ln_troduction
to
Part Il

)

John C. Reynolds

Carnegie Mellon University

The polymorphic (or second-order) typed lambda calculus was invented by
Jean-Yves Girard in 1971 [10, 11}, and independently reinvented by myselfin
1974 [22]. It is extraordinary that essentially the same programming language
was formulated independently by the two of us, especially since we were led
to the language by entirely different motivations.

In my own case, I was seeking to extend conventional typed programming
languages to permit the definition of “polymorphic” procedures that could
accept arguments of a variety of types. I started with the ordinary typed
lambda calculus and added the ability to pass types as parameters (an idea
that was “in the air” at the time, e.g. [4]).

For example, as in the ordinary typed lambda calculus one can write

Afint_int- AXine- f(FX)

78 Chapter 5 Reynolds: Polymorphic Lambda Calculus

to denote the “doubling” function for the type int, which accepts a function
from integers to integers and yields the composition of this function with
itself. Similarly, using a type variable t, one can write

Afiet- Axe f(f(x))

to denote the doubling function for t. Then, by abstracting on the type vari-
able, one can define a polymorphic doubling function,

Af Af{_.(-)\X[- f(f(x))p

that can be applied to any type to obtain the doubling function for that type,
e.g.,

(At. Afiee. Axe f(fx)))]imt]
= Afint_int- MXint- (X))
ar

(At. Af,_r_. Ax.. f(f(x)))[real — real]

= Afreal_realreal-real; **real-real f(f(X).

Notice that an upper case A and square brackets are used to indicate abstrac-
tion and application of types, and that = denotes a kind of beta reduction
for types, in which type expressions are substituted for occurrences of type
variables within ordinary expressions.

To accommodate this kind of abstraction and application of types, it is
necessary to expand the variety of type expressions to provide types for the
polymorphic functions. Somewhat surprisingly, this can be done in such a
way that (if the type of every variable binding is given explicitly) type cor-
rectness can be determined syntactically (i.e., at compile time). One writes
At. w (where A is a binding operator) to denote the type of polymorphic func-
tion that, when applied to a type t, yields a result of type w. For example, the
polymorphic doubling function has type

At (t—=0—(@—1),

and the polymorphic identity function,
At. Axp. X,

has type

At.t—t.

Chapter 5 Reynolds: introduction to Part II 79

If an expression e has type w then At. e has type At. w, and if an expression
e has type At. w then e[w’] has the type obtained from w by substituting '’
for t. Thus it is straightforward to decide the type of any expression.

The movitation that led Girard to essentially the same language was en-
tirely different; he was seeking to extend an analogy between types and
propositions that was originally found by Curry [8, Section 9E] and Howard
[12]. Types can be viewed as propositions by regarding the type constructor
— as the logical connective implies. (Similarly, one can regard the Cartesian
product constructor x as the connective and and the disjoint union construc-
tor + as the connective or.) Then an expression e of type w becomes an en-
coding of a proof of the proposition w in intuitionistic logic.

For example, the doubling function for ¢ encodes the following, rather
roundabout proof that (¢ implies) implies (¢ implies 1), in which ¢ is some

arbitrary proposition and e: indicates that the proof step is encoded by the
expression e.

Assume f: t implies t.
‘ Assume x:t.
Since f: t implies ¢ and x: t, we have f(x):t.
Since f: t implies t and fx): t, we have f(fix): .
Discharging the assumption x, we have Ax. f(f(x)): t implies ¢.
Discharging the assumption f, we have
Af. Ax. fif(x)): (t implies) implies (¢t implies ¢).

Girard extended the Curry-Howard analogy by regarding the binding op-
erator At. as a universal quantifier of a propositional variable, i.e., as “For
all propositions t". (He also introduced an analogous existential quantifier.)
Thus the polymorphic doubling function encodes a proof that

Z

(V1) (t implies 1) implies (¢ implies o).

e BYoh Yy

Notice that there is a circularity or ‘impredicativity” here, since such a quan-
S tified proposition belongs to the set of propositions being quantified over.
- (This circularity is also present in the Coquand-Huet Calculus of Construc-
tions, which includes the polymorphic calculus as a sublanguage, but not in
the types-as-propositions formalisms of Martin-Lof [17] or Constable [5].)
Despite this circularity, Girard showed that €very expression of the poly-
morphic typed lambda calculus possesses a normal form, i.e., that every ex-
Pression can be reduced by some finite sequence of beta reductions to a form
that cannot be reduced further. (This result was strengthened by Prawitz [21,
P. 256] to show that €very expression is strongly normalizable, i.e., that no

80 Chapter 5 Reynolds: Polymorphic Lambda Calculus

expression is amenable to any infinite sequence of beta reductions.) Proof-
theoretically, this means that every proof can be transformed into a “cut-free”
proof. Computationally, it means that every expression describes a terminat-
ing computation.

This is extraordinary. For any language in which every expression de-
scribes a terminating computation, there must be computable functions that
cannot be expressed; indeed we are used to taking this fact as evidence that
such languages are uninteresting for practical computation. Yet the polymor-
phic typed lambda calculus is just such a language, in which one can express
“almost everything” that one might actually want to compute. Indeed, Girard
has shown that every function from natural numbers to natural numbers that
can be proved total by using second-order arithmetic can be expressed in the
calculus. This includes not only primitive recursive functions, but also Acker-
mann’s function as well as far more esoteric (and rapidly growing) functions.

This result depends upon a particular way of encoding the natural numbers
called “Church numerals”. In his early work on the untyped lambda calculus,
Church used the encoding

0: Af Ax.x,
1I: Af. Ax. fix),

2: Af.Ax. fifx),

The obvious analogue for the polymorphic calculus is

0: At. Afi—p AXp. X,
1: At Afier AXe f(X),

20 At Afi—r Axe fif(X)),

In both cases, n is encoded by a higher-order function mapping f into f",
reflecting the idea that the fundamental use of a natural number n is to iterate
something n times. (For example, 2 is encoded by the doubling function.) But
in the polymorphic typed case, there is a particular type

nat €At t—t)=(t—1)

Chapter 5 Reynolds: Introduction to Part If 81

that is possessed by every encoding of a natural number. Moreover, every
closed (and constant-free) expression of this type is equivalent (via beta and
eta reduction) to such an encoding. Thus it is reasonable to regard nat as the
type of natural numbers.

Using this encoding, one can program arithmetic functions such as

succ € Anpag. At. Afi. Ax,. fnltl(Px)),
add = Ampag. Anpat. At. Afip. Ax, mltl(nt)(F(x)).

Notice that these are functions that accept and produce polymorphic func-
tions. (Such functions go beyond the kind of implicit polymorphism provided
by ML.)

Other fundamental sets can be encoded in a similar spirit. For example,
the type

def

bool = At. t — (t — y)]

is possessed by the two “choice” functions
At.Ax.. Ay. x and At Axe. Ay, y,

and every closed expression of this type beta-reduces to one of these func-
tions. Thus it is reasonable to regard bool as the type of Boolean values,
reflecting the idea that the fundamental use of a Boolean is to make binary
choices.

Less trivially, the closed expressions of type

list(s) ' At. (s — (t—) = (t— 1
have normal forms of the form
AL Afeie—n. Axe. fler)(. . . (flen)(x)) . .),

where ey, ..., e, are subexpressions of type s. Thus list(s) can be regarded as
the type of lists with elements of type s, reflecting the idea that the funda-
mental use of a list is to reduce the list (in the sense of APL).

These encodings are all special cases of a general result, discovered in-
dependently by Bshm [2] and Leivant [15], and anticipated in the work of
Takeuti [28, Proposition 3.15.18]. For any many-sorted algebraic signature
without laws, there is a set of polymorphic types (one for each sort) whose
closed normal forms constitute an initial algebra. Moreover, the operations
of this algebra can be expressed as functions among these types. Thus the
polymorphic calculus encompasses algebraic data types as well as number-
theoretic computations. Several examples of the kind of programming that is
entailed are given in [25].

82 Chapter 5 Reynolds: Polymorphic Lambda Calculus

In summary, the polymorphic typed lambda calculus is far more than an
extension of the simply typed lambda calculus that permits polymorphism.
It is a language that guarantees the termination of all programs, while pro-
viding a surprising degree of expressiveness for computations over a rich va-
riety of data types. In “Computable Values Can Be Classical” (in this volume),
Val Breazu-Tannen and Albert Meyer argue that the guarantee of termination
substantially simplifies reasoning about programs by permitting the conser-
vation of classical data type specifications. In “Polymorphism Is Conservative
over Simple Types” (also in this volume), the same authors further substan-
tiate this argument by showing that polymorphism can be superimposed on
familiar programming language features without changing their behavior.

However, the practicality of this language is far from proven. To say that
any reasonable function can be expressed by some program is not to say that
it can be expressed by the most reasonable program. It is clear that the lan-
guage requires a novel programming style. Moreover, it is likely that certain
important functions cannot be expressed by their most efficient algorithms.
Also, the guarantee of termination precludes interesting computations that
never terminate, such as those involving lazy computation with infinite data
structures. (These reservations apply to the pure polymorphic calculus; if a
fixed-point operator is added to provide general recursion, the language ex-
pands to include conventional functional programming, including lazy com-
putation, but the guarantee of termination is lost.)

The known semantic models of the polymorphic typed lambda calculus
can be divided into two species. In the first, the meaning of a type is (the
set of equivalence classes of) a partial equivalence relation on a model of
the untyped lambda calculus. This view characterizes the earliest models
[11, 29], as well as recent work [16, 20, 9, 14, 3, and in this volume, John
Mitchell’s “A Type-Inference Approach to Reduction Properties and Semantics
of Polymorphic Expressions”] that embeds such models in the natural setting
of the “effective topos” [13]. (The connection between this kind of model and
the effective topos, or equivalently, the “realizability universe”, seems to have
been first noted by Moggi.)

In the second kind of model, the meaning of a type is a Scott domain. In
the earliest of these models [19], these domains were sets of fixed points of
closures of a universal domain, where a closure of a domain is an idempotent
continuous function from the domain to itself that extends the identity func-
tion. Two facts permit this concept to serve as a model of the polymorphic
calculus:

Thereis a universal domain U such that U — U, the domain of continuous
functions from U to U, is isomorphic to the set of fixed points of a

Chapter 5 Reynolds: Introduction to Part Il 83

closure of U.

The set of closures of U, which can be regarded as meanings of types,
is isomorphic to the set of fixed points of a closure of U — /.

Similar models have been developed in which the concept of closure is re-
placed by that of finitary retraction [18] or of finitary projection [1]. More
recently, Girard has devised a model based on the use of qualitative domains
and stable functions, which is described in his paper “The System F of Vari-
able Types, Fifteen Years Later” (in this volume). Other models of this kind
are described in [7, 6].

The domain-based models describe not only the pure calculus but also
the extension obtained by adding fixed-point operators. Thus they fail to
capture the fact that all expressions denote terminating programs and repre-
sent proofs of their type interpreted as a proposition. A vivid consequence
of this failure is that the type At. t, which is clearly false when interpreted
as a proposition (and which is not the type of any expression in the pure
language), denotes a nonempty domain. Whether such types have empty de-
notations is a pivotal question about semantic models, whose implications
are described in “Empty Types in Polymorphic A-Calculus” (in this volume),
by Meyer, Mitchell, Moggi, and Statman.

Another shortcoming of the domain-based models is their failure to cap-
ture the notion of “parametricity”. When Chris'topher Strachey first coined
the word “polymorphism” [27], he distinguished between ad hoc polymor-
phic functions, which can have arbitrarily different meanings for different
types, and parametric polymorphic functions, which must behave similarly
for different types. Intuitively, only parametric polymorphic functions can be
defined in the polymorphic calculus, but the domains denoted by polymor-
phic types in the domain-based models also contain ad hoc functions.

It is not known whether any of the partial-equivalence-relation models en-
force parametricity (except, in a trival sense, the collapsed term model of
[3]). Indeed, at present there is no general agreement on how to define para-
metricity precisely and generally, although a first attempt in this direction
was given in [23], and a more recent approach appears in this volume in
“Functional Polymorphism” by Bainbridge, Freyd, Scedrov, and Scott.

The fact that all expressions are strongly normalizable, and that certain
types correspond to initial algebras, make it plausible that there should be
a model extending the naive set-theoretic model of the simply typed lambda
calculus, in which types denote sets and § — S’ denotes the set of all functions
from Sto 5. Indeed, | made such a conjecture in 1983 [23]. Then in the fol-
lowing year —to my embarassment— [proved the conjecture false [24]. (This
Proof uses a cardinality argument that can be made in classical, but not con-

84 Chapter 5 Reynolds: Polymorphic Lambda Calculus

structive, logic. Indeed, as shown in [20] and [16], set-theoretic models can be
found in a constructive metatheory.) Soon thereafter, Gordon Plotkin gener-
alized my proof, showing thatitis based upon a general property of functors
(on the Cartesian closed category underlying an arbitrary model) that can be
expressed in the calculus. This generalization is described in this volume in
“On Functors Expressible in the Polymorphic Typed Lambda Calculus.”

Beneath all these specific models lies the question of what, in general,
constitutes a model of the language, which is discussed by Kim Bruce, Albert
Meyer, and John Mitchell in“The Semantics of Second-Order Lambda Calculus”
(in this volume). A more abstract answer to this guestion, using category-
theoretic concepts, has been given by Seely [26].

The polymorphic lambda calculus also raises the problem of type infer-
ence. Although type checking is straightforward for the explicitly typed form
of the calculus, the explicit statement of types whenever a variable is bound
is a serious burden for the programmer. Ideally, one would like an algorithm
that could examine an expression of the untyped lambda calculus and decide
whether there is any assignment of types to variables that makes the expres-
sion well-typed. However, despite considerable efforts, the existence of such
an algorithm for the polymorphic calculus remains an open question.

Current research on this question is described in this volume in “Polymor-
phic Type Inference and Containment” by John Mitchell. In A Type-Inference
Approach to Reduction Properties and Semantics of Polymorphic Expressions”, -
also in this volume, the same author applies type inference to the study of the
calculus itself, obtaining a simplified proof of the strong normalization prop-
erty and a proof of completeness for a class of partial-equivalence-relation
models.

The author wishes to thank Val Breazu-Tannen, Kim Bruce, Carl Gunter,
Giuseppe Longo, Albert Meyer, John Mitchell, Eugenio Moggi, Gordon Plotkin,
Andre Scedrov, and Rick Statman, all of whom have contributed comments
that have improved the accuracy and generality of this introduction.

References

[1] Amadio, R., Bruce, K. B., and Longo, G. “The finitary projection model for second
order lambda calculus and solutions to higher order domain equations”. In Pro-
ceedings Symposium on Logic in Computer Science, pp. 122-130, 15886.

[2] Bohm, C. and Berarducci, A. "Automatic synthesis of typed A-programs on term
algebras”. Theoretical Computer Science 39(1985), pp. 135-154.

[3] Breazu-Tannen, V. and Coquand, T. “Extensional models for polymorphism". The-
oretical Computer Science 59 1-2 (July 1988), pp. 85-1 14.

References 85

[4] Cheatham, T. E. Jr., Fischer, A.,and Jorrand, P. "On the basis for ELF — an extensible
language facility". Proceedings AFIPS 1968 Fall Joint Computer Conference, vol. 33,
part 2, pp. 937-948. Thompson Book Company, Washington, D. C., 1968.

[5] Constable, R. L. et al. Implementing Mathematics with the Nupri Proof Development
System. Prentice-Hall, Englewood Cliffs, N.J., 1986.

[6] Coquand, T., Gunter, C. A., and Winskel. G. “Domain theoretic models of polymor-
phism". Information and Computation 81, 2 (May 1989), pp. 123-167.

[7] Coquand, T, Gunter, C. A, and Winskel, G. "DI-domains as a model of polymor-
phism". Mathematical Foundations of Programming Language Semantics (Proceed-
ings, 1987), M. Main, A. Melton, M. Mislove, and D. Schmidt, eds., pp. 344-363.
Lecture Notes in Computer Science, vol. 298. Springer-Verlag, Berlin, 1987.

[8] Curry, H. B. and Feys, R. Combinatory Logic, Volume I (second edition). North-
Holland, Amsterdam, 1968.

[9] Freyd, P. and Scedrov, A. “Some semantic aspects of polymorphic lambda calculus”.
Proceedings Symposium on Logic in Computer Science, pp. 315-319, 1987.

[10] Girard, J.-Y. “Une extension de l'interpretation de Godel a I'analyse, et son applica-
tion a I'elimination des coupures dans I'analyse et la théorie des types”. Proceed-
ings of the Second Scandinavian Logic Symposium,]. E. Fenstad, ed., pp. 63-92.
North-Holland, Amsterdam, 1971.

[11] Girard, J.-Y. Interprétation Fonctionnelle et Elimination des Coupures dans I'Arith-
métique d'Ordre Supérieur. Thése de doctorat d’état, Université Paris VII, 1972,

[12] Howard, W. A. "The formulée-as—types notion of construction”. To H. B, Curry: Es-
says on Combinatory Logic, Lambda Calculus and Formalism,]. P. Seldin and J. R.
Hindley, eds., pp. 479-490. Academic Press, London, 1980.

[13] Hyland, J. M. E. “The effective topos”. The L. E. J. Brouwer Centenary Symposium,
A. S. Troelstra and D. Van Dalen, eds., pp. 165-218. North-Holland, Amsterdam,
1982.

[14] Hyland, J. M. E. “A small complete category”. Annals of Pure and Applied Logic 40,
2 (November 1988), pp. 135-165.

[15] Leivant, D. “Reasoning about functional programs and complexity classes associ-
ated with type disciplines”. 24th Annual Symposium on Foundations of Computer
Science, pp. 460-469, 1983,

[16] Longo, G. and Moggi, E. "Constructive natural deduction and its ‘modest’ interpre-
tation”. To appear in Semantics of Natural and Computer Languages, . Meseguer,
ed. MIT Press, Cambridge, Mass.

[17] Martin-Léf, P. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

[18] McCracken, N. J. "A finitary retract model for the polymorphic lambda-calculus”,
To appear in Information and Control.

[19] McCracken, N. J. An Investigation of a Programming Language with a Polymorphic

86 Chapter 5 Reynolds: Polymorphic Lambda Calculus

Type Structure. Ph. D. dissertation, Syracuse University, June 1979.

[20] Pitts, A. M. “Polymorphism is set theoretic, constructively”. Category Theory and
Computer Science, D. H. Pitt, A. Poigné, and D. E. Rydeheard, eds., pp. 12-38.
Lecture Notes in Computer Science, vol. 283. Springer-Verlag, Berlin, 1987.

[21] Prawitz, D. "Ideas and results in proof theory". Proceedings of the Second Scandina-
vian Logic Symposium,]. E. Fenstad, ed., pp. 235-307. North-Holland, Amsterdam,
1971.

[22] Reynolds, J. C. “Towards a theory of type structure”. Proceedings, Colloque sur
la Programmation, pp. 408-425. Lecture Notes in Computer Science, vol. 19.
Springer-Verlag, Berlin, 1974.

[23] Reynolds, J. C. "Types, abstraction and parametric polymorphism”. Information
Processing 83, R. E. A. Mason, ed., pp. 513-523, Elsevier Science Publishers B. V.
(North-Holland), Amsterdam, 1983.

[24] Reynolds, J. C. “Polymorphism is not set-theoretic™. Semantics of Data Types,
G. Kahn, D. B. MacQueen, and G. D. Plotkin, eds., pp. 145-156. Lecture Notes in
Computer Science, vol. 173. Springer-Verlag, Berlin, 1984.

[25] Reynolds, J. C. “Three approaches to type structure”. Mathematical Foundations of
Software Development, H.-Ehrig, C. Floyd, M. Nivat, and J. Thatcher, eds., pp. 97-
138. Lecture Notes in Computer Science, vol. 185. Springer-Verlag, Berlin, 1985.

[26] Seely, R. A. G. “Categorical semantics for higher order polymorphic lambda calcu-
lus”. Journal of Symbolic Logic 52, 4 (December 1987), pp. 969-989.

[27] Strachey, C. “Fundamental concepts in programming languages”. August 1967.
[28] Takeuti, G. Proof Theory. North-Holland, Amsterdam, 1975.

[29] Troelstra, A.S. (editor). Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Lecture Notes in Mathematics, vol. 344. Springer-Verlag, Berlin, 1973.

