we compute the fixed-point Pre��E� backward
from the set E of error states and see whether its
intersection with the set of initial states is empty. A
disadvantage of backward traversals is that they are likely
to visit many unreachable and, thus, irrelevant, states.
However, we can prune a backward traversal if we know
some upper bound on the reachable states. Notice that any
invariant over the state variables describes a condition
satisfied by every reachable state and, thus, corresponds to
such a bound. Some invariants, particularly those with
small BDDs, can speed up backward traversals if they are
incorporated into the search. In particular, the transitions in
some statecharts cannot be taken at the same time, but this
fact is lost in backward traversals. A specific invariant that
we find useful to rectify this problem in TCAS II is the
mutual exclusion of these transitions' trigger events.

4.1.1 An Example with Mutually Exclusive Events

Consider the system in Fig. 6. Event x0 is the only external
event. The conditions c1 and c2 are Boolean inputs and the
machines are initially in 0. When x0 occurs, machine A1

moves between states 0 and 1 depending on the condition c1.
If A1 changes its state, in the next microstep, machine A2

may change its state depending on the condition c2. Note
that at most one local transition can be enabled at any time.
In particular, the transitions in A2 can only be taken

176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 6. State machine with mutually exclusive events and nonoblivious

synchronization.

after those in A1. (The example also demonstrates
ªnonoblivious synchronization,º which we will discuss
later in Section 4.2.).

However, a backward traversal may consider many
simultaneous transitions, which cannot occur in any
execution. More explicitly, suppose we want to check
whether machines A and B can both be in state 1
simultaneously. Traversing backward, we find that, one
microstep before, the system may be in one of the three
situations: A in 0 and B in 1, A in 1 and B in 0, or both
machines in 0. The last case, however, is not possible
because events x0 and x1 cannot occur at the same time.
(Notice that this is true only because we assume the
synchrony hypothesis.) When there are more state
machines and the guarding conditions are complex, such
unnecessary exploration of concurrent transitions may
cause BDD blow-up.

4.1.2 Pruning Using Invariants

Sometimes we can greatly simplify the search by observing
that the events (x0, x1, and x2 in our example) are mutually
exclusive. This invariant can be incorporated into the
traversals by simply conjoining it with the transition
relation R. That is, if � is the set of mutually exclusive
events, we can compute the conjunction of R andV

e1 ;e22�

e1 6�e2 ;
:�e1 ^ e2�;

and use the result as the transition relation in the
traversals.1

This technique requires finding a set of mutually
exclusive events. To do this, we may perform a simple
conservative static analysis on the precedence relation of the
events. We define � to be a binary relation over the events
such that, for each event e1 and e2, we have e1 � e2, or e1

precedes e2, if there exists a transition labeled with e1�c�=e2

for some guarding condition c. We assume that � is acyclic,
that is, �e; e� =2 �� for each e, where �� is the (nonre-
flexive) transitive closure of � . Many systems have this
property because it prevents the nontermination of macro-
steps, a design flaw that is potentially hard to locate.

For each event e, let ��e� be the smallest set of integers
such that

1. 1 2 ��e� if e is an external event and
2. for each e, if i 2 ��e�, then i� 1 2 ��e0� for each e0

with e � e0.

Intuitively, i is in ��e� if e can occur just before the ith
microstep of some macrostep. Since � is acyclic, the set ��e�
is finite and the values of ��e� for all e can be computed in
time cubic in the number of events. Two events e1 and e2 are
then mutually exclusive if the intersection of ��e1� and ��e2�
is empty. For Fig. 6, we have x0 � x1 � x2, ��x0� � f1g,
��x1� � f2g, and ��x2� � f3g. So, all the events are mutually
exclusive.

As an alternative to performing this static analysis, the
designer or analyst may know such a set of mutually
exclusive events already because the system's synchroniza-
tion structure may have been designed under careful
consideration. This is indeed the case for the portion of
TCAS II that we looked at: Its set of mutually exclusive
events is evident.

4.1.3 Experimental Results

Table 1 shows the results of applying the technique to the
TCAS II model. Properties T1 through T4 refer to Increase-
Descent Inhibition, Function Consistency, Transition Con-
sistency, and Output Agreement described in [3].
Property T5 refers to an assertion in [17, p. 49] that two
machines, called Corrective-Climb and Corrective-Descend,
should not be in their local states Yes simultaneously
(comments in our version of the TCAS II requirements,
however, explicitly say that the two local states are not
mutually exclusive). The property was proven false by the
model checker. This property was infeasible to check
without pruning. For other properties, the speedup
obtained was as much as a factor of 9.

4.2 Oblivious vs. Nonoblivious Synchronization

Although the technique above works well for TCAS II, a
limitation is that it is only applicable if the events are
mutually exclusive. However, sometimes transitions are
mutually exclusive even though their trigger events are not,
as in the case of our EPD model. Before we see a technique
to overcome this restriction, we first look at another
performance issue and then tackle these two problems
together in Section 4.3. Specifically, we will see in this
section that two models with similar intuitive behaviors,
but written in different styles, can incur dramatically
different costs in the analyses.

Fig. 7 shows a system whose stable-state behaviors are
identical to the one in Fig. 6. The main difference between
the two systems is that, in Fig. 6, event x1 always occurs
after x0, while, in Fig. 7, event x1 is not generated if there is
no state change in machine A1. In other words, in Fig. 7, an
event signals the completion of a state machine's execution

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 177

1. This can be done in SMV by putting the invariant in a TRANS
statement. Or, we could use the invariant to simplify the state sets with a
technique called ªdon't-care minimization.º This can be achieved with the
INVAR keyword in the recent versions of SMV.

TABLE 1
Performance of Pruning for TCAS II

Time is in seconds and number of BDD nodes is in thousands. MX represents pruning using mutually exclusive events and1 indicates timeout after
one hour.

and the sequence of events generated is independent of
what happens locally in the state machines; we say that
such systems have oblivious synchronization. In Fig. 6, an
event signals a state change and the sequence of events
generated depends on which local transition is taken; we
call such systems nonoblivious. Despite the differences, the
behaviors of the two systems are identical as far as stable
states are concerned.

A few observations are worth noting. In the nonoblivious
system, the events are used for both synchronization
(executing machine A2 after machine A1) and local control
(directing machine A2 to the appropriate local state) and the
specifier is more concerned about the local, microstep-level
interaction between the two machines. In contrast, in the
oblivious system, events are merely used for synchroniza-
tion; the local control logic is specified in the guarding
conditions and the specifier foresees the overall control flow
between the machines in a macrostep and constructs events
to sequence the machines in the desired order. While the
EPD model and virtually all of the STATEMATE machines
that we have seen are not oblivious, the portion of the
RSML specification of TCAS II that we analyzed (and, in
fact, most of the entire specification) is oblivious.2 This is
consistent with Harel and Naamad's comments that in
RSML a macrostep appears to be the ªbasic operation,º
while, in STATEMATE, a microstep is the basic operation
[10, p. 323]. Notice, however, that the differences arise not
from the semantics of the language, but from the distinct
mental models of the system that the specifiers have. But,
we note that the oblivious style of synchronization is so
prevalent in TCAS II that RSML has special syntactic
features to support it: Because a state change cannot be
detected by a trigger event, the Prev function is used
extensively to reference the previous states directly.
Furthermore, so-called ªidentity transitionsº are specified
in a separate table to avoid cluttering the diagrams with
self-loops as in Fig. 7.

4.2.1 Difference in Efficiency of Analyses

Whether one style is better than the other for specification
purposes is beyond the scope of this article. Rather, we are

interested in the performance difference in model checking.
We have observed in our experiments that the TCAS II
model, written in the oblivious style, is more efficient to
analyze than the nonoblivious EPD model. Indeed, while
many properties of TCAS II could be checked in our initial
study, none of the nontrivial analyses of the EPD system
were feasible without using the optimizations presented
later, even though the number of state variables in the EPD
model is only half of that of the TCAS II model.

Intuitively, the decoupled synchronization and local
control of oblivious systems induces fewer dependencies
among the state variables, potentially keeping the BDDs
smaller. In particular, nonoblivious systems have many
more ways to finish a macrostep than oblivious ones and
a backward search from the stable states needs to capture
all these possibilities, producing larger BDDs. In addition,
because each macrostep in an oblivious model has the
same length, a search that is breadth-first with respect to
microsteps is also breadth-first with respect to macro-
steps. However, for nonoblivious models, in which the
lengths of the macrosteps vary, the search is not breadth-
first with respect to macrosteps, reducing the ªregularityº
in the state sets.

To elaborate, we extend � (first defined in Section 4.1.2)
to a binary relation over the events E together with a special
symbol ?, which intuitively represents stable states: In
addition to the definition given earlier, for each event e, we
have e � ? if there exists a global state q in which e occurs
and q has a stable successor state. Fig. 8 shows the extended
precedence relations for the nonoblivious and oblivious
systems in Figs. 6 and 7. Note that there are fewer edges
pointing to ? in Fig. 8b; for example, the edge �x0;?� is
absent because x0 always triggers x1 in Fig. 8a and, thus,
never immediately results in a stable state.

To see that this makes a difference in the analysis, let us
trace what happens when we search backward from the
stable states. Fig. 9 shows the intuition for the nonoblivious
model. In Fig. 9a, we lay down every possible sequence of
events in a macrostep in the nonoblivious system; the
diagram is obtained from Fig. 8a by tracing all the paths
starting from the external event x0. The backward search
can now be illustrated by traversing backward from ? in a
breadth-first manner. Figs. 9b, Fig. 9c, and Fig. 9d show the
first few iterations. In the first iteration, we visit all the
stable states. In the second iteration, we visit states with
either x0, x1, or x2 occurring. Because the search has now
reached the beginning of the first macrostep in Fig. 9c, in the
next iteration in Fig. 9d, we need to start searching
backward from the end of all macrosteps again. That is,
the BDD needs to represent the states in different macro-
steps, possibly resulting in a loss in regularity and blowing
up the BDD as a result.

178 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

2. Indeed, the simple control flow prompted [18] to get rid of events
altogether in their new requirements language SpecTRM-RL.

Fig. 8. The extended precedence relation� . The top is (a), nonoblivious;

the bottom is (b), oblivious.

Fig. 7. Oblivious Synchronization The stable-state behaviors are

identical to those in Fig. 6.

Fig. 10 shows the search for the oblivious model. Note
that the sequence of events generated is always the same, so
the search seems simpler. For example, in the second
iteration, we visit only states in which x2 occurs, as opposed
to states in which either x0, x1, or x2 occurs as in the other
case. (The BDD there is larger because of the additional
constraints from x0, x1, and the state machines triggered by
them.) More importantly, because every macrostep here has
the same length, the search is breadth-first with respect to
macrosteps as well as microsteps, making the state sets in
the traversal more regular.

4.2.2 Experimental Results

As mentioned, although the analyses of the oblivious
TCAS II model were generally successful, our initial
attempt to analyze the nonoblivious EPD model failed
miserablyÐeven trivial properties could not be analyzed
in hours of CPU time and hundreds of megabytes of
memory. It is conceivable that the difference in

performance is due to factors other than the synchroniza-

tion styles, but we can confirm through a simple

experiment that the styles can indeed have a large impact.
We scaled up the systems in Figs. 6 and 7 in the obvious

wayÐwe increased the number of state machines to a

parameter n and composed the machines in a serial
fashion. We checked whether it is possible to have

machine Anÿ1 in state 0 and machine An in state 1 when

the system is stable. The Appendix lists the SMV

programs used.
Table 2 summarizes the results. We analyzed every

model without any optimizations (base) and with pruning

(MX). (The column marked MC will be explained in

Section 4.3.) The results show that the nonoblivious models

can be much less efficient to verifyÐthe time required to
compute the fixed points for the models with 20 state

machines differs by an order of magnitude in the base case.

Pruning using mutually exclusive events (MX) facilitates
the analyses of every model: There is up to a factor of 2.7

reduction in time. But, the gap between the two styles

remains large.
Note that we cannot simply add self-transitions to turn a

nonoblivious model into an oblivious one because the
extraneous events generated can potentially change the

behaviors of the system. We need a more sophisticated

technique to make the analyses of nonoblivious models

more efficient.

4.3 Microstep Counter

In Sections 4.1 and 4.2, we saw two reasons for large BDDs.
Armed with those intuitions, we attack the problems by

systematically modifying the transition system to prune

backward searches and to decouple the synchronization

from the local control while preserving the semantics of the
model. We achieve this by incorporating a microstep counter

into the system and making every macrostep equal in

length. The counter is oblivious in that its behaviors do not

depend on the internal events or the state machines and is
used to guard every local transition.

4.3.1 Construction of the Microstep Counter

In Section 4.1, we have defined a set ��e� for each event e

such that it contains an integer i if event e can occur just

before the ith microstep. Observe that the maximum length l

of a macrostep is the largest integer in ��e� for any e. For
Fig. 6, we have ��x0� � f1g, ��x1� � f2g, ��x2� � f3g, and,

therefore, l � 3. Note that some macrosteps may have fewer

than l microsteps.

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 179

Fig. 9. Backward search for the nonoblivious model. The topmost is

(a), representing all event sequences. The next three are (b), (c), and

(d), representing the first, second, and third iterations, respectively.

Fig. 10. Backward search for the oblivious model. The top is (a), showing

the only possible event sequence. The next three are (b), (c), and (d),

showing the first, second, and third iterations, respectively.

TABLE 2
Performance (Time in Seconds) for Computing Fixed

Points for the Parameterized Examples

Now, to symbolically encode a statecharts model as a

transition system, in addition to the usual state variables

defined in Section 2.2, we declare a microstep counter mc to

range from 0 to l. The behavior of the microstep counter

depends only on the set Ex of external events.

Modification 1 (Microsteop counter). Let s denote
W
e2Ex

e

(some external event occurs in the current state) and s0

denote
W
e2Ex

e0 (some external event occurs in the next

state). We conjoin the symbolic encoding of the initial

states I in (1) with

�:s! mc � 0� ^ �s! mc � 1�
and conjoin the transition relation R in (9) with

��mc � 0 ^ :s0� ! mc0 � 0�
^ ��mc � 0 ^ s0� ! mc0 � 1�
^ �0 < mc < l! mc0 � mc� 1�
^ �mc � l! mc0 � 0�:

Stability now depends only on the microstep counter:

Modification 2 (Stability). The expression stable is now

defined as mc � 0.

The new rules intuitively say the following: If no external

event occurs in the initial state, then the system is

considered stable and mc is initialized to 0. Whenever

some external event occurs, mc becomes 1 in the same state

and a macrostep begins. The value of mc is then

incremented by 1 in every subsequent microstep until the

value reaches l. At that point, it will be reset to 0 in the

successor states and the system will be stable. Note that the

internal events and the local states do not come into the

picture and that every macrostep has exactly l microsteps.
Clearly, the local transitions in the statecharts are

unaffected by the changes, but the stable states may be

delayed, as illustrated in Fig. 11Ðwhen the original system

is stable, the modified system may still be incrementing mc.

However, because the microstep counter is not visible to the

user, the modified system will not produce any visible

change until stable. Formally, the system stutters in the

interim [19] and all ªstutter-invariantº CTL formulas,

including those without the next-time X operator, are

preserved by stuttering [20]. (Formulas with the X operator

can count the number of microsteps and thus may not be

preserved.)
Our final modification uses the microstep counter to

guard transitions.

Modification 3 (Guards). For each transition t, the expres-
sion en�t� in (2) is now defined as

mc 2 ��trig�t�� ^ trig�t� ^mach�t� � src�t� ^ cond�t�:

Note the extra conjunct mc 2 ��trig�t��. One can intui-
tively think of the new rule above as changing a transition
label from

e1�cond�=e2 to mc 2 ��e1� �e1 ^ cond�=e2:

In other words, the trigger event e1 becomes part of the
logic of the guarding condition and the transition is now
triggered by the oblivious microstep counter. It is in this
sense that we think of the modification as decoupling the
local logic from the synchronization. Notice, however, that
this modification cannot affect the system's behavior
because, in any reachable state, the occurrence of e1 implies
mc 2 ��e1�. This can be proven by induction on the
definition of �. So, the inclusion of mc 2 ��e1� is redundant
as far as forward behaviors are concerned. We make the
following claim:

Claim 1 Correctness. If the relation � is acyclic, then
Modifications 1-3 preserve every CTL formula that does not
contain the X operator and does not refer to the value of mc
(except in indirectly comparing it with 0 by referencing stable).

4.3.2 Benefits of Microstep Counter

To see how these modifications help, consider again our
nonoblivious system in Fig. 7. Fig. 12 shows the modified
machines with transitions guarded by the microstep
counter. In this new system, we no longer have x0 � ?
because, by the construction of mc, the external event x0 can
only occur when mc � 1, but the system is stable only when
mc � 0 (which cannot happen immediately after mc � 1).
Similarly, we rule out x1 � ?. So, the relation � now
becomes exactly the same as the one in Fig. 8b instead of
Fig. 8a. Fig. 13 shows what the event sequences look like in
this new machine. Because every macrostep is identical in
length, the search becomes breadth-first with respect to
macrosteps (in addition to microsteps), just as in the case for
the oblivious system.

To see that the modifications help prune unreachable
simultaneous transitions in backward searches, observe that
the microstep counter in Fig. 12 makes it explicit that the
transitions in machines A1 and A2 are mutually exclusive.
The technique here is more general than using mutual

180 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 11. Effects of microstep counter on system behaviors.

Fig. 12. Transitions guarded with microstep counter.

exclusion of events in Section 4.1. For example, if in some
system we have ��e1� � f1; 2g and ��e2� � f2g, then the
microstep counter makes it clear that transitions triggered
by e1 and e2 cannot be enabled simultaneously when
mc � 1, even though e1 and e2 may not always be mutually
exclusive (i.e., when mc � 2).

Because our construction of the microstep counter makes
certain macrosteps longer, the technique generally results in
an increased number of iterations to reach a fixed point,
affecting the performance in a negative way. Nevertheless,
this impact is usually negligible compared with the benefits
of reducing the BDD size. The lengthened macrosteps also
introduce extra states in a counterexample, but these states
are easy to detect and can be removed to recover the actual
counterexample.

4.3.3 Experimental Results

The use of microstep counters was crucial for the analyses
of the EPD model discussed in Section 3.2Ðnone of the
interesting properties could be analyzed within two hours
of CPU time without using the optimization. Table 3 shows
the results of the technique. All the searches were
performed on the model without fixing the bugs B1 or B2.

The columns marked MC in Table 2 show the results of
applying the technique to the parameterized examples. (The
Appendix gives the SMV code used in the experiment.) The
microstep counter dramatically improved the performance
for the nonoblivious models by up to a factor of 19, making
them more efficient to analyze than the oblivious models.
Here, the slight advantage of the nonoblivious models
stems from the fewer number of state variables because the
previous states of the machines are not encoded.

4.3.4 Condition-Driven Transitions

Extending our techniques to handle condition-driven
transitions requires a more general framework and we
omit the details here. The basic idea, though, remains the
same. Specifically, when we encode a transition t, we want
to conjoin its guarding condition with a new proposition
mc 2 ��t�, where ��t� is a set that includes an integer i if
transition t can be taken in the ith microstep. For systems
with every transition triggered by some event, the set ��t� is
simply ��e� with e being the trigger event of t, as we saw in
Modification 3. In the presence of condition-driven transi-
tions, we can still compute � statically in many common
cases, although the procedures are more involved.

4.4 Forward vs. Backward Traversals

So far, we have been focusing on searching from the set E of
error states backward to find the set I of initial states.
Clearly, an alternative approach is to compute a fixed point
forward from the initial states. More explicitly, recall that Q

is the set of global states, R � Q�Q is the set of global
transition relations, and that

Pre�S� � fq 2 Q j 9q0 2 S: �q; q0� 2 Rg:
In the backward approach, we check whether I \ Pre��E� is
empty. For the forward approach, we define Succ�S� as

Succ�S� � fq0 2 Q j 9q 2 S: �q; q0� 2 Rg;
the set of states reachable from S in one transition, and
define Succ��I� as the least fixed point of �Y : I [Succ�Y �,
or the set of reachable states. An error state is then reachable
if and only if the intersection of E and Succ��I� is not
empty.

4.4.1 Performance Difference between Forward and

Backward Traversals

Although forward and backward traversals are similar in
principle, this forward approach performed poorly in our
case studiesÐthe model checker was unable to compute the
reachable states within hours of CPU time. A backward
traversal often takes fewer iterations to reach a fixed point
than a forward traversal because the set of error states is
usually more general than the set of initial states. However,
the problem here is not the number of iterations, but rather
the size of the BDDs generated. In our experiments, the
BDDs generated in backward traversals usually have
between hundreds to at most tens of thousands of BDD
nodes, while, in forward traversals, they can be two or more
orders of magnitude larger. The EPD model with the
microstep counter was the only model in our two case
studies that was feasible to analyze using a forward search.
But, even so, as shown in the column ªforwardº in Table 3,
it was at least an order of magnitude slower than backward
traversals. Nevertheless, the verification of many hardware
systems tends to benefit, rather than suffer, from forward
traversals [21], [22].

Partly inspired by [23], we believe that the inefficiency is
mainly due to the complicated invariants of TCAS II and the
EPD system, which are maintained by forward but not
backward traversals. Although, as argued in Section 4.1,
invariants can sometimes improve search efficiency, para-
doxically, keeping all invariants can hurt performance.
Consider again machine A1 in Fig. 7. If event x1 is only
generated in A1, then an invariant of the system is that,
whenever event x1 has just occurred, machineA1 is in state 0
if and only if condition c1 is true. If the BDD for c1 is large,
the BDD for the invariant is as well. There are likely to be
many such implicit invariants in the system and their
conjunction may have a large BDD representation even if

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 181

Fig. 13. Event sequences of the nonoblivious system with microstep

counter. ; indicates a stuttering state in which no events occur.

TABLE 3
Performance of Using Microstep Counter for the EPD Model

Without the microstep counter, every formula could not be evaluated
within two hours of CPU time. Properties E1 through E5 refer to (14),
(13), (12), (16), and (15) in Section 3.2.2, respectively. The order refers
to the relative difficulty (based on time) in analyzing them. The rightmost
column will be explained in Section 4.4.

they individually induce small BDDs. In addition, invar-
iants may globally relate different state machines, some-
thing also likely to result in large BDDs. Forward traversals
maintain all such invariants, so, intuitively, the BDDs for
forward traversals tend to blow up in size. In particular, the
set of reachable states is exactly the conjunction of all
invariants of the system, so its BDD is likely to be large too,
making the computation of reachable states an intractable
operation. In low-level hardware verification, the BDDs
often remain small because each invariant is usually
localized and involves only a small number of state
variables. However, this is not the case in our statecharts
models.

For backward traversals, the situation is quite different.
For example, there are no counterparts of the invariant
mentioned above when backward traversals are used
because the truth value of c1 does not determine the state
of the system before the microstep. Certainly, some
different (backward) ªinvariantsº are maintained in back-
ward traversals, but they tend to depend on the states from
which the search starts and, for our systems, their BDDs
tend to be smaller (or can be made smaller using the
techniques presented).

4.4.2 Implications on Counterexample Search

In addition to fixed-point computations, the performance
difference in forward and backward traversals also has an
impact on counterexample searchÐduring our initial
analysis of TCAS II, we found that, when a property was
disproved in a few minutes using backward search, finding
a counterexample might take hours. The reason is that SMV,
the model checker that we used, uses a forward search to
find counterexamples and suffers from the BDD blowup
pointed out above. Fig. 14 shows the original counter-
example search algorithm used in the model checker. Let
Q0 be any nonempty subset of Pre��E� \ I. Iteratively
compute Qi�1 � Succ�Qi� [Qi until reaching E. The set Q0

can be any nonempty subset of the intersection, but it is
convenient to choose Q0 to be an arbitrary singleton set. The
set Qi is the states that are reachable from Q0 in at most i
transitions. We obtain a counterexample (Fig. 15) by tracing
backward from Qm \ E. Start with some qm 2 Qm \ E and
iteratively pick some qiÿ1 2 Pre�qi� \Qiÿ1 to obtain a
counterexample q0; q1; . . . ; qm.

The first, forward traversal in Fig. 14 was the bottleneck.
The sequence of successor state sets required large BDDs.
To solve the problem, our colleague Steve Burns modified
the counterexample search routine in the model checker,
resulting in substantial speedup. The idea, illustrated in
Fig. 16, is to remember every Yi computed in Fig. 3 (our

actual implementation stores the difference Yi n Yiÿ1 instead

of Yi) and use them to restrict the counterexample search.

Start with some q0 2 Yn \ I and iteratively pick some qi 2
Succ�qiÿ1� \ Ynÿi to obtain a counterexample q0; q1; . . . ; qn.

This same algorithm is used in other model checkers as

well [23]. Note that, although a forward traversal is still

required, the BDDs produced are much smaller because, at

each step, only a single state is involved in the computation

of successors. Before, the counterexample search would

spend hours of CPU time and hundreds of megabytes of

memory and still could not finish. Now, a counterexample

can be found in just a few seconds.

5 OTHER OPTIMIZATIONS

Apart from reducing the BDD size for state sets, we can

improve the performance of symbolic model checking by

reducing the BDD size for the transition relation by

removing system components that are irrelevant to the

property being checked or by reducing the number of

search iterations. We will look at each of these techniques in

this section.

5.1 Partitioning Transition Relations

A common bottleneck of model checking is the BDD size

for the transition relation, which can be reduced by

conjunctive or disjunctive partitioning [24]. The former can

be used naturally for statecharts and we have modified

SMV to partition the transition relation more effectively.

We also apply disjunctive partitioning, which is normally

used only for asynchronous systems. Combining the two

techniques, we obtain DNF partitioning. As we will see, the

issues in this section are not only the BDD size for the

transition relation, but also the size of the intermediate

BDDs generated for each predecessor computation. We

will also show some experimental results of partitioning

the TCAS II model in various ways.

182 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 14. Standard forward traversal underlying original counterexample

search algorithm.
Fig. 15. Original Algorithm for counterexample search.

Fig. 16. Modified algorithm for counterexample search. The sets Yi are

computed in Fig. 3.

5.1.1 Background

We first review the idea of conjunctive and disjunctive
partitioning. The transition relation R is sometimes given as
a disjunction D1 _D2 _ � � � _Dj and the BDD for R can be
huge even though each disjunct has a small BDD. So,
instead of computing a monolithic BDD for R, we can keep
the disjuncts separate. The predecessor computation shown
in (11) in Section 2.3 can be easily modified by distributing
the existential quantification over the disjunction. We thus
have

Pre�S� � 9X0: R�X;X0� ^ S�X0�
� 9X0: �D1�X;X0� _D2�X;X0� _ � � �
_Dj�X;X0�� ^ S�X0�
� d1�X� _ d2�X� _ � � � _ dj�X�;

where, for 1 � i � j,
di�X� � 9X0:Di�X;X0� ^ S�X0�:

So, we can compute the predecessors without ever building
the BDD for R. Successor computation is symmetric.

If R is given as a conjunction C1 ^ C2 ^ � � � ^ Ck, we can
still keep the conjuncts separate as above, but predecessor
computations become more complicated. The problem is
that existential quantification does not distribute over
conjunctions, so it appears that we have to compute the
BDD for R anyway before we can quantify out the variables.
A trick to avoid this is early quantification. Define
X01; X

0
2; . . .X0k to be disjoint subsets of X0 such that their

union is X0 and, for 1 � i � k, the conjunct Ci does not
depend on any variable in Xp for any p < i. We compute

c1�X;X0� � 9X01: C1�X;X0� ^ S�X0�
c2�X;X0� � 9X02: C2�X;X0� ^ c1�X;X0�

..

.

Pre�S� � ck�X� � 9X0n: Ck�X;X0� ^ ckÿ1�X;X0�:
The intuition is to quantify out variables as early as possible
and hope that each intermediate ci for 1 � i < k remains
small. The effectiveness of the procedure depends critically
on the choice and ordering of the conjuncts C1, C2; . . . ; Ck.

5.1.2 Determining a Conjunctive Partition

We cannot easily construct the monolithic BDDs for the
transition relations for our TCAS II and EPD models, but
each transition relation is naturally specified as a conjunc-
tion, so we can use conjunctive partitioning. Although SMV
supports this feature, it determines the partition in a
simplistic way: An SMV program consists of a list of
parallel assignments whose conjunction forms the transition
relation. The model checker constructs the BDDs for all
assignments and incrementally builds their conjunction in
the (reverse) order they appear in the program. In this
process, whenever the BDD size exceeds a user-specified
threshold, it creates a new conjunct in the partition. So, the
partition is solely determined by the syntax and no heuristic
or semantic information is used.

To better determine the partition, we changed the model
checker to allow the user to specify the partition manually.

We also implemented in the model checker a variant of the
heuristics by [25] and [26] to automatically determine the
partition. The central idea behind the heuristics is to
greedily select conjuncts that allow early quantification of
more variables while introducing fewer variables that
cannot be quantified out. Our implementation of the
heuristics worked quite well. The partitions generated
compared favorably with, and sometimes outperformed,
the manual partitions that we tried.

5.1.3 Disjunctive Partitioning

Disjunctive partitioning is superior to conjunctive partition-
ing in the sense that ordering the disjuncts is less critical
and that each intermediate BDD is a function of X (instead
of X [X0) and, thus, tends to be smaller.

Unfortunately, when the transition relation R is a
conjunction, in general there are no simple methods for
converting it to a small set of small disjuncts. If we define a
cover �1�X;X0�, �2�X;X0�; . . . ; �j�X;X0� whose disjunction
is a tautology, then we can indeed disjunctively partition R
by distributing R over the cover:

R � ��1 _ �2 _ � � � _ �j� ^R
� D1 _D2 _ � � � _Dj;

where, for 1 � i � j,
Di � �i ^R � �i ^ C1 ^ C2 ^ � � � ^ Ck:

But ,for most choices of covers, each Di is still large.
For statecharts in which most events are mutually

exclusive, such as the portion of TCAS II that we looked
at, we can use these events, say u1; u2; . . . ; ujÿ1, to form a
cover.

�i � ui ^
V

1�p<j
p 6�i
:up;

for 1 � i < j, and

�j � :u1 ^ :u2 ^ � � � ^ :ujÿ1

�j�1 � :�1 ^ :�2 ^ � � � ^ :�j:
In other words, �i corresponds to the states in which only
ui has just occurred, �j, none of the events have, and �j�1,
at least two of the events have. They clearly form a cover.
We made two observations. First, we can drop �j�1, which
is a contradiction because of the mutual exclusion
assumption. Second, the conjuncts in our symbolic
representation of R in Section 2.2 have antecedents which
are predicates over the events. For example, en�t� requires
its trigger event trig�t� to be true. If the event is, say, ui for
some 1 � i < j, then the BDD for trig�t� is relevant only to
the disjunct Di. So, each disjunct may remain small. Notice
that, to apply this technique, we have to find a set of
provably mutually exclusive events, which can be done as
described in Section 4.1.2.

5.1.4 DNF Partitioning and Serialization

A disadvantage of partitioning R based on events is that the
sizes of the disjuncts are often skewed. In particular, if a
single event may trigger a number of complex transitions,
its corresponding disjunct could be large. Fig. 17 shows an
example in which an event x triggers two state machines. If

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 183

all the guarding conditions are complex, the BDD for the
disjunct corresponding to x may be large.

One solution to this problem is to apply conjunctive
partitioning to large disjuncts, resulting in what we call
DNF partitioning. It uses both BDD size (as in conjunctive
partitioning) and structural information (as in disjunctive
partitioning) to partition the transition relation and may
perform better than relying on either alone.

Alternatively, we may serialize the complicated micro-
step into cascading microsteps to reduce the BDD size.
Fig. 18 illustrates this idea. We have ªinsertedº a new event
u after x. Note that the resulting machine has more
microsteps in a step. So, although this method is effective
in reducing the BDD size in this case, it often increases the
number of iterations to reach a fixed point. Also, the
transformation may not preserve the behavior of the system
and the property analyzed. A sufficient condition is that the
guarding conditions in machine B do not refer to machine
A's local states, x is mutually exclusive with all other
events, and we are checking a stutter-invariant property
that does not explicitly mention any of the state machines,
transitions, or events involved in the transformation.

5.1.5 Experimental Results

TCAS II. Table 4 summarizes the results of applying the
various partitioning techniques to our models of TCAS II. It
shows the resources (time in seconds and number of BDD
nodes used in thousands) for building the BDDs for the
transition relation R, as well as the resources for evaluating
the properties. Three models were examined. Our starting
point is called the full model. The mistranslated model contains
a real translation bug and is included to give an example of
analyzing a highly flawed design. The serialized model was
obtained from the full model with one of the microsteps
serialized. For each model, we performed model checking
using various partitioning methods: heuristic conjunctive
partitioning (CP), disjunctive partitioning (DP), and DNF
partitioning (CP and DP). Recall that the last two methods
can only be used with the mutual exclusion of events (MX).

Rows 1 and 3 are taken from Table 1 and show the
results for the base case and the results with pruning using
mutually exclusive events. In both cases, the conjunctive
partitioning as implemented in SMV was used. Row 1
shows that the fixed-point computations for one of the
properties could not be completed for the full model when
we used only the conjunctive partitioning as implemented

in SMV.3 As shown in Row 2, the savings resulting from the
heuristic for conjunctive partitioning were quite significant.

Disjunctive partitioning, which must be combined with
the mutual exclusion of events, appeared to be inefficient
(Row 5) when compared with applying the mutual
exclusion alone (Row 3). The reason is that one of the
disjuncts of the transition relation was large, with over
105 BDD nodes, at least an order of magnitude larger than
other disjuncts; this is reflected in the table by the large
number of BDD nodes needed to construct the transition
relation. We conjunctively partitioned the large disjunct,
leading to the more efficient DNF partitioning (Row 6). It
performed marginally better than conjunctive partitioning
with mutual exclusion of events (Row 4), but the space
requirements were consistently lower.

To further illustrate the differences among the various
partitioning techniques, we looked at a version of the model
that contains a translation error from the RSML machines to
the SMV program. This mistakeÐmade early in the previous
study and discovered quickly by inspectionÐomitted some
self-loops similar to those in Fig. 7, which effectively made
the system nonoblivious and produced an order of magni-
tude increase in analysis time.

Interestingly, the particular partition generated by the
the heuristic performed poorly for this model (Row 8). DNF
partitioning, on the other hand, continued to give signifi-
cant time and space reductions (Row 10). The miserable
results of disjunctive partitioning (Row 9) were again due to
the disproportionally large BDD in the partition.

We serialized a microstep in the full model to break the
large disjunct into four BDDs of sizes about a hundred
times smaller. Disjunctive partitioning now used less space
(Rows 5 vs. 13). However, since the number of microsteps in
a step increased, all checks suffered from the larger number
of iterations needed to reach fixed points. They all ended up
performing about the same, with disjunctive and DNF
partitioning having the slight edge, particularly in the space
requirements for the more difficult searches.

184 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 17. One event triggering two state machines.

Fig. 18. The serialized machine.

3. Actually, we implemented a simple improvement that was used in all
results, including this base analysis. Recall that a predecessor computation
involves a conjunction and an existential quantification. The two operations
can be carried out simultaneously to avoid building the usually large
conjunction explicitly [24]. SMV performs this optimization except when
conjunctive partitioning is used. We simply changed SMV to eliminate this
limitation.

The data suggest that if the disjuncts are small to start
with, disjunctive partitioning is a viable option, but
serializing the microstep in order to use disjunctive
partitioning is not advantageous in our case. In general,
we find the effects of lengthening and shortening macro-
steps difficult to predict. They represent a trade-off
between the complexity of predecessor computations and
the number of search iterations.

EPD. While the conjunctive partitioning heuristic pro-
duced some improvements for TCAS II, it was vital for our
EPD analyses: Without the heuristic, the properties could
not be checked in two hours of CPU time (even with
microstep counters). The results shown in Table 3 were
obtained using the heuristic. Note also that our method of
disjunctive partitioning could not be used on the EPD model
because most events there are not mutually exclusive.

5.2 Automatic Abstraction

In this section, we give a simple algorithm to remove a part
of the model that cannot affect the property being checked.
For example, a system may have a number of outputs
(which may be local states or events). If we are analyzing
only one of them, the logic that produces other outputs may
be abstracted away, provided these outputs are not fed back
to the system.

5.2.1 Dependency Analysis

We determine the abstraction by a simple dependency

analysis on the statecharts description. Initially, only the

local states, events, transitions, or inputs that are explicitly

mentioned in the property are considered relevant to the

analysis. Then, the following rules are applied recursively:

. If an event is relevant, then so are all the transitions
that may generate the event.

. If a transition is relevant, then so are its trigger event,
source local state, and everything that appears in its
guarding condition.

. If a local state is relevant, then so are all the
transitions out of or into it.4

(Note that the relevance of an input does not make any

other entity relevant.) These rules are repeated until a fixed

point is reached. Essentially, this is a search in the

dependency graph and the time complexity is linear in

the size of the graph.
Note that the abstraction may shorten the length of a

macrostep because the machines abstracted away might still

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 185

TABLE 4
Performance of Different Ways of Partitioning TCAS II

For each group of experiments, the best time and space requirements for each property are shown in bold face. An entry with1 indicates timeout
after one hour.

4. In the presence of hierarchical states, the superstate also becomes
relevant.

be running when the abstract machines terminate the
macrostep. Indeed, in the extreme case, if the machines
removed contain an infinite loop, the abstraction will
remove this error and produce unsound results. However,
it is easy to see that if every macrostep terminates (which
can be guaranteed by the acyclicity of the event precedence
relation defined in Section 4.1.2), then the abstraction
preserves every stutter-invariant property. For the rest of
this section, we will assume that every macrostep termi-
nates and the property being checked is stutter-invariant.

Similar dependency analyses could also be performed by
model checkers on the underlying transition system
representing the statecharts, but this may not be effective.
For example, an input would appear to depend on every
event (5). Carrying out dependency analysis on the high-
level statecharts description does not fall prey to this
particular false dependency.

Other forms of false dependencies are possible, however.
Suppose we are given the system in Fig. 18 from the
previous section. From the syntax, the event u appears to
depend on both conditions a and a0, but in fact it does not
because, regardless of the truth values a and a0, event u will
be generated as a result of event x. To detect such false
dependencies, one can check whether the disjunction of the
guarding conditions of the transitions out of a local state
with the same trigger and action events is a tautology. This
can sometimes be checked efficiently using BDDs [15].
However, the syntax sometimes allows easy detection of
most false dependencies of this kindÐfor example, the self-
loops in Fig. 18 are specified in RSML as identity
transitions, which can be used to infer that the occurrence
of event u does not depend on conditions a and a0.

Some false dependencies are harder to detect automati-
cally. For example, the guarding conditions involved may
not form a tautology, but, in all reachable states, one of the
guarding conditions holds whenever the trigger event
occurs. As another example, in Fig. 19, the event y does
not depend on any of the guarding conditions because it is
always generated one or two microsteps after w. In practice,
the synchronization of the system should be evident to the
designer, who may specify the suspected false dependen-
cies in temporal logic formulas, which can be verified using
model checking. If the results indeed show no real
dependencies, this information can be used in the depen-
dency analysis to obtain a smaller abstract model of the
system. In our TCAS II analysis, the synchronization is
simple enough that the kind of false dependencies men-
tioned above can be easily detected.

5.2.2 Experimental Results

Table 5 shows the performance of analyzing the abstract
models. The reductions obtained for our TCAS II model
were significant (although one of the properties still could
not be analyzed without using other optimizations).
However, the reduction achieved for the EPD model was
more modest because of the higher interdependencies
among the components. Three of the properties are
concerned with the main power system, so the backup
system can be removed safely. However, no abstraction was
possible for the other two properties, which depend on the
whole model.

5.3 Short-Circuiting

It is easy to see that, to falsify a property, we do not always
need to compute a fixed point. For example, to check
whether an error state is reachable using a backward search,
we can stop once an initial state is encountered. More
generally, this short-circuiting technique (sometimes also
known as on-the-fly or local model checking in the literature)
can be applied to the outermost fixed point and, occasion-
ally, the inner ones. The technique may substantially reduce
the time and space used when a short counterexample
exists. Table 6 shows the reductions obtained in our case
studies.

6 DISCUSSION AND RELATED WORK

Some of our techniques aim at reducing the size of the
BDDs representing state sets. In hardware verification,
techniques with the same goal exist and usually work by
altering these BDDs during the search. Some of these
techniques try to exploit special structures in the circuits,
such as symmetries [27] or asynchrony [28]. Because our
models lack these special structures, these techniques are
not applicable. Other hardware techniques work for general
classes of circuits [29], [23], [30]. We applied some of them
to our models, but the results were not satisfactory.
However, we note that our method of pruning backward
traversals using invariants is similar in spirit to the work on
hardware verification by [31], who propose doing an
approximate forward traversal to compute a superset of the
reachable states which is then used to prune backward
traversals. (An invariant is a superset of the reachable
states.) Their method is more general, but more expensive
because an extra symbolic traversal is required. They also
independently propose disjunctive partitioning for syn-
chronous circuits [32]. They require the designer to come up
with a partition manually, while we focus on statecharts
and exploit mutually exclusive events. Yang et al. [33] also
try to exploit invariants of a certain form, but they report
that their methods are not effective to our TCAS II model.

In general, the techniques we developed concentrate on
statecharts. Intuitively, our two techniques in Sections 4.1
and 4.3 use information from forward analysis on event

186 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 19. False dependency: Event y does not depend on any guarding

condition.

precedence to prune backward searches and to realign the
search frontiers. This strategy of combining forward
syntactic analysis and backward searches appears to be a
promising approach to improving the efficiency of symbolic
model checking. The method of microstep counter also
differs from the other approaches above in that it changes
the underlying transition system before applying model
checking.

Using abstraction to facilitate analysis is a very old idea
[34], [35] and has also been applied to state-based software
specifications. For example, [36] uses a dependency analysis
technique similar to the one described Section 5.2.1, but
their motivation is to facilitate manual review of the TCAS II
requirements, rather than automatic verification. In the
context of verifying SCR requirements, [37] suggests two
automatic abstraction techniques, one of which is similar to
our dependency analysis. (Of course, there are many other
dependence analyses in other domains; just one example is
work in program slicing [38], [39], [40].)

Note that, under our encoding in Section 2.2, a macrostep
is represented as a sequence of global transitions. An
alternative is to represent a macrostep as a single global
transition, but this would prevent us from analyzing
behaviors within a macrostep, such as (16) in Section 3.2.2.
In addition, we need to symbolically compose the micro-
steps to compute the macrosteps, which is not always
straightforward. The efficiency of model checking is also
affected: This method may blow up the BDD size for the

global transition relation, but reduces the number of search
iterations to reach fixed points and reduces the difference
between oblivious and nonoblivious systems. Therefore, it
is not clear a priori whether this method works better or
worse. In our initial TCAS II experiments, it resulted in
huge BDDs and poor performance and we have not
considered this method further in our case studies.
However, this may be a viable approach for other
statecharts examples.

Some of our techniques involve transforming the model
and preserve only stutter-invariant properties. Although this
restriction prevents us from specifying what will happen in
the next microstep (e.g., AXp), we can still assert what holds
in the next macrostep (e.g., A�:stable W stable ^ p�).

We add that, in our EPD analyses, fixing the bug B1 in

the model with the microstep counter dramatically reduces

the time taken to evaluate each formula to less than 15

seconds. This confirms the general wisdom that design

errors often introduce ªirregularº behaviors to the system,

resulting in large BDDs. The observation suggests early use

of model checking to discover bugs as soon as possible to

reduce the costs of analyzing the larger and more mature

model.

7 CONCLUSION

We have made several contributions in this work. We

carried out a case study of applying BDD-based model

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 187

TABLE 5
Performance for the Abstract Models

Columns marked ªbitsº indicate the numbers of Boolean state variables in the models. Microstep counters were used in the EPD models, but not in
the TCAS II models.

TABLE 6
Performance of Short-Circuiting

Columns marked ªiterº indicate the numbers of iterations required. SC indicates results with short-circuiting. Property E4 (16) requires two nested
fixed points to evaluate and only the outer one was short-circuited. The number of iterations reported is the sum of the two numbers. Microstep
counters were used in the EPD model, but not in the TCAS II model.

checking to a statecharts specification developed at Boeing
and discovered subtle flaws in the model. The combined
experience from this and our previous TCAS II case study

allowed us to develop some intuitions about BDD blow-ups
in our domain. For example, we found that forward
searches and nonoblivious synchronization tend to be less

efficient for our analysis. Based on these and other
intuitions, we devised techniques to optimize the perfor-
mance of model checking. Although these results do not

make model checking a ªpush the buttonº technology for
software-oriented specifications, they take steps in that
direction. Some improvements were crucial as they allowed

analysis that used to be infeasible to complete in just several
minutes of CPU time.

The two case studies are complementary in that the two
statecharts models are written in very different waysÐthe

TCAS II specification has a very special synchronization
structure (oblivious, with most events mutually exclusive),
while the EPD model is closer to other statecharts

specifications. Indeed, certain techniques that worked well
for TCAS II were not applicable to the EPD model
(Sections 4.1 and 5.1.4). In general, we believe that the

technique of using a microstep counter would facilitate the
analysis of most statecharts, whereas the pruning and the
DNF partitioning techniques would be appropriate for

models with synchronization structures similar to that of
TCAS II. The abstraction and short-circuiting techniques are
general enough that they can and should always be used.

Getting intuition about BDD size in general is notor-
iously hard because the size does not directly correlate to

simple measures such as the number of variables or
reachable states. However, formal software specifications
are often written in a few common styles or using a few

popular idioms and it may be possible to gain enough
insights to optimize for these common cases. This work

follows this direction and contributes to a better under-
standing of how various ways of specification affect the
efficiency of verification. We hope that the results will not

only be useful for developing more efficient model-
checking algorithms, but also be valuable for designing
specifications or specification languages that are more

amenable to symbolic model checking.

APPENDIX

This appendix gives the SMV programs for the experiments
on the parameterized examples summarized in Table 2 in
Section 4.2.2. They show the differences in the efficiency of
analyzing oblivious and nonoblivious models, as well as the
effects of pruning using mutually exclusive events and
microstep counters.

The following shows the programs for the nonoblivious
models in Fig. 6 without any optimization. The expressions
t0i and t1i represent, respectively, the conditions under which
the transitions to states 0 and 1 in machine Ai are enabled.
The parameter n is the number of state machines.

MODULE main

DEFINE stable := !x0 & !x1 & . . . & !xn;

VAR

xz : boolean;

ASSIGN

next(xz) := case

stable: f0; 1g;
1: 0;

esac;

For each i with 1 � i � n:
DEFINE

t1i := xnÿ1 & ai = 0 & ci;

t0i := x_{n-1} & ai = 1 & !ci;

VAR

ci: boolean;

ai: boolean;

xi: boolean;

ASSIGN

init(ai) := 0;

next(ai) := case

t0i: 0;

t1i: 1;

1: ai;

esac;

next(ci) := case

stable: f0; 1g;
1: 0;

esac;

init(xi) := 0;

next(xi) := t11 | t
0
1;

SPEC

AG !(stable & anÿ1 = 0 & an = 1)

Other models are obtained by modifying the code above.

. For the oblivious models in Fig. 7:

- The definitions of t1i and t0i are changed to the
following.

DEFINE

t11 := xz & c1;

t01 := xz & !co;

For each i with 1 < i � n:
t1i := xnÿ1 & ((ai = 0 & paiÿ1 = 0 & aiÿ1 = 1 & ci)

| (ai = 1 & (paiÿ1 = 0 | aiÿ1 = 1 | ci)));

t0i := xnÿ1 & ((ai = 1 & paiÿ1 = 1 & aiÿ1 = 0 & !ci)

| (ai = 0 & (paiÿ1 = 1 | aiÿ1 = 0 | !ci)));

- The following code is added. The variable pai
encodes the previous state of machine Ai.

For each i with 1 � i < n:

VAR

pai: boolean;

ASSIGN

init(pai) := 0;

next(pai) := case

stable: ai;

1: pai;

esac;

. For pruning using mutually exclusive events (Sec-
tion 4.1), the following code is added:

188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

TRANS !(x0 & x1)

TRANS !(x0 & x2)
..
.

TRANS !(x0 & xn)

TRANS !(x1 & x2)
..
.

TRANS !(xnÿ1 & xn)

. For microstep counters (Section 4.3):

- The following code is added

VAR

mc: 0..n;

ASSIGN

init(mc) := x0;

next(mc) := case

mc = 0: next(x0);

1: (mc + 1) mod (n� 1);

esac;

- The expression stable is redefined as

DEFINE stable := mc = 0;

- An extra conjunct mc = i is added to the
definition of every t0i and t1i .

The variable order used was (mc,) x0; c1; a1; �pa1; �x1; c2;

a2; �pa2; � . . . ; xn; where mc was used only in the models

with a microstep counter and the pais were used only in the

oblivious models.

ACKNOWLEDGMENTS

The authors thank Steve Burns for observing the ineffi-

ciency of the algorithm in Fig. 14 and implementing the one

in Fig. 16 in SMV and Greg Taleck for his initial work on

translating and analyzing the EPD model. This work was

supported in part by US National Science Foundation

grants CCR-9706070 and CCR-9700660. William Chan's

work was supported in part by a Microsoft-endowed

graduate fellowship.

REFERENCES

[1] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang,
ªSymbolic Model Checking: 1020 States and Beyond,º Information
and Computation, vol. 98, pp. 142±170, June 1992.

[2] R.E. Bryant, ªGraph-Based Algorithms for Boolean Function
Manipulation,º IEEE Trans. Computers, vol. 35, no. 8, pp. 677±
691, Aug. 1986.

[3] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D.
Notkin, and J.D. Reese, ªModel Checking Large Software
Specifications,º IEEE Trans. Software Eng., vol. 24, no. 7 pp. 498±
520, July 1998.

[4] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese,
ªRequirements Specification for Process-Control Systems,º IEEE
Trans. Software Eng., vol. 20, no. 9 pp. 684±707, Sept. 1994.

[5] D. Harel, ªStatecharts: A Visual Formalism for Complex Systems,º
Science of Computer Programming, vol. 8, pp. 231±274, June 1987.

[6] C.R. Nobe and M.G. Bingle, ªModel-Based Development: Five
Processes Used at Boeing,º Proc. IEEE Int'l Conf. and Workshop:
Eng. of Computer-Based Systems, Mar./Apr. 1998

[7] C.R. Nobe and W.E. Warner, ªLessons Learned from a Trial
Application of Requirements Modeling using Statecharts,º Proc.
Second Int'l Conf. Requirements Eng. (ICRE '96), pp. 86±93, Apr.
1996.

[8] W. Chan, R.J. Anderson, P. Beame, and D. Notkin, ªImproving
Efficiency of Symbolic Model Checking for State-Based System
Requirements,º Proc. ACM SIGSOFT Int'l Symp. Software Testing
and Analysis ISSTA '98, M. Young, ed., pp. 102±112, Mar. 1998,
Published as Software Eng. Notes, vol. 23, no. 2, Mar. 1998.

[9] W. Chan, R.J. Anderson, P. Beame, D.H. Jones, D. Notkin, and
W.E. Warner, ªDecoupling Synchronization from Logic for
Efficient Symbolic Model Checking of Statecharts,º Proc. 1999
Int'l Conf. Software Eng. (ICSE '99), pp. 142±151, May 1999.

[10] D. Harel and A. Naamad, ªThe STATEMATE Semantics of
Statecharts,º ACM Trans. Software Eng. and Methodology, vol. 5,
pp. 293±333, Oct. 1996.

[11] G. Berry and G. Gonthier, ªThe ESTEREL Synchronous Program-
ming Language: Design, Semantics, Implementation,º Science of
Computer Programming, vol. 19, pp. 87±152, Nov. 1992.

[12] E.M. Clarke and E.A. Emerson, ªDesign and Synthesis of
Synchronization Skeletons Using Branching Time Temporal
Logic,º Proc. Logics of Programs Workshop, vol. 131, pp. 52±71, 1982.

[13] K.L. McMillan, Symbolic Model Checking. Kluwer Academic, 1993.
[14] J. Crow and B. Di Vito, ªFormalizing Space Shuttle Software

Requirements: Four Case Studies,º ACM Trans. Software Eng. and
Methodology, vol. 7, pp. 296±332, July 1998.

[15] M.P.E. Heimdahl and N.G. Leveson, ªCompleteness and Con-
sistency in Hierarchical State-Based Requirements,º IEEE Trans.
Software Eng., vol. 22, no. 6, pp. 363±377, June 1996.

[16] T. Sreemani and J.M. Atlee, ªFeasibility of Model Checking
Software Requirements: A Case Study,º Proc. 11th Ann. Conf.
Computer Assurance (COMPASS '96), pp. 77±88, June 1996.

[17] J.J. Britt, ªCase Study: Applying Formal Methods to the Traffic
Alert and Collision Avoidance System (TCAS II),º Proc. Ninth
Ann. Conf. Computer Assurance (COMPASS '94), pp. 39±51, June/
July 1994.

[18] N.G. Leveson, M.P.E. Heimdahl, and J.D. Reese, ªDesigning
Specification Languages for Process Control Systems: Lessons
Learned and Steps to the Future,º Proc. Software Eng.ÐESEC/FSE
'99, Seventh European Software Eng. Conf. Held Jointly with the
Seventh ACM SIGSOFT Symp. Foundations of Software Eng.,
O. Nierstrasz and M. Lemoine, eds., pp. 127±145, Sept. 1999.

[19] L. Lamport, ªWhat Good Is Temporal Logic?º Information
Processing 83: Proc. IFIP Ninth World Computer Congress, R.E.A.
Mason, ed., pp. 657±668, Sept. 1983.

[20] M.C. Browne, E.M. Clarke, and O. GruÈ mberg, ªCharacterizing
Finite Kripke Structures in Propositional Temporal Logic,º
Theoretical Computer Science, vol. 59, pp. 115±131, July 1988.

[21] I. Beer, S. Ben-David, and A. Landver, ªOn-the-Fly Model
Checking of RCTL Formulas,º Proc. Computer Aided Verification,
10th Int'l Conf. (CAV '98), A.J. Hu and M.Y. Vardi, eds., pp. 184±
194, June/July 1998.

[22] H. Iwashita, T. Nakata, and F. Hirose, ªCTL Model Checking
Based on Forward State Traversal,º Proc. Int'l Conf. Computer-
Aided Design (ICCAD '96), pp. 82±87, 1996.

[23] A.J. Hu and D.L. Dill, ªEfficient Verification with BDDs Using
Implicitly Conjoined Invariants,º Proc. Fifth Int'l Conf. Computer
Aided Verification (CAV '93), C. Courcoubetis, ed., pp. 3±14, June/
July 1993

[24] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill,
ªSymbolic Model Checking for Sequential Circuit Verification,º
IEEE Trans. Computer-Aided Design, vol. 13, pp. 401±424, Apr. 1994.

[25] D. Geist and I. Beer, ªEfficient Model Checking by Automated
Ordering of Transition Relation Partitions,º Proc. Sixth Int'l Conf.
Computer Aided Verification (CAV '94), D.L. Dill, ed., pp. 299±310,
June 1994.

[26] R.K. Ranjan, A. Aziz, R.K. Brayton, B. Plessier, and C. Pixley,
ªEfficient BDD Algorithms for FSM Synthesis and Verification,º
Proc. IEEE/ACM Int'l Workshop Logic Synthesis, May 1995.

[27] E.M. Clarke, R. Enders, T. Filkorn, and S. Jha, ªExploiting
Symmetry in Temporal Logic Model Checking,º Formal Methods
in System Design, vol. 9, pp. 77±104, Aug. 1996.

[28] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K.
Rajamani, ªPartial-Order Reduction in Symbolic State Space
Exploration,º Proc. Ninth Int'l Conf. Computer Aided Verification
(CAV '97), O. Grumberg, ed., pp. 340±351, June 1997.

CHAN ET AL.: OPTIMIZING SYMBOLIC MODEL CHECKING FOR STATECHARTS 189

[29] G. Cabodi, P. Camurati, and S. Quer, ªImproved Reachability
Analysis of Large Finite State Machines,º Proc. Int'l Conf.
Computer-Aided Design (ICCAD '96), pp. 10±14, 1996.

[30] K. Ravi and F. Somenzi, ªHigh-Density Reachability Analysis,º
IEEE/ACM Int'l Conf. Computer-Aided Design, Digest of Technical
Papers (ICCAD '95), pp. 154±158, Nov. 1995.

[31] G. Cabodi, P. Camurati, and S. Quer, ªEfficient State Space
Pruning in Symbolic Backward Traversal,º Proc. IEEE Int'l Conf.
Computer Design: VLSI in Computers and Processors (ICCD '94),
pp. 230±235, Oct. 1994.

[32] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer, ªDisjunctive
Partitioning and Partial Iterative Squaring: An Effective Approach
for Symbolic Traversal of Large Circuits,º Proc. 34th Design
Automation Conf., pp. 728±733 June 1997.

[33] B. Yang, R. Simmons, R.E. Bryant, and D.R. O'Hallaron,
ªOptimizing Symbolic Model Checking for Invariant-Rich
Models,º Proc. Computer Aided Verification, 11th Int'l Conf.
(CAV '99), N. Halbwachs and D. Peled, eds., July 1999.

[34] P. Cousot and R. Cousot, ªAbstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints,º Conf. Record Fourth ACM Symp.
Principles of Programming Languages, pp. 238±252, Jan. 1977.

[35] E.M. Clarke, O. Grumberg, and D.E. Long, ªModel Checking and
Abstraction,º ACM Trans. Programming Languages and Systems,
vol. 16, pp. 1512±1542, Sept. 1994.

[36] M.P.E. Heimdahl and M.W. Whalen, ªReduction and Slicing of
Hierarchical State Machines,º Proc. Software Eng.ÐESEC/FSE '97:
Sixth European Software Eng. Conf. Held Jointly with the Fifth ACM
SIGSOFT Symp. Foundations of Software Eng., M. Jazayeri and H.
Schauer, eds., pp. 450±467, Sept. 1997.

[37] R. Bharadwaj and C. Heitmeyer, ªModel Checking Complete
Requirements Specifications using Abstraction,º J. Automated
Software Eng., vol. 6, Jan. 1999.

[38] M. Weiser, ªProgram Slicing,º IEEE Trans. Software Eng., vol. 10,
pp. 352±357, July 1984.

[39] S. Horwitz, T. Reps, and D. Binkley, ªInterprocedural Slicing
Using Dependence Graphs,º ACM Trans. Programming Languages
and Systems, vol. 12, pp. 26±60, Jan. 1990.

[40] J. Chang and D. Richardson, ªStatic and Dynamic Specification
Slicing,º Proc. Fourth Irvine Software Symp., Apr. 1994.

[41] IEEE/ACM Int'l Conf. Computer-Aided Design, Digest of Technical
Papers, Nov. 1996.

William Chan completed the PhD degree in the
Department of Computer Science and Engineer-
ing at the University of Washington in 2000.
Growing up in Hong Kong, he went to the US to
study in 1991, and received the BS degree with
distinction from the Department of Computer
Science at Cornell University in 1994. His
research interests were in formal methods,
particularly, formal verification and symbolic
model checking for software systems. He was

a student member of the IEEE and a member of the IEEE Computer
Society. One week after defending his dissertation and one month
before starting as an assistant professor at Brown University, Dr. Chan
was killed in a tragic automobile accident.

Richard J. Anderson received the BA degree in
mathematics from Reed College in 1981 and the
PhD degree in computer science from Stanford
University in 1986. Prior to joining the University
of Washington in 1986, he was a postdoctoral
research fellow at the Mathematical Sciences
Research Institute in Berkeley. He is a professor
and associate chair in the Department of
Computer Science and Engineering at the
University of Washington. Dr. Anderson re-

ceived the US National Science Foundation Presidential Young
Investigator Award in 1987 and an Indo-American Fellowship Award in
1993 to support a year-long visit to the Indian Institute of Science in
Bangalore, India. His research interests span the field of applied
algorithms, including collaborative ventures in astrophysical simulation,
symbolic model checking, and web-based typography.

Paul Beame received the BSc degree in 1981,
the MSc degree in 1982, and the PhD degree in
1987, all from the University of Toronto. Prior to
joining the faculty of the University of Washing-
ton, he spent a year as a postdoctoral research
associate at the Massachusetts Institute of
Technology. Dr. Beame is a professor in the
Department of Computer Science and Engineer-
ing at the University of Washington, joining the
faculty in 1987. He received the US National

Science Foundation Presidential Young Investigator Award in 1988, is
an associate editor of Computational Complexity, and has served on the
Steering Committee of the DIMACS Special Year on Logic and
Algorithms and the Advisory Committee for the Fields Institute Special
Half Year on Complexity. His research interests are in computational
complexity, particularly the complexity of propositional proofs, and in the
application of computational complexity to problems of formal
verification.

David H. Jones graduated from Stanford Uni-
versity (BA, 1969) and Southern Polytechnic
State University (AD, 1975). He then proceeded
to designed industrial control systems in Atlanta,
Georgia. He then moved to Paris, where he led
efforts in several companies to introduce new
software engineering methods and tools for real-
time systems development. He was a consultant
in software engineering, company lead on
several European research projects, and an

instructor at the American College of Paris. He currently does applied
research at Boeing Phantom Works, Mathematics and Computing
Technology in Bellevue, Washington. Since coming to Boeing in 1988
he has been a technical lead on the DARPA STARS program, applied
model-based system development tools on Boeing commercial airplane
programs, and investigated how automatic verification technologies can
be applied in different areas of Boeing. His other research interests
include metadata/model management and knowledge discovery.

David Notkin the ScB degree at Brown Uni-
versity in 1977 and the PhD degree at Carnegie
Mellon University in 1984. He is the Boeing
Professor of Computer Science and Engineering
at the University of Washington. Dr. Notkin
received the US National Science Foundation
Presidential Young Investigator Award in 1988;
served as the program chair of the First ACM
SIGSOFT Symposium on the Foundations of
Software Engineering; served as program

cochair of the 17th International Conference on Software Engineering;
chaired the steering committee of the International Conference on
Software Engineering (1994-1996); served as a charter associate editor
of both ACM Transactions on Software Engineering and Methodology
and the Journal of Programming Languages; serves as an associate
editor of the IEEE Transactions on Software Engineering; was named as
an ACM Fellow in 1998; serves as the chair of ACM SIGSOFT; and
received the 2000 University of Washington Distinguished Graduate
Mentor Award. His research interests are in software engineering in
general and software evolution in particular. Dr. Notkin is a senior
member of the IEEE.

William E. Warner received the BS degree in
mechanical engineering from the University of
Washington in 1983, after which he worked for
four years as a nuclear engineer before joining
Boeing in 1987. He is currently a systems
engineer in the Airplane Systems Laboratory at
Boeing Commercial Airplanes. At Boeing, he
worked on the 747-400 airplane as an environ-
mental control systems engineer and later as an
avionics engineer during development of the

777 airplane. His professional expertise includes requirements analysis
and validation, systems modeling and simulation, and software quality
assurance.

190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

