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The Hindley/Milner let-polymorphic type inference system has two different algorithms: one is
the de facto standard Algorithm W that is bottom-up (or context-insensitive), and the other is
a “folklore” algorithm that is top-down (or context-sensitive). Because the latter algorithm has
not been formally presented with its soundness and completeness proofs, and its relation with the
W algorithm has not been rigorously investigated, its use in place of (or in combination with) W
is not well founded. In this article, we formally define the context-sensitive, top-down type infer-
ence algorithm (named “M”), prove its soundness and completeness, and show a distinguishing
property that M always stops earlier than W if the input program is ill typed. Our proofs can
be seen as theoretical justifications for various type-checking strategies being used in practice.
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and Features—data types and structures; F.3.3 [Logics and Meaning of Programs]: Studies
of Program Constructs—type structure
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1. INTRODUCTION

Algorithm W , which is the standard presentation of the Hindley/Milner let-poly-
morphic type inference system, fails late if the input program has a type error.
Because the algorithm fails only at an application expression where its two subex-
pressions (function and argument) have conflicting types, an erroneous expression
is often successfully type-checked long before its consequence collides at an applica-
tion expression. This “bottom-up” AlgorithmW thus reports the whole application
expression as the problem area, implying some of its subexpressions are ill typed.
Such a large type-error message does not help the programmer to find the cause of
the type problem.

A different type inference algorithm, which has been used in an early ML com-
piler [Leroy 1993], can cure this problem. This folklore algorithm carries a type
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#let rec fac n = if n = 0 then 1 else n *(fac(n=1));;

Toplevel input:

>let rec fac n = if n = 0 then 1 else n *(fac(n=1));;

> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This expression has type int -> int,

but is used with type bool -> int.

(a) from W (CamlLight 0.71)

#let rec fac n = if n = 0 then 1 else n *(fac(n=1));;

Toplevel input

>let rec fac n = if n = 0 then 1 else n *(fac(n=1));;

> ^

Expression of type ’a -> ’a -> bool

cannot be used with type ’a -> ’a -> int

(b) fromM (CamlLight 0.61)

Fig. 1. Different type-error messages from W and M.

constraint (or an expected type) implied by the context of an expression down to
its sub-or-sibling expressions. For example, for an application expression “e1 e2”
with a type constraint, say of int, the type constraint for e1 is α → int and the
constraint for e2 is the type that the α becomes after the type inference of e1. For a
constant or a variable expression, its type must satisfy the type constraint that the
algorithm has carried to that point. Because of this “top-down” nature we name
this algorithm “M.”

In this article we formally define algorithm M, prove its soundness and com-
pleteness, and show that it finds type errors earlier than W . This property implies
that this algorithm in combination with W can generate strictly more informative
type-error messages than either of the two algorithms alone can.

As an example to show the difference of the two algorithms, see Figure 1. The
program is a factorial function whose recursive call is mistakenly “fac(n=1),” in-
stead of “fac(n-1).” Algorithm W (CamlLight 0.71 [Leroy 1995] and SML/NJ
0.93 [MacQueen and Appel 1993]) reports the whole definition as the problem area
because the algorithm fails to unify the argument type bool inferred from the re-
cursive call “fac(n=1)” with the type int inferred from the argument use “if n =
0· · ·.” On the other hand, algorithm M (CamlLight 0.61 [Leroy 1993]) pinpoints
the operator “=” as the problem spot. This exact error message is possible because
the type constraint of the function’s argument is int when the argument “(n=1)”
of the recursive call is type-checked.

2. THE M ALGORITHM

2.1 Overview

AlgorithmM carries a type constraint from the context of an expression and stops
when the expression cannot satisfy the current type constraint. Consider the fol-
lowing expression:

(fn x => x+1)︸ ︷︷ ︸
e1

(

e3︷ ︸︸ ︷
(fn y => if y then true else false)

e4︷ ︸︸ ︷
false)︸ ︷︷ ︸

e2
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The expression e1 must be a function expression; thus M infers its type with the
constraint α→ β. The inference will succeed with substitution {α 7→int,β 7→int}.
This imposes the constraint that the argument expression e2 must be type int.
Thus M infers the type of e2 with the constraint int. This, in turn, makes M
infer the type of e3 with the constraint γ → int. But the then-branch expression
in the function’s body is boolean; thusM stops at the true expression with a type
error.

One characteristic of M is that a type constraint that is derived from the cur-
rent context dominates in subsequent steps. For example, given an expression
“f(false,1,2)” where the type of the f is α× α× α→ α, M reports that the
1 must have the bool type, because the constraint from the “false” expression
forces the subsequent sibling expressions to have the same type. In comparison,
Johnson and Walz’s unification algorithm [Johnson and Walz 1986] reports that the
“false” expression must have the type int, because it selects the most “popular”
types if multiple, conflicting types are bound to a type variable.

2.2 Notation

We use conventional notation. Vector ~α is a shorthand for {α1, · · · , αn}, and ∀~α.τ
is for ∀α1 · · ·αn.τ . Equality of type schemes is up to renaming of bound vari-
ables. For a type scheme σ = ∀~α.τ , the set ftv(σ) of free type variables in σ is
ftv(τ) \ ~α, where ftv(τ) is the set of type variables in type τ . For a type envi-
ronment Γ, ftv(Γ) =

⋃
x∈dom(Γ) ftv(Γ(x)). A substitution {τi/αi | 1 ≤ i ≤ n} sub-

stitutes type τi for type variable αi. We write {~τ/~α} as a shorthand for a sub-
stitution {τi/αi | 1 ≤ i ≤ n}, where ~α and ~τ have the same length n and R~α for
{Rα1, · · · , Rαn}. For a substitution S, the support supp(S) is {α | Sα 6= α}, and
the set itv (S) of involved type variables is {α |β ∈ supp(S), α ∈ {β} ∪ ftv(Sβ)}.
For a substitution S and a type τ , Sτ is the type resulting from applying every
substitution component τi/αi in S to τ . Hence, {}τ = τ . For a substitution S

and a type scheme σ, Sσ = ∀~β.S{~β/~α}τ , where ~β ∩ (itv (S) ∪ ftv (σ)) = ∅. For a
substitution S and a type environment Γ, SΓ = {x 7→ Sσ |x 7→ σ ∈ Γ}. The com-
position of substitutions S followed by R is written as RS, which is {R(Sα)/α |α ∈
supp(S)} ∪ {Rα/α |α ∈ supp(R)\supp(S)}. Two substitutions S and R are equal
if and only if Sα = Rα for every α ∈ supp(S) ∪ supp(R). For a substitution P
and a set of type variables V , we write P |-V for {τ/α ∈ P | α 6∈ V }. The no-
tation ∀~α.τ ′ � τ means that there exists a substitution S such that Sτ ′ = τ and
supp(S) ⊆ ~α. We write Γ + x:σ to mean {y 7→ σ′ |x 6= y, y 7→ σ′ ∈ Γ} ∪ {x 7→ σ}.
ClosΓ(τ) is the same as Gen(Γ,τ) in Damas and Milner [1982], i.e., ∀~α.τ , where
~α = ftv(τ) \ ftv(Γ).

2.3 Algorithm Definition

The source language, its Hindley/Milner-style let-polymorphic type system, and
Algorithm W are shown in Figure 2. Algorithm M is shown in Figure 3.

Algorithm M returns a substitution from three components: an expression, a
type environment, and a type constraint. The inferred type of the expression is
achieved by applying the result substitution to the type constraint of the expression.
The type constraints are just types. Note that the algorithm does not unify types
at application expressions. Instead, it unifies at constant, variable, and lambda

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, July 1998.
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Abstract Syntax
Expr e ::= () constant

| x variable
| λx.e function
| e e application
| let x = e in e
| fix f λx.e

Type τ ::= ι constant type
| α type variable
| τ → τ function type

TypeScheme σ ::= τ | ∀~α.σ
TypeEnv Γ ∈ Var

fin→ TypeScheme type environment

(CON) Γ ` () : ι

(VAR)
Γ(x) � τ
Γ ` x: τ

(FN)
Γ + x: τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

(APP)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(LET)
Γ ` e1 : τ1 Γ + x: ClosΓ(τ1) ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

(FIX)
Γ + f : τ ` λx.e : τ

Γ ` fix f λx.e : τ

W : TypEnv × Expr → Subst ×Type

W(Γ, ()) = (id, ι)

W(Γ, x) = (id, {~β/~α}τ) where Γ(x) = ∀~α.τ, new ~β
W(Γ, λx.e) = let (S1, τ1) =W(Γ + x:β, e), new β

in (S1, S1β → τ1)
W(Γ, e1 e2) = let (S1, τ1) =W(Γ, e1)

(S2, τ2) =W(S1Γ, e2)
S3 = U(S2τ1, τ2 → β), new β

in (S3S2S1, S3β)
W(Γ, let x = e1 in e2) =

let (S1, τ1) =W(Γ, e1)
(S2, τ2) =W(S1Γ + x: ClosS1Γ(τ1), e2)

in (S2S1, τ2)
W(Γ, fix f λx.e) = let (S1, τ1) =W(Γ + f : β, λx.e), new β

S2 = U(S1β, τ1)
in (S2S1, S2τ1)

Fig. 2. The language, its type inference rule, and Algorithm W . Every new type variable is
distinct from each other, and the set New of new type variables introduced at each recursive call
to W(Γ, e) satisfies New ∩ ftv(Γ) = ∅.

expressions.
Consider the variable case (M.2). The current type constraint ρ and the x’s type

Γ(x) must agree: U(ρ, {~β/~α}τ). For the lambda case (M.3), the first thing is to
check if the current type constraint ρ is a function type. The unification
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, July 1998.
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M: TypEnv × Expr ×Type → Subst

M(Γ, (), ρ) = U(ρ, ι) (M.1)

M(Γ, x, ρ) = U(ρ, {~β/~α}τ) where Γ(x) = ∀~α.τ, new ~β (M.2)
M(Γ, λx.e, ρ) = let S1 = U(ρ, β1 → β2), new β1, β2 (M.3)

S2 =M(S1Γ + x:S1β1, e, S1β2) (M.4)
in S2S1

M(Γ, e1 e2, ρ) = let S1 =M(Γ, e1, β → ρ), new β (M.5)
S2 =M(S1Γ, e2, S1β) (M.6)

in S2S1

M(Γ, let x = e1 in e2, ρ) =
let S1 =M(Γ, e1, β), new β (M.7)

S2 =M(S1Γ + x: ClosS1Γ(S1β), e2, S1ρ) (M.8)
in S2S1

M(Γ, fix f λx.e, ρ) = M(Γ + f : ρ, λx.e, ρ) (M.9)

Fig. 3. AlgorithmM. Every new type variable is distinct from each other, and the set New of new
type variables introduced at each recursive call toM(Γ, e, ρ) satisfies New ∩ (ftv(Γ)∪ ftv(ρ)) = ∅.

U(ρ, β1 → β2), new β1, β2 (M.3)

does this job. For the application case (M.5), the current type constraint ρ becomes
the range part of the new constraint β → ρ for the function expression e1:

M(Γ, e1, β → ρ), new β. (M.5)

The constraint for the argument expression e2 is the type S1β. For the let case
(M.7), the type constraint for the binding expression e1 is null,

M(Γ, e1, β), new β, (M.7)

because no constraint about the type of e1 is available. The constraint for the let-
body e2 is the type S1ρ. For the fix case (M.9), the constraint of the expression
λx.e is the same as the given constraint ρ.

3. SOUNDNESS AND COMPLETENESS

Algorithm M is sound and complete with respect to the let-polymorphic type
inference system of Figure 2.

Theorem 1 (Soundness of M). Let e be an expression and Γ be a type en-
vironment. If there exists a type ρ such that M(Γ, e, ρ) = S, then SΓ ` e : Sρ.

The proof uses Lemma 1 and Lemma 2.

Lemma 1 [Damas and Milner 1982]. If S is a substitution and Γ ` e : τ ,
then SΓ ` e : Sτ .

Lemma 2 [Milner 1978]. Let S be a substitution, Γ be a type environment, and
τ be a type. SClosΓ(τ) = ClosS′Γ(S′τ), where S′ = S{~β/~α}, ~α = ftv(τ) \ ftv(Γ)
and ~β is new.

Proof of Theorem 1. We prove by structural induction on e.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, July 1998.
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—case (): Sρ = Sι = ι. So SΓ ` () : Sρ by (CON).

—case x: Sρ = S{~β/~α}τ ≺ SΓ(x). By (VAR), SΓ ` x : Sρ.
—case λx.e:

(1) By induction, (M.4) implies

S2S1Γ + x:S2S1β1 ` e : S2S1β2.

(2) By (FN), S2S1Γ ` λx.e : S2S1β1 → S2S1β2; that is, by (M.3),

S2S1Γ ` λx.e : S2S1ρ.

—case e1 e2:
(1) By induction, (M.5) implies S1Γ ` e1 : S1(β → ρ). By Lemma 1, we can
apply S2 to both sides.

S2S1Γ ` e1 : S2S1β → S2S1ρ

(2) By induction, (M.6) implies

S2S1Γ ` e2 : S2S1β.

Hence by the (APP) rule, S2S1Γ ` e1 e2 : S2S1ρ.

—case let x = e1 in e2: Let S′2 = S2{~β/~α}, where ~α = ftv(S1β) \ ftv(S1Γ), and
let ~β be new type variables.
(1) By induction, (M.7) implies S1Γ ` e1 : S1β. By Lemma 1 we can apply S′2
to both sides.

S′2S1Γ ` e1 : S′2S1β

(2) By induction, (M.8) implies S2S1Γ + x:S2ClosS1Γ(S1β) ` e2 : S2S1ρ. By
Lemma 2 and the fact that S′2S1Γ = S2S1Γ because S′2 differs from S2 only on
nonfree variables of S1Γ,

S′2S1Γ + x: ClosS′2S1Γ(S′2S1β) ` e2 : S2S1ρ.

Hence by the (LET) rule, S′2S1Γ ` let x = e1 in e2 : S2S1ρ; that is,

S2S1Γ ` let x = e1 in e2 : S2S1ρ.

—case fix f λx.e: Let S =M(Γ + f : ρ, λx.e, ρ).
(1) By induction, (M.9) implies

SΓ + f :Sρ ` λx.e : Sρ.

(2) By (FIX), SΓ ` fix f λx.e : Sρ.

Definition 1 [Damas and Milner 1982]. Let σ and σ′ be type schemes such that
σ = ∀~α.τ and σ′ = ∀~β.τ ′. If there exists a substitution R such that supp(R) ⊆ ~α
and τ ′ = Rτ , and ftv(σ) ⊆ ftv(σ′), we say that σ′ is a generic instance of σ, and
we write σ � σ′. We also write Γ � Γ′ if and only if dom(Γ) = dom(Γ′) and
Γ(x) � Γ′(x) for all x ∈ dom(Γ).

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, July 1998.
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Theorem 2 (Completeness of M). Let e be an expression, and let Γ be a
type environment. If there exist a type ρ and a substitution P such that PΓ ` e : Pρ,
then M(Γ, e, ρ) = S is defined, and there exists a substitution R such that P |-New

= (RS)|-New where New is the set of new type variables used by M(Γ, e, ρ).

Completeness means that if an expression e has a type τ that satisfies a type
constraint ρ (i.e., ∃P.τ = Pρ), then algorithm M for the expression with the con-
straint ρ succeeds with substitution S such that the result type Sρ subsumes τ (i.e.,
the principality, ∃R.τ = R(Sρ)).

The completeness proof uses Lemmas 3–7.

Lemma 3. Let S be a substitution, Γ be a type environment, and τ be a type.
Then SClosΓ(τ) � ClosSΓ(Sτ).

Proof. See Appendix A.

Lemma 4 [Damas and Milner 1982]. Let Γ and Γ′ be type environments such
that Γ � Γ′. If Γ′ ` e : τ , then Γ ` e : τ .

Lemma 5. If S = U(τ, τ ′) then itv(S) ⊆ ftv(τ) ∪ ftv (τ ′).

Proof. By the definition of the unification algorithm [Robinson 1965].

Lemma 6. If S =M(Γ, e, ρ) then itv(S) ⊆ ftv(Γ) ∪ ftv (ρ) ∪New, where New is
the set of new type variables used by M(Γ, e, ρ).

Proof. See Appendix B.

Lemma 7. If itv(S) ∩A = ∅, then (RS)|-A = R|-AS.

Proof. See Appendix C.

Proof of Theorem 2. We prove by the structural induction on e. For a rigor-
ous treatment of new type variables, we assume that every new type variable used
throughout algorithmM is distinct from each other, and moreover, the set New of
new type variables used by each callM(Γ, e, ρ) satisfies New ∩(ftv (Γ)∪ ftv(ρ)) = ∅.

—case (): Let the given judgment be PΓ ` () : Pρ. By (CON), Pρ = ι. Because
Pι = ι = Pρ, P is a unifier of ρ and ι. M(Γ, (), ρ) succeeds with the most
general unifier S of ρ and ι (M.1). Hence there exists a substitution R such that
P = RS.

—case x: Let the given judgment be PΓ ` x : Pρ, and let ~β be the new type
variables used at (M.2).
First, we prove that a unifier of ρ and {~β/~α}τ exists, where Γ(x) = ∀~α.τ . By the
(VAR) rule,

PΓ(x) � Pρ. (1)

Let ~γ be type variables such that (ftv(Γ) ∪ ftv(ρ) ∪ itv(P ) ∪ ~β) ∩ ~γ = ∅. Then

PΓ(x) = P∀~α.τ = ∀~γ.P{~γ/~α}τ. (2)
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, July 1998.
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From (1) and (2), there exists a substitution B such that supp(B) ⊆ ~γ and

BP{~γ/~α}τ = Pρ. (3)

The right-hand side of (3) gives us

Pρ = P{~γ/~β}ρ because ftv(ρ) ∩ ~β = ∅
= BP{~γ/~β}ρ because supp(B) ⊆ ~γ and ~γ ∩ (itv (P ) ∪ ftv (ρ)) = ∅.

The left-hand side of (3) gives us

BP{~γ/~α}τ = BP{~γ/~β}{~β/~α}τ because ~β ∩ ftv (∀~α.τ) = ∅.

Thus BP{~γ/~β} is a unifier of ρ and {~β/~α}τ . Note that (BP{~γ/~β})|-~γ is also a
unifier because (ftv (ρ)∪ ftv({~β/~α}τ))∩~γ = ∅. That is, (M.2) succeeds with the
most general unifier S of ρ and {~β/~α}τ , and there exists a substitution R such
that

RS = (BP{~γ/~β})|-~γ . (4)

Then

(RS)|-~β = (BP{~γ/~β})|-~γ∪~β
= (BP )|-~γ∪~β
= (B|-~γP )|-~β by Lemma 7 and because itv(P ) ∩ ~γ = ∅
= P |-~β because supp(B) ⊆ ~γ.

—case λx.e: Let the given judgment be PΓ ` λx.e : τ1 → τ2 where τ1 → τ2 = Pρ
and New be {β1, β2} ∪New1 , where β1 and β2 are the new type variables used
at (M.3) and where New1 is the set of the new type variables used by
M(S1Γ + x:S1β1, e, S1β2) at (M.4).
First, we prove the unification U(ρ, β1 → β2) at (M.3) succeeds. Let P ′ be
{τ1/β1, τ2/β2} ∪ P |-{β1 ,β2}. Then P ′ is a unifier of ρ and β1 → β2 because

P ′ρ = Pρ because {β1, β2} ∩ ftv(ρ) = ∅
= τ1 → τ2
= P ′(β1 → β2).

Thus there exists a substitution R1 such that

R1S1 = P ′. (5)

By the (FN) rule,

PΓ + x: τ1 ` e : τ2. (6)

To apply induction to M(S1Γ + x:S1β1, e, S1β2) at (M.4) and (6), we must
prove that there exists a substitution P1 such that τ2 = P1S1β2 and PΓ+x: τ1 =
P1(S1Γ + x:S1β1). Such P1 is the R1 at (5) because

R1S1β2 = P ′β2 by (5)
= τ2

and
R1(S1Γ + x:S1β1) = P ′(Γ + x:β1)

= PΓ + x: τ1 because {β1, β2} ∩ ftv (Γ) = ∅.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, July 1998.
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Thus by induction, (M.4) and (6) imply that there exists a substitution R2 such
that

R1|-New1
= (R2S2)|-New1

. (7)

Let R = R2. Then

(RS)|-New = (R2S2S1)|-New

= ((R2S2S1)|-New1
)|-{β1 ,β2}. (8)

Note that itv(S1) ∩New1 = ∅ because itv (S1) ⊆ ftv(ρ) ∪ {β1, β2} by Lemma 5,
ftv(ρ) ∩ New1 ⊆ ftv(ρ) ∩ New = ∅, and {β1, β2} ∩ New1 = ∅ by the assumption
that all new type variables are distinct from each other. Therefore, by Lemma 7,
Eq. (8) becomes

((R2S2S1)|-New1
)|-{β1 ,β2} = ((R2S2)|-New1

S1)|-{β1 ,β2}
= (R1|-New1

S1)|-{β1 ,β2} by (7)
= ((R1S1)|-New1

)|-{β1 ,β2} by Lemma 7
= (R1S1)|-New

= P ′|-New by (5)
= P |-New because {β1, β2} ⊆ New .

—case e1 e2: Let the given judgment be PΓ ` e1 e2 : Pρ and New = {β} ∪ New1∪
New2 , where β is the new type variable used at (M.5) and New1 and New2

are the sets of the new type variables used by M(Γ, e1, β → ρ) at (M.5) and
M(S1Γ, e2, S1β) at (M.6), respectively. By the (APP) rule, there exists a type
τ such that

PΓ ` e1 : τ → Pρ (9)

and

PΓ ` e2 : τ. (10)

Let P ′ = {τ/β} ∪ P |-{β}. Then τ → Pρ = P ′(β → ρ) and PΓ = P ′Γ because
β 6∈ ftv (Γ)∪ ftv(ρ). Hence, applying induction to M(Γ, e1, β → ρ) at (M.5) and
(9), there exists a substitution R1 such that

P ′|-New1
= (R1S1)|-New1

. (11)

Similarly, we can apply induction toM(S1Γ, e2, S1β) at (M.6) and (10) because

τ = P ′β = R1S1β because β 6∈ New1 and by (11)

and
PΓ = P ′Γ because β 6∈ ftv (Γ)

= R1S1Γ because ftv(Γ) ∩ New1 = ∅ and by (11).

Thus by induction, there exists a substitution R2 such that

R1|-New2
= (R2S2)|-New2

. (12)

Let R = R2. Then

(RS)|-New = (R2S2S1)|-New

= ((R2S2S1)|-New2
)|-New1∪{β}. (13)

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, July 1998.
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Note that itv(S1) ∩New2 = ∅ because itv (S1) ⊆ ftv(Γ) ∪ ftv(ρ) ∪ New1 ∪ {β}
by Lemma 6, (ftv (Γ) ∪ ftv(ρ)) ∩New2 ⊆ (ftv (Γ) ∪ ftv(ρ)) ∩New = ∅, and
(New1 ∪ {β}) ∩ New2 = ∅ by the assumption that all new type variables are dis-
tinct from each other. Therefore, by Lemma 7, Eq. (13) becomes

((R2S2S1)|-New2
)|-New1∪{β} = ((R2S2)|-New2

S1)|-New1∪{β}
= (R1|-New2

S1)|-New1∪{β} by (12)
= (R1S1)|-New by Lemma 7
= ((R1S1)|-New1

)|-New2∪{β}
= P ′|-New by (11)
= P |-New because β ∈ New .

—case let x = e1 in e2: Let the given judgment be PΓ ` let x = e1 in e2 : Pρ
and New = {β} ∪ New1 ∪ New2 , where β is the new type variable used at (M.7)
and where New1 and New2 are the sets of the new type variables used by
M(Γ, e1, β) at (M.7) and M(S1Γ + x: ClosS1Γ(S1β), e2, S1ρ) at (M.8), respec-
tively. By the (LET) rule, there exists a type τ such that

PΓ ` e1 : τ (14)

and

PΓ + x: ClosPΓ(τ) ` e2 : Pρ. (15)

Let P ′ = {τ/β} ∪ P |-{β}. Then τ = P ′β and PΓ = P ′Γ because β 6∈ ftv(Γ).
Hence by induction, (M.7) and (14) imply that there exists a substitution R1

such that

P ′|-New1
= (R1S1)|-New1

. (16)

Note
ClosPΓ(τ) = ClosP ′Γ(P ′β)

= ClosR1S1Γ(R1S1β) by (16) and (ftv(Γ) ∪ {β}) ∩ New1 = ∅
≺ R1ClosS1Γ(S1β) by Lemma 3

and PΓ = P ′Γ = R1S1Γ because New1 ∩ ftv (Γ) = ∅. Thus

PΓ + x: ClosPΓ(τ) ≺ R1(S1Γ + x: ClosS1Γ(S1β)).

By Lemma 4 and (15),

R1(S1Γ + x: ClosS1Γ(S1β)) ` e2 : Pρ.

Because R1S1ρ = P ′ρ = Pρ,

R1(S1Γ + x: ClosS1Γ(S1β)) ` e2 : R1S1ρ. (17)

Thus by induction, (M.8) and (17) imply that there exists a substitution R2

such that

R1|-New2
= (R2S2)|-New2

. (18)

Let R = R2. Then, using (16) and (18) and following exactly the same steps in
the proof for the application expression, we have

(RS)|-New = P |-New .
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—case fix f λx.e: Let the given judgment be PΓ ` fix f λx.e : Pρ. By the
(FIX) rule,

PΓ + f :Pρ ` λx.e : Pρ.

By induction,M(Γ+f : ρ, λx.e, ρ) succeeds with a substitution S, and there exists
a substitution R such that P |-New = (RS)|-New , where New is the set of new type
variables used byM(Γ + f : ρ, λx.e, ρ) at (M.9). By (M.9),M(Γ, fix f λx.e, ρ)
also succeeds with the S and P |-New = (RS)|-New .

4. M STOPS EARLIER THAN W DOES

We model the behaviors of the two type inference algorithms by their call strings.
The call string of W(Γ, e) (written [[W(Γ, e)]]) is constructed by starting with the
empty call string ε and appending a tuple (Γ1, e1)d (respectively, (Γ1, e1)u) when-
ever W(Γ1, e1) is called (respectively, returned). The d or u superscript indicates
the downward or upward movement of the stack pointer when the inference al-
gorithm is recursively called or returned. When the algorithm stops because of a
unification failure the call string does not have matching returns (u tuples) for some
calls (d tuples). We similarly define call strings for algorithmM.

For example, given an expression
e︷ ︸︸ ︷

( (fn x=>x)︸ ︷︷ ︸
e1

2),

the call string [[W(Γ, e)]] is

(Γ, e)d(Γ, e1)d(Γ + x : β, x)d(Γ + x : β, x)u(Γ, e1)u(Γ, 2)d(Γ, 2)u(Γ, e)u.

For the ill-typed expression (1 2), the call string is

(Γ, 1 2)d(Γ, 1)d(Γ, 1)u(Γ, 2)d(Γ, 2)u.

Note that tuple (Γ, 1 2)u is missing because the algorithm stops because of the
unification failure at the application.

Note that call strings [[W(Γ, e)]] and [[M(Γ, e, ρ)]] are always finite because, for any
expression e, type environment Γ, and a type ρ, at most one call toW (respectively,
M) occurs for each subexpression of e during W(Γ, e) (respectively, M(Γ, e, ρ)).

We say that “W (respectively,M) fails at an expression e” whenever the current
argument expression to W (respectively, M) is e when the unification fails:

Definition 2. Let Γ be a type environment, e be an expression that has a type
error, and β be a new type variable. “W(Γ, e) fails at e′” whenever the rightmost
unmatching tuple in its call string [[W(Γ, e)]] is (Γ′, e′)d. Similarly, “M(Γ, e, β) fails
at e′” whenever the rightmost unmatching tuple in its call string [[M(Γ, e, β)]] is
(Γ′, e′, ρ′)d.

Example 1. Consider an expression ((λx.x^"a") true). W fails at the top
expression ((λx.x^"a") true) after it succeeded at every proper subexpression.
Meanwhile M fails at true.
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Example 2. Consider an expression (1 (2 3)). W fails at (2 3). M fails at
1, which is earlier than W does because the left expression 1 is checked before the
right expression (2 3).

Example 3. Consider an expression ((λx.x+1) λy.(1 1)). W fails at (1 1).
M fails at (λy.(1 1)), which is before it checks the body expression (1 1).

As the above examples indicate, algorithmM always stops earlier than Algorithm
W :

Theorem 3 (Earliness). Let Γ be a type environment, e be an expression, and
β be a new type variable. Then

|[[M(Γ, e, β)]]| ≤ |[[W(Γ, e)]]|,
where |s| is the number of tuples in call string s.

The proof of Theorem 3 uses the completeness of Algorithm W and Lemmas
8–11.

Theorem 4 (Completeness of W) [Damas and Milner 1982]. Given Γ
and e, let Γ′ be an instance of Γ and σ a type scheme such that Γ′ ` e : σ. Then
W(Γ, e) succeeds, and if W(Γ, e) = (S, τ) then, for some substitution R, Γ′ = RSΓ
and RClosSΓ(τ) � σ.

Lemma 8. Let Γ and Γ′ be type environments and τ be a type. If Γ � Γ′, then
ClosΓ(τ) � ClosΓ′(τ).

Proof. See Appendix D.

Lemma 9 [Damas and Milner 1982]. If σ � σ′ then Sσ � Sσ′.

Lemma 10. Let e be an expression, Γ be a type environment, and β be a new
type variable. If [[W(Γ, e)]] has (ΓW , e′)d and [[M(Γ, e, β)]] has (ΓM, e′, ρ)d, then
there exists a substitution R such that RΓW � ΓM. (Note that because W and M
are called only once for each subexpression of e, such ΓW and ΓM are well defined.)

Proof. We prove by induction on the length of the prefixes (Γ, e)d · · · (ΓW , e′)d
of [[W(Γ, e)]] and (Γ, e, β)d · · · (ΓM, e′, ρ)d of [[M(Γ, e, β)]]. Note that the prefixes
have the same length becauseW andM check the sub-expressions of e in the same
order. The symbols of both algorithms are identified by their superscripts.

—base case: When the prefixes are of length 1, they represent the initial calls
where e′ is e and where ΓW and ΓM are identical. Then the identity substitution
R satisfies RΓW � ΓM.

Followings are inductive cases.

—case e′ of e1 in “λx.e1”: Let the type environment parameters be ΓW and
ΓM when λx.e is visited. By induction, RΓW � ΓM; that is, by Lemma 9,
SM1 RΓW � SM1 ΓM. Let R1 = SM1 (R|-{βW} ∪ {βM1 /βW}). Then

R1(ΓW + x:βW ) = SM1 RΓW + x:SM1 βM1 because βW 6∈ ftv(ΓW)
� SM1 ΓM + x:SM1 βM1 .
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—case e′ of e1 in “e1 e2”: The call at e1 occurs with the same environment as
the one that accompanied the call at e1 e2. Thus the case holds by the induction
hypothesis.

—case e′ of e2 in “e1 e2”:
(1) By the soundness of M, (M.5) implies

SM1 ΓM ` e1 : SM1 (βM → ρM).

(2) By induction, RΓW � ΓM; that is, by Lemma 9, SM1 RΓW � SM1 ΓM. By
Lemma 4,

SM1 RΓW ` e1 : SM1 (βM → ρM).

(3) By the completeness ofW , there exists a substitutionR′ such thatR′SW1 ΓW =
SM1 RΓW . So, R′SW1 ΓW = SM1 RΓW � SM1 ΓM.

—case e′ of e1 in “let x = e1 in e2”: The call at e1 occurs with the same en-
vironment as the one that accompanied the call at let x = e1 in e2. Thus the
case holds by the induction hypothesis.

—case e′ of e2 in “let x = e1 in e2”:
(1) By the soundness of M, (M.7) implies

SM1 ΓM ` e1 : SM1 βM.

(2) By induction, RΓW � ΓM; that is, by Lemma 9, SM1 RΓW � SM1 ΓM. By
Lemma 4,

SM1 RΓW ` e1 : SM1 βM.

(3) By the completeness of W , there exists a substitution R′ such that R′τW1 =
SM1 βM and R′SW1 ΓW = SM1 RΓW . Therefore,

R′SW1 ΓW � SM1 ΓM

and

R′ClosSW1 ΓW (τW1 ) � ClosR′SW1 ΓW (R′τW1 ) by Lemma 3
= ClosR′SW1 ΓW (SM1 βM)
� ClosSM1 ΓM(SM1 βM) by Lemma 8.

The above two facts imply that this case is proven.
—case e′ of λx.e in “fix f λx.e”: By induction, there exists a substitution R

such that RΓW � ΓM. Let R′ = R|-{βW} ∪ {ρM/βW}. Then

R′(ΓW + f :βW) = RΓW + f : ρM because βW 6∈ ftv (ΓW)
� ΓM + f : ρM.

Lemma 11. Let e be an expression, Γ be a type environment, and β be a new
type variable. Suppose [[W(Γ, e)]] has (ΓW , e′)d and [[M(Γ, e, β)]] has (ΓM, e′, ρ)d.
If W(ΓW , e′) fails, then M(ΓM, e′, ρ) fails.

Proof. Assume for contradiction that M(ΓM, e′, ρ) succeeds; that is,
M(ΓM, e′, ρ) = S is defined. By the soundness of M,

SΓM ` e′ : Sρ.
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By Lemma 10, there exists a substitution R such that RΓW � ΓM; that is, by
Lemma 9, SRΓW � SΓM. By Lemma 4,

SRΓW ` e′ : Sρ.

And, finally, by the completeness of W , W(ΓW , e′) succeeds. It contrasts with the
given condition, so the assumption is not true.

Now we prove Theorem 3.

Proof of Theorem 3. The case that e has no type error is trivially true, be-
cause it is obvious that |[[W(Γ, e)]]| = |[[M(Γ, e, β)]]|.

Let us consider the case that e has a type error. LetW(Γ, e) fail at an application
expression (e1 e2). Then

[[W(Γ, e)]] = · · · (ΓW1 , e1 e2)d · · · (ΓW2 , e2)u

because W fails right after it returned from an application’s operand. Suppose for
contradiction that

|[[W(Γ, e)]]| < |[[M(Γ, e, β)]]|.
That is,

[[M(Γ, e, β)]] = · · · (ΓM1 , e1 e2, ρ1)d · · · (ΓM2 , e2, ρ2)u · κ
and

κ 6= ε

because the order of visiting subexpressions is the same for W and M. The next
call/return after the return from e2 is the return from e1 e2. So κ is (ΓM1 , e1 e2, ρ1)u ·
κ′. It means thatM(ΓM1 , e1 e2, ρ1) succeeds. However, it is impossible by Lemma 11
because W(ΓW1 , e1 e2) fails.

5. CONCLUSION

The Hindley/Milner let-polymorphic type inference system has two different algo-
rithms: one is the de facto standard W algorithm [Milner 1978; Damas and Milner
1982] that is bottom-up (or context-insensitive) and the other is a “folklore” algo-
rithm that is top-down (or context-sensitive).

In this article, we formally defined the folklore algorithm (namedM), proved its
soundness and completeness, and showed that M always finds type errors earlier
(considers a less number of expressions) than W .

Our proofs can be seen as theoretical justifications for various type-checking
strategies. For example, a compiler can let the user switch between the two algo-
rithms, which may help in situations where it is hard to find the cause of the type
error. The two algorithms will always stop at different expressions reporting differ-
ent causes of the type problem. Already, a combination of a variant of M with W
is being implemented in practice [Rideau and Théry 1997]. A compiler can also mix
the two algorithms on-the-fly, choosing one algorithm against the other, depending
on the current subexpression to type check. For example, when type-checking the
definitions of recursive functions the compiler may switch to algorithmM, because
it generates a better type diagnostic than W if the recursive calls have ill-typed
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arguments (as seen in Figure 1). A variant of this technique is implemented in the
SML/NJ compiler system version 110. Similar bidirectional type-checking ideas
have been formalized in the setting of subtyping and impredicative polymorphism
[Pierce and Turner 1998].

Our formalization enables us to see clearly that algorithm M can unobtrusively
adapt the existing techniques of generating informative type error messages, which
were developed with AlgorithmW in mind. The techniques of Wand [1986], Beaven
and Stansifer [1993], Duggan and Bent [1996], and Rideau and Théry [1997] essen-
tially record the history of the type instantiations (unifications) in the resulting
substitutions. Because the type instantiation inM is via the same standard unifi-
cation algorithm, these approaches can be directly used inM. For the same reason,
inferring the types of free variables [Bernstein and Stark 1995], by which the pro-
grammer can probe the types of some puzzling points in his/her program, is also
straightforward to implement inside M, by making such free variables all distinct
and initially bound to fresh type variables. The idea in the destructive implemen-
tation of Algorithm W [Cardelli 1987], in which type variables are destructively
updated during unification and free variables are remembered for quickly comput-
ing the type closure, can also be used in a practical implementation of algorithm
M.

APPENDIX

A. PROOF OF LEMMA 3

Let ~α = ftv(τ)\ftv (Γ), and let ~β be type variables such that ~β ∩ (itv(S) ∪ ftv(τ)) = ∅
and |~α| = |~β|. Then

SClosΓ(τ) = S∀~α.τ = ∀~β.S{~β/~α}τ.

Let R = {S~α/~β}. Then Sτ = RS{~β/~α}τ and supp(R) ⊆ ~β; thus, the first condition
of generic instance is satisfied. The second condition holds as follows

ftv(SClosΓ(τ)) =
⋃

γ∈ftv(τ)∩ftv(Γ)

ftv(Sγ)

⊆

 ⋃
γ∈ftv(τ)

ftv(Sγ)

 ∩
 ⋃
γ∈ftv(Γ)

ftv(Sγ)


= ftv (Sτ) ∩ ftv(SΓ)
= ftv (ClosSΓ(Sτ)).

B. PROOF OF LEMMA 6

The proof uses Lemma 12.

Lemma 12 [Milner 1978]. Let R and S be substitutions and τ be a type. Then

—itv (RS) ⊆ itv(R) ∪ itv(S) and
—ftv (Sτ) ⊆ ftv(τ) ∪ itv(S).

The proof is by the structural induction on e.
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—case (): By Lemma 5, itv (U(ρ, ι)) ⊆ ftv(ρ) ∪ ftv(ι) ⊆ ftv(ρ).
—case x:

itv(U(ρ, [βi/αi]τ)) ⊆ ftv(ρ) ∪ ftv({~β/~α}τ) by Lemma 5
⊆ ftv(ρ) ∪ (ftv(τ) \ ~α) ∪ ~β
= ftv(ρ) ∪ ftv(∀~α.τ) ∪ ~β
= ftv(ρ) ∪ ftv(Γ(x)) ∪ ~β
⊆ ftv(ρ) ∪ ftv(Γ) ∪ New .

—case λx.e: By Lemma 5, itv(S1) ⊆ ftv (ρ) ∪ ftv (β1 → β2). By induction,

itv(S2) ⊆ ftv(S1Γ + x:S1β1) ∪ ftv(S1β2) ∪ New1

⊆ itv(S1) ∪ ftv(Γ) ∪ New1 ∪ {β1, β2} by Lemma 12.

Hence, itv (S2S1) ⊆ itv(S1) ∪ itv(S2) ⊆ ftv(Γ) ∪ ftv(ρ) ∪ New1 ∪ {β1, β2}.

Other cases can be similarly proven.

C. PROOF OF LEMMA 7

We prove that (RS)|-Aα = R|-ASα for all α.

—case α ∈ A: (RS)|-Aα = α, and because itv(S) ∩A = ∅, R|-ASα = R|-Aα = α.
—case α 6∈ A: (RS)|-Aα = RSα. When α ∈ supp(S), R|-ASα = RSα because

itv(S) ∩A = ∅. When α 6∈ supp(S), R|-ASα = Rα = RSα.

D. PROOF OF LEMMA 8

By the definition, Γ(x) � Γ′(x) for ∀x ∈ dom(Γ). This implies ftv(Γ(x)) ⊆
ftv(Γ′(x)) for ∀x ∈ dom(Γ), that is, ftv(Γ) ⊆ ftv (Γ′). Therefore,

ftv(ClosΓ(τ)) = ftv (τ) ∩ ftv(Γ) ⊆ ftv (τ) ∩ ftv(Γ′) = ftv(ClosΓ′(τ)).
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