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1. Introduction

A program denotes computations in some universe of

objects. Abstract interpretation of programs con–

sists in using that denotation to describe compu–

tations in another universe of abstract objects,

so that the results of abstract execution give

some information on the actual computations. An

intuitive example (which we borrow from Sintzoff
172]) is the rule of signs. The text ‘1515* 17

may be understood to denote computations on the

abstract universe {(+), (-), (~)} where the se-

mantics of arithmetic operators is defined by the

rule of signs. The abstract execution -1515* 17
=> -(+) * (+) e> (–) * (+) => (–), proves that

–1515 * 17 is a negative number. Abstract interpre–

tation is concerned by a particular underlying

structure of the usual universe of computations

(the sign, in our example). It gives a summary of

some facets of the actual executions of a program.

In general this summary is simple to obtain but

inaccurate (e.g. –1515+17 => –(+)+(+) ‘>

(-)+(+) => (f)). Despite its fundamentally in-

complete results abstract interpretation allows

the programmer or the compiler to answer ques–

tions which,do not need full knowled~e of program

executions or which tolerate an imprecise answer,

(e.g. partial correctness proofs of programs ignO-

ring the termination problems, type checking, pro-

gram optimizations which are not carried in the

absence of certainty about their feasibility, . . .).

2. &unmary

Section 3 describes the syntax and mathematical

semantics of a simple flowchart language, Scott

and Strachey[71]. This mathematical semantics is

used in section 4 to built a more abstract model of

the semantics of programs, in that it ignores the

sequencing of control flow. This model is taken to

be the most concrete of the abstract interpretatiOns

of programs. Section 5 gives the formal definition

of the abstract interpretations of a program.
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Abstract program properties are modeled by a com–

plete semilattice, Birkhoff[611. Elementary Pro-

gram constructs are locally interpreted by order

preserving functions which are used to associate

a system of recursive equations with a program. The

program global properties are then defined as one

of the extreme fixpoints of that system, Tarski [55].

The abstraction process is defined in section 6. It

is shown that the program properties obtained by

an abstract interpretation of a program are consis–

tent with those obtained by a more refined inter–

pretation of that program. In particular, an ab–

stract interpretation may be shown to be consistent

with the formal semantics of the language. Levels

of abstraction are formalized by showing that con-

sistent abstract interpretations form a lattice

(section 7). Section 8 gives a constructive defi–

nition of abstract properties of programs based on

constructive definitions of fixpoints. It shows

that various classical algorithms such as Kildall

[731, Wegbreit[751 compute program properties as

limits of finite Kleene[52]’s sequences. Section

9 introduces finite fixpoint approximation methods

to be used when Kleene’ssequences are infinite,

Cousot[761. They are shown to be consistent with

the abstraction process. Practical examples illus–

trate the various sections. The conclusion points

out that abstract interpretation of programs is a

unified approach to apparently unrelated program

analysis techniques.

3’. Syntax and Semantics of programs

We will use finite flowcharts as a language inde–

pendent representation of progrems.

3.1 Syntax of a Progrwn

A program is built from a set “Nodes”. Each node

has successor and predecessor nodes :

n–succ, n–pred : Nodes+ 2Nodesl (men-succ(n))

<=>(ne n-pred(m))

Hereafter, we note ISl the cardinality of a set S.

~Jhen ]Sl = 1 so that S = {~we sometimes use S to

denote x.

The node subsets “Entries”’, “Assignments’!, “Tests”,
“Junctions” and “Exits” partition the set Nodes.

– An entry node (n c Entries) has no predecess...

and one successor, ((n-nred(n) = @)”and “-’-
(In-succ(n)l = l)).
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An assi~nment node (n c Assignments) has one 3.2 Semantics o-f Pro$warns
predecessor and one successor (on-pred(n)l =1)
and (In–succ(n)l = l)). Let “Iden= “Expr” This section develops a simple “mathematical seman-
be the distinct syntactic categories of identi– tics” of programs, in the style of Scott and
fiers and expressions. An assignment node n as– Strachey[711 .
signs the value of the right hand–side expres-

sion expr(n) to the left hand-side identifier

id(n) :

expr : Assignments ~ Expr

id : Assignments + Ident—

A test node (ncTests) has a predecessor and two

successors, ((ln–pred(n) I = 1) and (In–succ(n)l

= 2)). The true and false successor nodes are

respectively denoted n-succ-t(n) and n–succ–f(n):

n-succ–t, n–succ-f : Tests + Nodes I

(Vn c Tests, n–succ(n) = {n–succ–t(n),

n–succ-f(n)}) .

Let “Bexpr” b~ the syntactic category of boo–

lean expressions, each test node n contains a

boolean expression test(n) :

test = Tests + Bexpr

A junction node (n c Junctions) has one succes-

sor and more than one predecessor, ((l”n-succ(n)l

1) and (In-pred(n)l > 1)). Immediate predeces- -

sor nodes of a junction node are not junction
nodes, (~n E Junctions, ~m e n-pred(n),

not(m ● Junctions)).

An exit node n has one predecessor and no succes–

sor, ((in-pred(n)l = 1) and (n-succ(n) = 0))

The set “Arcs” of edges of a program is a subset of

Yodes ~ Nodes defined by :

Arcs ={<n,m. I (n e Nodes) anl (m ~ n–succ(n))}

which may be equivalently defined by :

Arcs ={~n,m’ I (m c Nodes) and (n c n-pred(m))}.

We will assume that the directed graph Nodes, Arcs> –

is connected.

We will use the following functions :

origin, end : Arcs + Nodes I (Va 6 Arcs, a = <origin(a),

end(a)>)

Arcs
a–succ : Nodes ‘+ 2 I

a–succ(n) = {.n,ms I m e n–succ(n)}

Arcs
a–~red : Nodes + 2- I

*-pred(n) = {<m,n> I m ● n-pred(n)}

a–succ–t : Tests + Arcs

a–succ–t(n) = <n, n–succ–t(n)>

a–succ–f : Tests + Arcs

a-succ–f(n) = <n, n-succ-f(n)>

E.rample :
‘v

4
~:=1

f

false

( x=lo~

true J

I
X:=x+l

If S is a set we denote S0 the complete lattice

obtained fromS by adjoining {1S, TS} to it, and

imposinq the ordering L ~<x<TS for all x ● S.

‘Ihe semantic domain “Values” is a complete latti-

ce which is the sum of the lattice Bool = {~,

false}” and some other primitive domains.

Environments are used to hold the bindings of

identifiers to their values :

Env = IdentO + Values

We assume that the meaning of an expression

expr c Expr in the environment e c Env is given

by val [Eexprl (e) so that :

a: Expr + [Env + Values].

In particular the projection val I Bexpr of the

function val in domain Bexpr has the functiona-

lity :

val \ Bexpr : Bexpr + [Env + BOOII.

The state set “States” consists of the set of

all information configurations that can occur

during computations :

States = Arcs” x Env.

A state (s c States) consists in a control state

(cs(s)) and an environment (=(s)), such that :

— Vs e States, s = <es(s), env(s)>.—

we use a continuous conditional function cond(b,

~l!~ ~?i;~q~~lbt~sL~,e_ ~~l~er~~p~~t~e~~s~suse

if b then e, else e z ~ to denote cond(b, e],——
e~.

If e c Env, v c Values, x c Ident then—
e [v/xl = Ay. cond(y = X, V, :(Y)).—

The state transition function defines for each

state a next state (we consider deterministic

programs) :

n–state : States + States

n–state(s) =

let n be end(cs(s)), e be env(s) within— — —
case n in

‘Ass~nments =>

~a–succ(n),erval [[~(n)l (e)/id(n)]>.
Tests .>————

cond(val [[test(n)] (e) I Bexpr,

<a-succ–t(n), e>,<a-succ–f(n), e>)

Junctions => <a-succ(n), e>

Exits => s

esac

(Each partial function f on a set S is extended

to a continuous total function on the correspon–

ding domain S0 by f(l) = J, f(T) = T and f(x)=l

if the partial function is undefined at x).

Let 1 ~nv be the bottom function on Env such that

(Vx e Ident”, lEnv(x) = Lvalues).

Let I–states be the subset of initial states :

I–states = {<a–succ(m),lEnv> I m c Entries}
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– A “computation sequence” with initial state

is 6 I–states is the sequence :

s
n

= n-staten(is) forn=O, 1,...

where f“ is the identity function and
fn+l = f . fn.

- The initial to final state

.
n-state : States +

is the minimal fixpoint of

AF. (n-state o F)

Therefore

transition function :

States

the functional :

n–statem= y
States-+States

(lF. (n-state o F))

where YD(f) denotes the least fixpoint of

f : D + D, Tarski[55].

4. Static Semantics of Programs

The constructive or operational semantics of pro-

grams defined in section 3 considers the sequence
in which states occur during execution. The funda–

mental remark of Floydr67] is that to prove static

properties of programs it is often sufficient to

consider the sets of states associated with each

program point.

Hence, - we define the context Cq at some program

point q c Arcs of a program P to be the set of all

environments which may be associated to q in all

the possible computation sequences of P :

Cq c Contexts = 2
E nv

Cq = {e I (In > 0, ~ is c I-states I

<qje> = n–staten(is))}

The context vector Cv associates a context to each

of the program points of a program :

Cv E Context–Vectors = Arcs” + Contexts

~ = kq.{el (3n 2 0, 1 is c I-states I

<q,e> = n-staten(i~))}

According to the semantics of programs, the con–

text Cv(r) associated to arc r is related to the

conte~s Cv(q) at arcs q adjacent to r,

(end(q) =~rigin(r), ~~). From the defini-

tion of the state transition function we can prove

the equation :

Cv(r) = n–context(r, Cv)—

where

n-context : Arcs” x Context-Vectors + Contexts

is defined by :

n-context(r, Cv) =

case origi~r) in

Entries =>{~nu}

Assignments u Tests u Junctions =>

u e~v(q) —
env–on(r)(n–state(<q,e>) )

q< a-pred(or~gin(r))— —

esac

(We define env-on : Arcs” + [States - 2Env] to be
kr. (ks. cond(r = CS(S), {~(s)}, 0))).

Since the equation Cv(r) = n-context(r, Cv) must

be valid for each a=, Cv is a solution ~ the sys-

tem of “forward” equati~s :

Cv = F–cont(Cv)— —
where

F–cent : Context–Vectors + Context–Vectors

is defined by :

F-cont(Cv) —

Context-Vectors

such that Cvi U

F-cent is order

COntext–Vec tors

= Ar . n-context(r, Cv)—
is a complete lattice with union u

CV2 = Lr. (Cvl(r) u ~(r)).. —

preserving for the ordering ~ of

which is defined by :

<=> {Vr < Arcs, Cvl(r) SCv2(r)}

Hence it is known that F-cent has fixpoints, Tarski

[55]. However, it is t- to exhibit examples

which show that these fixpoints are not always

unique. Fortunately, it can be shown that Cv is

included in any solution ~ to the system of equa-

tions X = F-cent(X), (Cv s~). Tarski[55] shows that

this prope=iquely~etermines Cv as the least

fixpoint of F–cent. Thus Cv can be~quivalently de-

fined by :
—

D1 : Cv = Aq. {e I (~n > 0, I is c I-states I—

‘q,e> = n–staten(is))}
or

D2 : Cv = Ycontext_vectors(F-cent)—

The concrete context vector Cv is such that for any

program point q c Arcs of the program P,

(u) ~~q) contains at least the environments e
which may be associated to q during any exe-

cution of P :

{lizO, 3 is ~ I–states I <q,e> n–statel(is)]

=> {e e Cv(q)}—

((3) ~(q) contains only the environments e which

may be associated to q dtiring an execution of

P:

{e c Cv(q)} ‘> {3i > 0, q is E I-states I—

<qje> = n-statel(is)}

Cv is merely a static summary of the possible exe-

~tions of the program. However, our definitions D]

or D2 of Cv cannot be utilized at compile time since

the compu~tion of Cv consists in fact in running

the program (for al~the possible input data). In

practice compilers may consider states which can

never occur during program execution (e.g. some

compilers consider that any program may always per-

form a division by zero although this is not the

case for most programs). Hence compilers may use

“abstract” contexts satisfying (a) but not necessa-
rily (~), which therefore correctly approximate the

concrete contexts we considered until now.

5. Abstract Interpretation of Programs

5.1 Formal Definition

An abstract interpretation Iofa program P is a tuple

I = <A–Cent, O, S , T , L , Int>

where the set of abstract contexts is a complete

o–semilattice with ordering S, ({x $ y} <=>

{X OY=Y}). This implies that A-Cent has a supre–

mum T. We suppose also A–Cent to have an infimum L.
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This implies that A-Cent is in fact a ‘complete lat-

tice, but we need only one of the two join and meet

opera~ns. The set of context vectors is defined

by A–Cent = Arcs” + A-Cont.

Whatever (Cv’, Cv”) c A–~nt2 may be, we define :

Cv’ T CV” = Ar. Cv’(r) 0 Cv’’(r)

CV’ ~ CV” = {~r e Arcs”, Cv’(r) < Cvf’(r)}

Y=ir. Tandi’=Ar. L
~. . .

<A-Cent, ., Z,T , 1> can be shown to be a com-

plete lattice. The function :

Int : Arcs”
~

x A-Cent + A-Cent

defines the interpretation of basic instructions.

If {C(q) I q e a-pred(n)} is the set of input con-

texts of node n, then the output context on exit

arc r of n (r < a–succ(n)) is equal to Int(r, C).

Int is supposed to be order–preserving -

Ya 6 Arcs, U(CV’, Cv”) e A~nt2,

{~’ ~Cv”} => {Int(a, Cv’) < Int(a, Cv”)}— —— —.

The local interpretation of elementary program cons–

tructs which is defined by Int is used to associate

a system of equations with the program. We define

: A–Cent -> A=nt ) &t(Cv) = kr .&t ~ Int(r, Cv)—
w—

It is easy to show that Int is order–preserving.

Hence it has fixpoints, Tarski[55]. Therefore the

context vector resulting from the abstract inter-

pretation I of program P, which defines the global

properties of P, may be chosen to be one of the

extreme solutions to the system of equations

Cv =Xt(cv).— —

5.2 TypoLogy of Absiract Interpretations

The restriction that “A-Cent” must be a complete

semi-lattice is not drastic since Mac Neille[37]

showed that any partly ordered set S can be embed–

ded in a complete lattice so that inclusion is pre–

served, together with all greatest lower bounds and

lowest upper bounds existing in S. Hence in practice

the set of abstract contexts will be a lattice, which

can be considered as a join (u) semi–lattice or a

meet (n) semi–lattice, thus giving rise to two dual

abstract interpretations.

It is a pure coincidence that in most examples (see

5.3.2) the n or u operator represents the effect of

path converging. The real need for th~ operator is

to define completeness which ensures Int to have

extreme fixpoints (see 8.4).

The result of an abstract interpretation was defined

as a solution to forward (+) equations : the output

contexts on exit arcs of node n are defined as a

function of the input contexts on entry arcs of node

n. One can as well consider a system of backward (+)

equations : a context may be related to its succes–

sors. Both systems (~, -) may also be combined.

Finally we usually consider a maximal (+) or mini-

mal (+) solution to the system of equations, (by

agreement, maximal and minimal are related to the

ordering s defined by (x s y) <=> (x u y = y)

<=> (x o y = x)). However kno.n examples such as’

Manna and Shamir[751 show that the suitable solu-
tion may be somewhere between the extreme ones.

These choices give rise to the following types of

abstract interpretations :

(u,+,+) (n,+,+)

(n,+,+)
(u,+,+) .

(u,+,+) (n,+,+)

(U,+,l)

Examples :

Kildall[73] uses (n,+,+ ) , Wegbreit[751 uses

(u,+,+). Tenenbaum[74] uses both (u,+,+) and

(n,+,+).

5.3 Exanp2es

5.3.1 static Semantics 0f,?%O$7FCZW

The static semanticsof programs we defined in sec-

tion 4 is an abstract interpretation :

lss
= <Contexts, u, ~, Env, 0, n–context>

where Contex~s, U, ~, Env, @, n-context, Context–

Vectors, ;, ~, F–Cent respe~vel~ c~rrespond to

A-Cent, ., <, T, 1, ~, A-Cent, ., S, ~t.

5.3.2 Data F20w Analysis

Data flow analysis problems (see references in

Ullman[75]) may be formalized as abstract inter–

pretations of programs.

“Available expressions” give a classical example.

An expression is available on arc r, if whenever

control reaches r, the value of the expression has

been previously computed, and since the last com–

putation of the expression, no argument of the ex-

pression has had its value changed.

Let Exprp be the set of expressionS Occuring in a

program P. Abstract contexts will be sets of

available expressions, represented by boolean vec–

tors :

B–vect : Exprp + {g, false}

B–vect is clearly a complete boolean lattice. The

interpretation of basic nodes is defined by :

avail(r, Bv)

let n ~ origin(r) within— —- —
case n l.n

Entr~s => Ae . false

Assignments u Tests u Junctions ‘:>
he .~generated(n)(e) or(( @ Bv(p)(e))—

p~a-pred(n)—

and transparent(n)(e)))
esac

(Nothing is available on entry arcs. An expression

e is available on arc r (exit of node n) if either

the expression e is generated by n or for all prede-

cessors of n, e is available on p and n does not

modify arguments of e).

The available expressions are determined by the ma–

ximal solution (for ordering Ae , false ~Ae . true)
of the system of equations :

~v = ~i~(Bv)— .
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The determination of available expressions, back–

dominators, intervals, . . . requires a forward sys-

tem of equations. Some global flow problems, nota–

bly the live variables and very busy expressions

require propagating information backward through

the program graph, they are examples of backward

systems of equations.

5..3.3 Remaxks

Our formal definition of abstract interpretations

has the completeness property since the model en–

sures the existence of a particular solution to

the system of equations and therefore defines at

least some global property of the program. It must

also have the consistency property, that is define

only correct properties of programs.

One can distinguish between syntactic and semantic

abstract interpretations of a program. Syntactic

interpretations are proved to be correct by refe-

rence to the program syntax (e.g. the algorithm for

finding available expressions is justified by rea–

soning on paths of the program graph). By contrast

semantic abstract interpretations must be proved

to be consistent with the formal semantics of the

language (e.g. constant propagation).

6. Consistent Abstract Interpretations

An “abstract” interpretation ~ = <A–Cent, ~, ~,
—
T , y, ~> of a program is consistent with a “con-

crete” interpretation I = <C–Cent, . , <, T, L, Int>

if the context vector ~ resulting from T is a cor–

rect approximation of fie context vector Cv resul–

ting from the more refined interpretationfi. This

may be .rigo_rously defined by establishing a corres–

pondence ( o! : abstraction) between concrete and ab–

stract context vectors, and inversely (~ : concreti–

zation), and requiring :

6.0 {Cv~ ~(~)} and {~(Cv) ~ Cv}. — ——

In words the abstract context vector must at least

contain the concrete one, (but not only the concrete

one) .

Iff: D + D’ we note ~ = Arcs” + D and b’ =ArcsO+D’

and~:~+~’ = id. (Ar, f(d(r)).

We will suppose a and y to satisfy the following

hypothesis :

6.1 a : C–Cent J A–Cent, y : A–Cent + C–Cent

6.2 a and Y are order-preserving

6.3 YZ6 ~, ; = a(Y(~))

6.4 ~x c C–Cent, x < y(a(x))

Intuitively, hypothesis 6.2 is necessary because

context inclusion (that is property comparison)

must be preserved by the abstraction or concreti–

zation process. 6.3 requires that concretization
introduces no loss of information. It implies that

a is subjective and y is injective. 6.4 introduces

the idea of approximation :the abstraction ‘u,(C) of

a concrete context C may introduce some loss of

information so that when concretizing again y(ct(c))

we may get a larger context y(a(C)) > C. Note that

it is easy to-prove properties corresponding to

6.1-6.4 for a and ~.

Instead of the global hypothesis 6.0 we will use

the following local hypothesis on the concrete and

abstract interpretations of primitive language cons-

tructs :
~

6.5 and

{’d(a, x) c Arcs x C~t,

Int(a, a(x)) ~ a(~(a, x))}

These two hypothesis are in fact equivalent (lemma

L2 in aDDendix 12). The following schema illustra–

tes 6.5;’
concrete

i.e. the idea of abstract simulation of

computations :

Suppose we want to compute the concrete output con–

text CO (associated with arc a) resulting from con–

crete Input contexts C
I

:Co= Int(a, C1). We can

as well approximate this computa~i~n in the abstract

universe, and get CL = Y(W(a, a(CI))). 6.5 requires
C; to contain at least CO, that is Co s CA. On the

c~ntrary we do not require C~ to contain lt most
Co, that is C~ < Co is not compulsory.

We will say that I is a refinement of ~, or that

~ is an abstraction of I, denoted I g (a, Y)~, if

and only if there exist a and y satisfying hypothe-

sis 6.1 to 6.5.

Note that I < (a, y)~ imposes a local consistency

of the interpretations I and ~, at the level of pri–

mitive language constructs (6.5). Theorems T] and

T2 of Appendix 12 then prove 6.0 which defines the

global consistency of I and ~ at the program level.

In particular if we take

lss
= <Contexts, u, ~, Env, @i, n-context>

any abstract interpretation ~ of P, consistent with

1SS (1SS ~ (a, Y)~) is consistent with the seman–

tics of P, which implies :

~q e Arcs, let & be the result of ~,—

{gn = O, ~is < I-states I <q,e>=n-staten(is)}

=> {e ● y(~(q))}—

As previously noticed, the abstract interpretations

will not in general be powerful enough to establish

the reciprocal.

Example : Deductive Sevzznties of Prog~ams

Contexts will be predicates such as P(xl, ..., x )

= Pred over the program variables (xl, ..,x )cI~entn
which are the free variables in the predic~te. The

abstract interpretation is then :

lD S
= <Pred, ~, =>, ~, false, n–pred>
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where n-pred defines Floyd[67]’s strongest post-
condition :

n-pred(r, Pv) =

let(n be=rigin(r)), (p be a–pred(origin(r)))within.- .— — —
case n In

Entri~ =>(~xc Ident, x = 1
Values )

Junctions => or (pV(q))
qea~red(n) —

Tests =>ca~n——
{a-suc~t(n)} =>Pv(p) and—

test(n)
{a-s.cc-f(n)} =>=(p) ~

not test(n)——
esac

Assignments =>

let (P be Pv(p)), (x be id(n)),—— — ——
(e be expr(n)) within

(3v eValue. \ P[v/xl=n==e[vr

esac

The’’invariants” of the program are defined by the

least fixpoint of n~ed (least for ordering? (~>),

so that an invaria=lies any other correct as–

sertion) .

The deductive semantics is easily validated by pro-

ving that 1SS s (a, y)IDS, where :

0.:
—

Y:

The main

rules by

{Ya

Contexts + Pred

AC.(or ( and (x = e(x)))
e~C xc Ident

Pred + Contexts

Ap.{el p[e(x)/x, x e Identl]

point is to justify Hoare[67]’s proof

showing :
~

6 Arcs, ‘#Pv e Precl,

a(n-con~xt(a, Y(Pv)))=> n-pred(a, Pv)}— — .

See Hoare and Lauer[74], Ligler[75]. In particular

Ligler[75] shows clearly that the proof can be done

only when considering realizable Contexts and pro–

grams involving “clean” basic constructs (e.g. cons–

tructs excluding non-termination, errors, side–ef–

fects, sharing between identifiers, . ..).

Once lss S (u, 6) IDS has been proved, we know that
the deductive semantics gives a valid proof techni–

que, which will never permit a false theorem to be

deduced :

~q c Arcs, let Pv be the result of IDS,—

{~nz O, 3 is e I–states I <q,e> = n–state ‘(is)}

=> {Pv(q) => u(e)}—

7. The Lattice of Abst~act Interprwtutions

The relation S comparing the levels of abstraction

of two interpretations is a quasi-ordering since it

is :

reflexive : (I s (1 , 1)1) where I = Ax . x is

the identify function,

transitive : (I< (~1, Y1)I’)~

(I’ ~ (~2, Y2)II!) imply

I < (al O ~2, Y2 o Y1)I”.

The relation ❑ on abstract interpretations defined

by :

{I ❑ I’} <=> {(1< I’) and (I’ < I)}
is an equivalence relation. We have :

{I ❑ (6)1’} <=> {(3 is an isomorphism between
the algebras I and I’}

The proof gives some insight in the abstraction

process :

1–{1 ❑ (6)1’} => {(I ~ (6, 6–1)1’) and

(I’ S7R-1, !3)1)}

2–reciprocally,

If I< (~ , Y1)I’, let ~ (al) be the equivalence

relation ~efined on I (properly speaking, on the

set of abstract contexts of 1) by :

{x = (al)y} <=> {cl,(x) =a,(y)}

VX’ e I’, each equivalence class Cx, = {x G II

al(x) = x’} has a least upper bound which is

Y,(x’). Hence the projection al I yl(I’) of al

on yl(I’) is a bijection from the set Y,(I’) of

representers of the equivalence classes on I.
Let us show now that under the hypothesis

I S (Ul, YI)I’ and 1’ ~ (u2, Y2)I, U1 is bi-

jective.
al I yl(If) and a2 \ y2(I) are bisections, hence

‘#X’ e 1’, ~!x (unique) e YI(I’) such that

x’ = (al IYI(I’ ))(x). Likewise, x c Y1(I’)

‘> X e I ‘> ]!X” c Y2(1) I X = (~ IY2(I))(X”).

Therefore, ‘dx’ E I’, ~!x” ● Y2(I) 1
x’ = (~11 Y1(I’)) o (IX2\y2(I))(X”). Thus

(ujl Yl(I’)),0 .(IX21 Y (I)) is a bijyctiOn,~etween

~i?;~;;~~e; i ;F~~?! l?~l~l;~o;Y;;l’ec-

(~1I Y1(I’)) 0 (~21Y2(I))0 (~21Y2(I))-’

= (cll]Y1(I’))

is a bijection between I and 1’, hence al is a

bijection between I and I’ which is trivially

an algebraic morphism. (al is isotone, its in-

verse ct~] =yl is isotone and al(~(a, X))

= Int’(a, UI(X))) Q.E.D.

Let I be the set of abstract interpretations of a

program, if equivalent interpretations are iden-

tified, the quasi–ordering ~ becomes a partial or-

dering. )

In particular, we can restrict I to be set of in–

terpretations which abstract 1SS. 1 is then a lat-

tice, (with orderings) which 1s isomorphic with

a subset of the lattice of equivalence relations

on Contexts.

Example :

Let P be a program with a single integer variable,

(the generalization is obvious). Environments will

be integers (the value of the variable). Contexts

are sets of integers (the set of values at some

program point).

A context S may be abstracted by a closed interval

a(S) = [rein(S), max(S)]. When S is infinite the

bounds will eventually be -=or += .

y([a, b]) = {xl a S x S b}. The abstract contexts

are then, (cousot[761) :
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11 = /&2,2]

1

A further abstraction may be :

ct([a, b]) = if a - b then a elsif a > 0 then +
elsif b < 0 then – else f fi. y(n) = [n, n],

Y(+) = [0, +~], y(-) =[-myo], y(f) = [-m, +CO].

The abstract contexts are then :

*

/\

This interpretation may be abstracted by two non–

comparable abstractions :

ICP is used b“y Kildall[73] for constant propagation.

IRS might be used to apply the rules of signs. Both

interpretations may be abstracted by :

T

lR = 1
1

which may be used to check

program graph is reachable

Finally, the most abstract

upper bound of 1 :

that any vertex in the

from the entry nodes .

interpretation is the

‘1 = <{1}, A(x, y) . I, t, I, I, ~(a, C) . I>

where t is the relation which is always true . We

have exhibited a sublattice of I which is :

/\
‘~ — ‘R \T/’CS—lI — lSS

%

8. Abstract Evacuation of Programs

The system of equations :

Cv : Rt (Cv)— ——

resulting from an interpretation I = <A-Cent, .,

~,T,l, Int> of a program P may be solved by
.--m“el iminatlon me thods, (e.g. Tarjan[75]) . Other-

wise, One can use an “iterative” algorithm which

computes Kleene’ s sequence (L4 of Appendix 12) :

Cv := (C :=:: until C = ~t(C) do C := IX(C) re~eat. C)— — _ - ,

8.1 Correctness

If Int is supposed to be a complete morphism (i.e.

infinitely distributive over .) then Cv is the

least fixpoint of fit. (e.g. Kildall[fi], since in

a semi–lattice of mite len,gth, any distributive

function is a complete morphism). Under the weaker

assumption that Int is continuous, the limit CV of

Kleene’s sequence can also be shown to be the~east

fixpoint of fit (e.g. Wegbreit[75], since in a well–
founded semi~ttice, any isotone function is con-

tinuous) . Finally, if Int is only supposed to be

isotone, Cv is an approximation (2) of the least

fixpoint ~.g. Kam and Ullman[75]).

8.2 Termination

The abstract evaluation terminates iff Kleene’s

sequence is finite. This may be the case because

A-Cent is finite (e.g. type checking in ALGOL 60,

Naur[65]), or a finite subset only is to be consi–

dered for any particular program (e.g. type che–

eking in ALGOL 68), or A–Cent may be of finite

length m (the length of any strictly increasing

chain is bounded by m, Kildall[73], Wegbreit[75])

or A–Cent may satisfy the ascending chain condition

(every strictly increasing chain is finite, although

not bounded). A lattice may have infinite chains,

although Int is chosen so that Kleene’s sequences

are finite. Finally an infinite Kleene’s sequence

may k arbitrarily truncated (to get a lower bound

of its limit), some induction principle (Sintzoff

[75]) or heuristics (Katz and Manna[761) may be
used to pass to the limit, or approximate it,

(Cousot[76]).

6.3 Efficiency

In practice efficient versions of the Kleene’s sequen–
ce are used. These consist in a symbolic execution of

the program which propagates information along

paths of the program until stabilization. A speci–

fication of order of information propagation may

lead to optimal algorithms for specific applica–

tions (references in Tarjan[76]). .
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8.4 Exumple : Performance Analysis of Programs

The performance of programs may be analyzed by de–

riving for each program point the final value of

an imaginary counter which is incremented each time

control goes through that point.

Let A-Cent be the lattice lR+ of positive real num–

hers augmented by the upper bound m, with natural

ordering S. The abstract interpretation :
+

1P
= <R , ~, S, O, CW, Kir>

may be used to derive the mean values of the coun-

ters using Kirchhoff’s law of conservation of flow :

Kir(r, Cv) =

let n~e ~rigin(r) within

case n In

Entri& => I {unique entry node}
Junctions u Assignments => Z

pca-pred(n)

Tests =>

case r in

Cv(p)—

{a-suc=t(n)} => Cv(a-pred(n))*
‘-(test(n) = true).— —

{a-succ-f(n)} => Cv(a-pred(n))*

‘(1-Prob(test(n) =true)).— .
esac

esac

The main difficulty is to obtain the probability

Prob(test(n) = ‘true) of taking the true path at a

=~n. Suppose the values of these probabili–

ties can be determined (from hypothesis on the in-

put data). ~
For fixed probabilities, the function Klr is clear–

ly continuous (although it is not a co~ete mor–

phism) since

m cc

then max( Z ~i(p))= z (f&i(cVi)(p))_
1=0 pca–pred(n) pea-pred(n) ~

and max (ni * q) = (~ (ni)) * q.

i<A leA

The least fixpoint of K~r is the limit of Kleene’s

sequence (the length ofihe sequence is in general

infinite) :

- Let P be the program “begin L : KO to L end”.

The number n of iterat-~in th~l~p i~i–

ven by the minimal solution to the equation

n = n+ 1 which is co limit of O+ 1 + I + 1 + . . .

- Let P be the program “begin while T do I end”.

The number n of times =x=ionv is~s-

ted is given by the minimal solution to the

equation n = I + q * n where q is the probabi–

lity of T to be ,true. n may be determined by

the limit of Kleene’s sequence :

0 + 1 + q +q* + . . . + q~ + ..+

which is an infinite series. Its sum is
I

~“

This abstract interpretation leads to a system of

linear equations. Kleene’s sequence corresponds to

the Jacobi’s iterative method (for numerical

coefficients) .

9. F-ixpoints Approximation Methods

When the extreme fixpoints of the system of equa–

tions established for an abstract interpretation

I of a program P cannot be computed in finitely

many steps, they can be approximated. A more abs-

tract interpretation ~ (I s ~) may be used for

that purpose (e.g. Tenenbaum[74]). It is often bet-

ter to make approximations in I, for example by

“accelerating the convergence” of :Cleene’s sequences.

9.1 Finite Iterative and Increasi~~g Approximation
of the Least FixPoint Starting from a Lower
Bound

Let I = <A-Cent, ., <, L, T, In.t> be an int~re–
tation of P. When the least f~oint ~ of m

is unreachable, we look for an upper ~und ~ of

~, since according to the correctness ~e~u~ement

~0, Cv Z~(&) and ~~~ implies Cv s y(~).— — — — — —

9.1.1 Increasing Approximation Sequence

Let A=t : A~nt + A~nt be such that :

9.1.1.1 {Vn > 0, C = A~(~) and not(~t(C) Z C)}.—
=>{C ; Rt(C~ci?ft~.

v-
9.1.1.2 Every infinite sequence ~, A-lnt(l), . . . .

A–intn(~), . . . is not strictly increasing.

The approximation sequence So,

sively defined by :

. . . . Sn , . . . is recur-

? S ) then
n—

9.1.1.3 so =1

s = if nOt(Nt(Sn)
n+l ———

A~(Sn)

else

Sn

fi—

We now prove that 3m finite such that :
--

‘O<sl < ‘“” <sm=sm+l =”””

Let m be the least natural number (eventually in-

finite) such that Sm = S . ~k e [0, m[, we know

from 9.1.1.3 that not(fi~t~k) ? Sk). Whence by de–

finition of the or~i~?, Sk # Iti(Sk) x Sk-

SinCe Sk ?-~(sk) ~ Skis always true~ we can state

that Sk ~ ~t(sk) ~ Sk. Besides nGc(Int(Sk) ~ Sk)

and 9.1.1. l~ply :

= A~i~t(Sk) ~ ~(sk) U Sk
‘k+] —

and therefore we conclude S
k+ I

YS k,~ke[l, m[.

Moreover 9.1 .1 .2 implies that m is finite. Q.E.D.

Let ~ be the least fixpoint of ‘~, it is the

grea~~t lower bound of the set of X e A~t such

that Int(X) ~ X (Tarski[55]) hence :

‘dX , A=t, {tit(X) ~ X} => {=2 X}—

Since Sm = Sm+l we have ~t(Sm) ? SV and therefore
G 7 Sm, Sm is a correct approximat~on of Z.— —
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9.1.2 Gevzera2ization of .Ueene’s Ascending Sequence

When A–Cent satisfies the a~ending chain condition

one can choose ADi~t to be Int and therefore the

approximation sequence gene~izes Kleene’s sequerr
ce and the related methods.

9.1.3 Widening in Increasing Approximation se-
qz4ances

T~definition of the approximate interpretation

A–lnt in 9.1.1 is global. We now indicate a way

to construct A-int by local modifications to Int.

Let (q, r) c Arcsz, we say that the context asso–

ciated to q is dependent on the context associated

to r, if and only if :

{]Cve Awnt,~Cc A-Contl Int(q,Cv)#Int(q,C~[C/r])}— —— —.

(e.g. in a forward system of equations the context

associated to q may only depend on the contexts

associated with the immediate predec~sor arcs of

q). In the system of equations Cv = Int(Cv) we de-

fine a cycle to be a sequence -1, . . . . qn> of
——

arcs, such that vi c [1, n[, Cv(qi.+l) depends on

Cv(qi) and ~(ql) depends on ~(qn). (e.g. in a

~rward interpretation a cycle corresponds to a

loop in ‘the program).

In any infinite strictly increasing Kleene’s se–

quenceql, . . . . Cv , . . .

T’

since Arcs is finite there

is some arc q for w lch the sequence Cvl(q), . . .,

Q(q), . . . never stabilizes . Therefo~ q must be-

long to a cycle or the contexts associated to q

transitively depend on the contexts associated to

some other arc r which itself belongs to a cycle.

The sequence of contexts associated to any arc of

that cycle never stabilizes. In order to avoid this

phenomenon, we introduce :

– The binary operation V called widening defined

by :

9.1.3.1 v : A-Cent x A–Cent =- A–Cent

9.1.3.2 ~(C, C’) : A–Cont2, C . C’ < CV C’

9.1.3.3 Every infinite sequence SO, . . . . Sri,...

of the form s
‘co’ “’”’ ‘n= ‘n-1 ‘,enY

. . . (where CO: . . . . Cn, .,. are arbi-

trary abstract contexts) is not strictly

increasing.

– The set W–arcs of widening arcs, which is one of

the minimal sets of arcs such that any cycle

<ql, .2.,
q_> of the system of equations

C; = ‘I%t(C;) contains at least a widening arc :

~ c ~~1 qi e W-arcs. (e.g. in a forward

interpretation on a reducible program graph,

W–arcs may be chosen to be the set of exit

arcs of the junction nodes which are interval

headers. On’ irreducible graphs an arbitrary

choice has to be made so that any loop of the

program goes through a widening arc).

The approximate in~pretation
A–int : Arcs” X A–Cent + A–Cent defined by :

9.1.3.4 A-int = ~(q, Cv) . if q e W-arcs then—
%(q) V Int(q, Cv)
eGe

Int(q, Cv)-—
fl

As before, we define :

9.1.3.5 A~t = )iCv. (Aq, A-int(q, CV))— — —.

Now we have to show that this definition of A~t

satisfies the requirements 9.1.1 .2 and 9.1.1.1.

Let us consider a sequence So = ;, . . . . Sn+l

= A–int(Sn), . . . We show that this sequence is

increasing that is to say :

9.1.3.6 Sn~A%t(Sn), ~n~ O.

Trivially for n=O, So = ;< A%t(So). For the

induction step, suppose the result to be true

for n g m. Let us prove that :

s m+l Z A=t(S )
m+ 1

<-> s m+,(q) ~ A-int(q, Sm+l),~q e Arcs.

If q c W-arcs, then A–int(q, Sm+l) =

Sm+l(q) ~ w(q, Sm+l) ~ Sm+j(q) o ~(q, Sm+l)

>s
m+](q)”

If q ~ W-arcs, then
A-int(q, Sm+l) = Int(q, Sm+l)

=> Int(q, Sm) S A–int(q, Sm+l) since

s- and Int is order preserving. Moreover

f~O~)~]~J-arc=nd 9.1.3 .4we get Int(q, S )
= A-int(q, Sm) and therefore Sm+l(q~A–in~(q,Sm)

~ -(q, Sm+l).
.

Finally Sm+l ? ~-~t(Sm+l), Q.E.D.

An infinite sequence S =1
O ‘ ““~’ ‘n

= A%tn(I), . . .

cannot be strictly increasing since oth=e there

would exist some widening arc q for

‘Fences?’ “’”’ sn(q)’ ““”wOuldthus con radlctlng 9.1.3.3.

We now prove 9.1 .1.1 that is to say

Vn>(),S = A%tn(;)
n—

implies

Sn ;%(Sn) z A%t(Sn)

which the se-

never stabilize

that :

<=> (s ~%t(S ))(q)~ Act, ~q c Arcs
n—n

‘=> Sri(q) . -(q, Sn) ~ A-int(q, Sn) (see 9.1.3.5)

If q c W-arcs, we have A–int(q, Sn) =

Sri(q) V Int(q, Sn) 2 Sri(q) . Int(q, Sn) by

9.1.3.2. If now q # W-arcs we must show :

Sri(q) . Int(q, Sn) ~ Int(q, Sn)

<=> Sri(q) . Int(q, Sn) = Int(q, Sn)

‘=’ Sri(q) ~ ~(q, Sn)

<=> Sri(q) s A-int(q, Sn) by 9.1.3.4

which is true, from 9.1.3.6, Q.E.D.

9.2 Example : Bounds of Integer Variables

In a PASCAL program operating on arrays, the compi–

ler should ensure that arrays are subscripted only

by indices within bounds. For that purpose one can

use the lattice I
I

of section 7. Let us take an

obvious example :
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cl
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c’ Gb-&-+D

Let us note [a, b] where a s b the predicate

asxsb. The system of equations corresponding

to the example is :

(o) co =[ , 1
(1) cl =[1, II
(2) C2=CIUC4

(3) C3=C2n [-m, 1001

(4) C4=C3+ [I, 1]

(5) C5 = C2 n [101, +m]

Assi~nmept stateme,)ts are treated using an inter–

val arithmetic (e.g. [i, j] + [k, 11 = [i+k, j+~]

naturally extended to include the case of the emp-

ty interval). Similarly tests are treated using an

“interval logic”. Since there exist infinite

Kleene’s sequences (e.g. [ , 1<[0, 01 < [0, 11

< . . . < [O, +~] for the program x := O ; while

true do x := X+ 1), we must use an approximation
——
sequence. Hence the results will be somewhat inac-

curate but runtime subscript tests may be inserted

in the absence of certainty.

Let us define the widening V of intervals by :

-1, I is the null element of v

-ri, j] V rk, 1] ‘[ifk< i then-melse i fi,——
~ .t> j then +melse j ~]— ——

v satisfies the requirements of 9.1.3 . According

to 9.I.3.4 the system of equations is modified by :

(2) C2 =C2 v (cl u C4)

The corresponding approximation sequence is :

Ci=[, 1 for i e [O, 51
* cl =[1, 1]

C2 = C2 v (cl u C4)

=[ , 1 v ([l, II U[ , 1)

=[ 1 v [1, II

=[1: 11

C3 =C2 n [–~, 1001

=[1, II n [-~, 1001

=[1, 11

C4=C3+ [I, 11

=[1, 11+[1, II

= [2, 23
C2 = C2 v (cl u C4)

=[1, l]v([l, II U[2, 21)
=[1, 11u[I,21

* C2=[1, +@]

C3 =C2 n [–~, 1001
=[1, +~]n[-~, 1001

* C3 = [1, 100]
C4=C3+ [I, 1]

=[1, 1001 +[1, 11
* C4 = [2, 101]

Note : cl UC4=[1, loll sc2=[l, +~l

stop on that path.

C5=C2n [101, +COI
=[1, +~ln [101, +ml

* C5 = [101, +’=]
exit, stop.

The final context on each arc is marked by a star
*. Note that the results are approximate ones,

(e.g. C5).

In this example the widening is a very rough ope–

ration which introduces a great loss of information.

However it can be seen in the ‘trace that tests

behave like filters. Furthermore, for PASCAL like

languages, one can first use the bounds given in

the declaration of x before widening to infinite

limits.

9.3 Finite Iterative and Dee~easing Approximation
of the Least F;xpoint Starting from an Upper
Bound

The ascending approximation sequence leads to an—
~per bound Sm = A–intm(~) of the least fixpoint

cvoffit:mzsm. Moreover ’%t(Sm) ~ Sm. Since—— —
fit is order preserving, this implies that :

s :’Mt( s); . . .. %tn(sm) . . . ..x.
m—--m —

-
If s is not a fixpoint of Int and the above de–

2’seen lng sequence is finite (e.g. the lattice

A-Cent satisfies the descending chain condition)

its limit is a better approximation of ~ than Sm.

When the sequence is infinite or slowly~onvergmg,

one can among other solutions approximate its li–

init.

9.3.1 Decreasing Approximation Sequence

At step n in the descending sequence, we have :

xtn– 1 (Sm) Y%tn(sm) YG—

In order to accelerate the convergence, we should

~n~~e next st~p find an approximation D such that. —
Int (Sm) > D ~ Cv. But not knowing Cv, this cha-

racterization is ~ry weak since D co~d be chosen

incorrectly that is to say less than ~ or non com-

parable with ~. The fact that ~ is ~e greatest

lower bound o~the set of X E A~ont such that

=t(X) ~ X gives a correctness criterion for the—.
choice of D when ~ is unknown, we must have :

~tn+’(sm) ~~~~t(D)

On the contrary to 9.1.1, this characterization does

not provide an efficient construction of D.

9.3.2 Truncated Decreasing Sequence

In front of these difficulties we will enforce con-

vergence by choosing D such that :

3n 2 01 ~t(Sm) ~ D ~~tn+](Sm)
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. . . . . . . .
The limit of the descending sequence S~ = ~, . . . .(However, we WI1l not artlflclally truncate the

decreasing sequence by imposing an arbitrary upper

bound on n ),

v~
Let D–lnt : A–Cent + A%&t be such that :

9.3.2.1 {~C e ~~}
{C> Int(C)} => {C ~~t(C) ~~t(C)}

9.3.2.2 V= A~nt, every infinite sequence C,

D–lnt(C), . . . . =ntn(C), . . . is not strict–

ly decreasing.

The truncated decreasing sequence S;, . . ..S~. . . .

is recursively defined by :

9.3.2.3 S: = S_

s: ‘“= if (S’ # fit(S’)) @ (S~#D~t(S~))
n+} — ,n — n

then ~nt(S’)
—’ n

el se

s’
fi n—

Let us now prove that the truncated decreasing se–

quence is a finite strictly decreasing chain which

terms are greater than ~ the least fixpoint of

*t.

Let p be the least natural number (eventually

infinite) such that S’ = S’ Trivially from

9.1.1 : P p+] “

If P > 0 then S; #~(S~), therefore S~~fit(S~.
Then applying 9.3.2.1 we have :

But

For
k<

9.3.2.3 implies S~ # D=t(S~), hence :

s; ~ s; :-~(s~) SG—

the induction step, let us suppose that for

p, we have :

Since fit is order preserving we have :

~(s;_l ) ;IYJ(sp 2%t’(s;_l) s%t(cv)

==

Since 9.3.2.3 implies S; # Dwt(S~) we have :

Si ‘ Si+l
: -~(s~) : G—

By recurrence on k the result is true for k< p.

Moreover 9.3.2.2 implies that p is finite. Q.F..D.

9.3.3 Generalizatwn of Kleene’s Descending Se-
quence

When A–Cent satisfies the descend~g chain condi–

tion, one can choose D–int to be ~, in which case

the final result S’ = fitp(Sm) is a fixpoint grea-

ter or equal to th~ least fixpoint ~ of &t.
— —

s’ = Dei%tp(~), . . . is an upper bound ~f the grea-

t~st fixpoint of fit.

9.3.4 Narrotii~ in Tz+uneated Decreasi~ Sequeru?es

By analogy with 9.1 .3 we define now the narrowing

operation in order to built a possible construction

of DDi~t by local modifications to Int :

9.3 .4.1 A : A-Cent x A–Cent + A-Cent

‘9.3 .4.2 Y(C, C’) e A–Cont2,

{C 2C’]=>{C?CAC’2C’]

9.3.4.3 Every infinite sequence s=O; . . . . . s, . . .

of the form s
= co’ ‘1

A Cl,n. ...

s AC:, . . . for arb~trary abstract

c~n;e;P;lC
o’ CI’. ”””’cn’ ““” ‘snot

strictly decreasing.

The approximated~terpretation

D–int : Arcs” x A–Cent + A–Cent is defined by :

9.3.4.4 D-int = k(q, Cv) . if q c N-arcs then— —
Cv(q) A -(q, ~)

els=

Int(q, Cv)—r,
LL—

and

D~ixt = ~Cv. (Aq. D-int(q, Cv))
— — —

This definition of Dci~t trivially satisfies the

requirement 9.3.2.1 since ~Cv ~ A–Cent with pro–

perty Cv ~~t(Cv) implies =(q) > Int(q, Cv),

Vq e A~s. If q= W-arcs th~ 9.3.4.2 impl~s that

Cv(q) z Cv(q) A Int(q, Cv) = D–int(q, Cv) z

fit(q, CT. Otherwise, ~ q ~ W-arcs Cv(q) ~

Int(q, Cv) = D–int(q, Cv). Hence Cv ~Cili’t(Cv) ~— — .
Rt(cv) .—

The proof of termination (requirement 9.3.2.2) is
-.

very similar to the one outlined for A–ltit in sec–

tion 9.1.3.

9.4 Examp2e : Bounds of Integer

Let us come back to example 9.2.

equations was :

(1) CI =rl, 13

(2) C2 = c1 u C4

(3) C3 = C2 n [-~, 1007
(4) C4=C3+EI, 1]

(5) C5=C2n [101, +~]

Variables

The system of

The ascending approximation sequence led to the

approximate SOlutiOtl :

* c1 =[1, 1]
C2= [1,*]
C3 =[1, 100]

* C4 = [2, 101]

C5 = [101, +~]

Let us define the narrowing A of intervals by :

-[ , I is the null element of A.

- [i, j] A [k, !?,1 =
[~ i = - @ then k else ~-(i, k) fi,—_

Lf j = +m then L else max(j, k) ~]— ——
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Thus narrowing just discards infinite bounds and

makes no improvement on finite bounds, it satisfies

the requirements of 9.3.4. According to 9.3.4.4 the

system of equations is modified by :

(2) C2 =C2 A (Cl U C4)

The descending approximation sequence is :

C2 =C2 A (Cl U C4)

=[1, +COIL ([1, 11 u[2, 1011)

=[1, +’=] A[l, 1o11
* C2=[1, 10I]

C3 =C2 n [-~, 1001
* C3=[1, 1o11 n [-~, 100] = [1, 100]

stop on that path.

C5=C2n [1OI, +~]
* c5=EI, 1o11 n [1OI, +~1 = [Iol, 1o11

exit.

On that example the approximate solution has been

improved so that the least fixpoint is reached but

this is not the case in general.

9.5 Dual. Approximation Methods

~
The lattice A–Cent may be partitionned as follows :

Lfp and gfp are the least and greatest fixpoints of

fit. The ascending (AKS) and descending (DKS)

Kleene’s sequences converge toward Lfp and gfp

respectively. These limits are reached when Int

is continuous. !Jhen AKS is infinite we have pro-

posed to use an ascending approximation sequence

(AAS) to approximate !?,fp. Its limit may be some

When X ~ Y we have noted X g...__~e y.

The truncated descending sequence TDS is fundamen-

tally different from AAS, since it ensures that the

successive approximatio~s~tarting from S remain

in the partition {Xl X 2 Int(X)}, so thatmtheir

limit S’ is greater than !Lfp :
P

1

It

T

is clear that the ascending-approximation se-

quence AAS when starting from I leads to an upper
bound of the least fixpoint kfu of fit. and the

trunc~ted descending sequence TDS w~’starting

from T leads to an upper bound of the greatest fix-

point gfp.Hence the AAS and TDS methods are not

dual , therefore when considering their duals DAS

and TAS we get a means to surround both extreme

fixpoints of fit :

fixpoint fp, or some S ‘such that S~ ~“fit(Sm) and
s J Lfp,

m —

m
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Any of the AAS, TDS, DAS, TAS methods may yields

a fixpoint fp which is not the fixpoint !Lfp or

gfp of interest. None of these methods can im–

prove fp to reach f,fp or gfp, therefore a “fix-

point improvement method” is necessary. It is our

feeling that such a method could be designed only

when considering that A-Cent possesses a richer

structure (i.e. for particular applications).

Furthermore, in the AAS, TDS, DAS, TAS sequences

the term of rank n is computed only as a function

of the term of rank n- 1 , hence these are ‘separ-

ate steps” methods. One can as well imagine to

use “bound steps” methods, where the term of rank

n is computed as a function of the terms of

rank n-1, n-2, . . . . n–k. In this last case the

Kleene’s sequences may be used to compute the first

k terms. After k steps more inform,~.tions about the

program would be available to heuristicly accele–

rate the convergence so that the definition of

A-int and D–int could be more refined.

Finally, going deeply into the comparism with nu-

merical analysis methods, it is clear that some

measure is necessary to control the accuracy of the

result. Its definition would certainly also neces-

sitate some additional properties of the abstract

contexts .

10. Conelus-ion

It is our feeling that most program analysis tech–

niques may be understood as abstract interpreta–

tions of programs. Let us point out global data

flow analysis in optimizing compilers (Kildall[731,

Morel and Renvoise[76] , Schwartz[75], Ullman[75],

Wegbreit[ 751 , . ..). type verification (Naur[65],

. ..). type discovery (Cousot[76’], Sintzoff[72],

Tenenbaum[ 74] , . ..). program testing (Henderson

[751, . ..) symbolic evaluation of programs (Hewitt

et al.[73], Karr[76], . ..). program performance

analysis (Wegbreit[76], . ..). formalization of

program semantics (Hoare and Lauer[74], Ligler[75],

Manna and Shamir[75], . ..). verification of pro-
gram correctness (Floyd[671, Park[691, Sintzoff[75],

. . . ), discovery of inductive invariants (Katz and

Manna[76], . . .), proofs of program termination

(Sites[741, . ..). program transformation (Sintzoff

[76], . ..). . . .

There is a fundamental unity between all these ap-

parently unrelated program analysis techniques : a

new interpretation is given to the program text

which allows to built an often implicit system of

equations. The problem is either to verify that a

solution provided by the user is correct, or to

discover or approximate such a solution.

The mathematical model we studied in this paper

is certainly the weakest which is necessary to

unify these techniques, and therefore should be of

very general scope. It can be considerably enriched

for particular applications so that more powerful

results may be obtained.
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12. Appedix

We note <L, “, S, T, L> a complete u–semilattice

L, with partial ordering S, supremum T and infi–

mum L. These definitions are given in Birkhoff[61].

Note : L is a complete lattice.

(proof in Birkhoff [61], p. 49).

We take f is isotone, f is order–preserving

or f is monotone to be synonymous and mean :

(Hi) :

(m) “:

(Ll) :

b

(H2) :

{Y(x, y),L2, {x s y} -{ f(x) sf(y)}}

<=> {’#(x, y)EL2, {f(xuy) }> f(x) uf(y)}}

Let F be an order–preserving function from

the complete semi-lattice <L, u, <, T, 1>

in itself.

Let ~ be an order-preserving function from

the complete semi-lattice <~, ~, ~, ~, ~>

in itself.

The fixpoints of F form a non–empty complete

lattice with supremum g, infimum L such that:

g = u{xl (X e L) A (X S F(x))}

L = n{xl (x c L) A (F(x) S x)}

(This result is proved in Tarski[551, pp.286-

287). Note that the fixpoints of F need not

form a sublattice of L,

We note ~

fixpoints

Let a and

(H2.1) ci

(H2.2) y

(H2.3) u

and ~ the greatest and least

of Y.

6 be such that :

is order preserving

(H2.4) y_is ~rd~r prese~ving

(H2.5) ~x c L, x ‘a(Y(x))
(H2.6) ~xf L, x<y(a(x))

(H3.1) : (Hi), (~), (H2) and {~x < L,

F(a(x)) >

(H3.2) : (Hi), (=), (H2) and {Es ~,
y(F(x)) 2

ct(F(x))}

F(y(=))}

(L~) ,

(H3) :

(L3) :

{H3.1} <=> {H3.2}

Proof :

‘& E c.

~(a~y(=))) ~ a(F(y(~))) by x = y(~) in H3.1

~(~) ~ ct(F(y(~))) from H2.5

y(~(~)) > y(a(F(y(=)))) from H2.4

y(~(~)) ~ F(Y(~)) H2.6 and transitivi–

ty .

~x<L

Y(~(cL(x))) ~ F(Y(a(x))) 1 = a(x) in H3.2
y(cl(x)) 2 x H2.6

F(y(ct(x))) 2 F(x) F order preserving

in (HI).

Y(~(q(x))) ~ F(x) transitivity

u(y(F(ct(x))))= Ci(F(x)) H2.3

~(ct(x)) > ci(F(x)) H2.5

Q.E.D.

Since H3.I and H3.2 are proved by L2 to be

equivalent, we choose :

(H3.1) or (H3.2)

Let F : L + L be an order–preserving fLInCtiOn

from the semilattice <L, u, S, ~, L>in it-

self, L and g respectively the least and

greatest fixpoints of F, then :

~X e L, {g U F(x) > X} <=> {g Z X}

(The dual of this result is nroved in Park
[691. pp. 66). By duality :

~xc L, {L n F(x) < X} <=> {~ S X}
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(Tt):Hl, iYF, HZ, H3 imply that the greatest fix-

points g and ~ of F and ~ are related by :

{a(g) =~ and {g< y(~)}

Proof :

The existence of g and ~ is stated by (Ll).

Eva(g) SLl(g) trivially

~i7~(F(g)) sa(g) since g = F(g)

~~F(u(g)) =a(g) H3.1, U isotone, > tran-

sitive

~~a(g) L3

Y(g) ~ Y(a(g)) H2,4

Y(z) ~ g H2.6, z transitive.

Q.E.D.

Replacing <g, ~, ~, ~, >, F, ~, a, Y, H3.~,

H2.4, H2.6> respectively by <~, k, n, s, <, ~,

F, y, a, H3.2, H2.3, H2.5> in the above proof,

we get the “dual” theorem :

(T2) :Hl, fi~ H2, H3 imply that the least fixpoints

L and L of F and ~ are related by :

{y(l) 2 k} ~{zsa(~)}

According to Scott[71]a subset X ~ L is cal–

led directed if every finite subset of X has

an upper bound (in the sense of S) belonging

to X. (An obvious example of a directed sub-

set is a non–empty ascending chain). A func–

tion f : D + D is called continuous if when-
ever X c L is directed, then f(u{x\ x ● X}) =

U{f(x) TX E x}.

(H4) : Let F be a continuous function from the com-

plete semi–lattice <L, U, s, T, 1> in itself.

(~) : Let ~ be a continuous function from the com-

plete semi-lattice <1, U, Z, ~, 1> in itself.

We note FO(x) = x and F
n+ 1

(x) =F(Fn(x)).

(L4) : H4(~) implies that F (~) has a least fix-
+m .

point it(~) which is the limit u F1(L) of
i =()

the Kleene’s sequence 1 ~ F(l) ~ . . . ~ Fn(~)
<.,.

(The proof is easy to adapt from Kleene[52]’s

proof of the first recursion theorem pp. 348–

349) .
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